
Method dispatch in Oforth

M. Franck Bensusan
http://www.oforth.com

Abstract

Oforth is a Forth dialect that implements Object
Oriented Programming as a built-in mechanism. For
methods, it provides a full dynamic binding : two
classes that are unrelated (ie Object is their common
parent) can implement methods with the same name
and the method to execute is resolved at runtime.
Furthermore, classes are never "closed" and it is
possible to extend a class with new methods at any
moment.
As many core words are implemented as methods,
method dispatch must be as fast as possible, while, if
possible, limiting the memory used.
This paper discusses the implementation of method
dispatch in Oforth : classic virtual tables are used to
cache code addresses but they are allocated and
constructed at runtime, while methods are executed.
This is done without suffering much performance
penalties.

1 Introduction

Oforth is a Forth dialect that implements a full OOP
model. Many core word, like #+, #-, ... are implemented
as methods so method dispatch must be as fast as
possible. There are two more constraints to be
addressed : dynamic binding and non-closed classes.
"Dynamic binding" means that all classes can
implement all methods, whatever their position in the
hierarchy and the selection of the method to run will
occur at runtime, according to the top of stack. "Non-
closed" classes means that we can always add a new
methods to an existing class. For instance, we can
create the Integer class, then create the Float class, then
add the “>float” method to the Integer class.

With theses constraints, it is not possible to create, at
compile time, a definitive virtual table for each class
with a pointer to this VT stored in each object. We have
to adjust the virtual tables at runtime.

In this paper, we look at the syntax of messages, class
definition and method definitions (2), the dispatch
message mechanism implemented (3), optimizations
that occur at compile time (4), some discussion about
the performances and memory cost (5), and some
discussions for future work (6).

There have been many works on method dispatch in the

general programming language literature ([DUC11] for
instance) and some work in the Forth community
([RP96], [ERT12]). This paper is not intended to expose
new ideas on this subject : its objective is to expose the
dispatch method used in Oforth and what choices have
led to this implementation.

2 Messages, classes and methods

Messages are represented by words created in the
dictionary. They can be "ticked", executed, ... as classic
words. You will almost never create a new message
without its first method, but, if necessary (forward
definition for instance), you can do it using :

message: foo

A class is also a word in the dictionary. It is created by
sending the #new: message to the Class class (a meta-
class) :

Object Class new: A

This creates a new word, A, in the dictionary with
Object as its parent. Oforth only supports single-
inheritance. Using A word will push the class on the
stack.

Once a class is created, methods can be added :

A Class new: A1

A1 method: foo
 "Foo for A1 :" . self . ;

Object Class new: B

B method: foo
 "Foo for B :" . self . ;

A method: bar
 "Bar for A :" . self . ;

A virtual: foo2
 "to be redefined" abort ;

A1 method: foo2
 "Redefined: " . self . ;

#bar .s
[1] (Message) #bar

If messages (here words foo, bar and foo2) were not
created yet, they are created when the first method
corresponding to the message is created.

All methods call (whether they are virtual or not) have
dynamic binding, according to object on top of stack.
Calling a method is just like calling a word, but the
object that will receive the message have to be pushed
on the stack first. One important rule is that this TOS is
removed from the stack when calling the method, and
stored on the return stack. In order to push this TOS
(called the method receiver) on the stack in the
method's body, the self word can be used. For instance,
this is how the previous words are called on objects :

A1 new foo
Foo for A1 : aA1 ok

B new foo
Foo for A2 : aB ok

A new dup bar foo2
Bar for A : aA [console:1] #Exception : to
be redefined

A1 new dup bar foo2
Bar for A : aA1 Redefined: aA1 ok

Methods can't be redefined into subclasses unless they
are declared as virtual (here foo2, for instance). Non
virtual methods correspond to final methods in Java :
they can't be redefined in subclasses. Declaring a
method as virtual can have impact on optimizations
during compilation (see chapter 4).

Ticking a word is done using the # word and not ' (' is
dedicated to characters). No space is needed between #
and the name. So #bar will push the word bar (here a
message) on the stack, or compile a literal into the
current definition when compiling.

There is no word such as "end-class". The #bar method
is added to A after A1 and B are declared. This allows
to extend a class whenever we want, but this also adds
constraints on the dispatch mechanism as the list of
messages a particular class can respond to is never fixed
once for all.

Furthermore, many core words are implemented as
methods. The number of messages a class may respond
to can be very important and this also adds constraints
to the dispatch performances.

3 Dispatch mechanism

3.1 Object's tag field

Instead of associating an index with each message,
Oforth uses an "orthogonal" mechanism : an index is
associated with each class. In the first slot of each
object, a tag is stored, which includes its class index
(attributes are stored after this field). On 32bits systems,
the class index is present in the 12 least-significant bits

of the tag field :

0xnnnnnIII

Here, the class index value is III. By the way, this
means that, on a 32bits Oforth systems, we can't declare
more than 4095 classes (the Object class index is 1).

Other information in the tag field is not used for the
dispatch mechanism and is not discussed here. Figure 1
shows the tag field stored into each object.

class A
index = 8 A object

0xnnnnn008
attribute a
attribute b

Figure 1 : tag field

3.2 One virtual table by message : the MVT.

As indexes are associated with each class, messages
hold the virtual tables : the Message Virtual Table
(MVT). Each slot of the MVT contains the address of
the method's code to execute for the class
corresponding to the index slot. The first slot of a MVT
(index 0) holds its size.

When a message is created, it points to an empty virtual
table (a static slot with value 0).

Figure 2 shows a MVT for message foo. At index 8, we
find the code address of the method to be executed for
objects of class A.

MVT

MVT pointer

Message foo
Name = foo Size = 10

method code address for class 1
method code address for class 2
method code address for class 3
method code address for class 4
method code address for class 5
method code address for class 6
method code address for class 7
method code address for class 8 (A)
method code address for class 9
method code address for class 10

Figure 2 : a Message Virtual Table

3.3 Sending a message

As it is not possible to populate the MVT when classes
are declared, everything must be handled at runtime,
when messages are sent.

Listing below is the assembler code (x86 32bits) that is
executed to send a message (in register r1). The method
to execute is retrieved according to the Top Of Stack
(TOS) class :

func(runMessage)
 test $1, TOS (1)
 jne LcallMethodInteger (1)
 test TOS, TOS (1)
 je LcallMethodNull (1)

 movl (TOS), r0 (2)
 andl 0x00000FFF, r0 (2)

 cmpl IDClass, r0 (3)
 je LcallMethodClass (3)

 movl virtualTable(r1), r2 (4)

 cmp r0, *r2 (5)
 jl reallocMVT (5)

 movl (r2, r0, 4), r3 (6)
 jmp *r3 (6)

Registers used are macros to map CPU registers. For
x86 CPU, register allocation is :

#define r0 %eax
#define TOS %ebx
#define r1 %ebp
#define r2 %ecx
#define r3 %edx

virtualTable(r1) is the field offset of the
MVT pointer in the message objects.

Steps that occur during the runMessage function are :

(1) If TOS is a primitive integer or null, TOS is the
value itself (and not a pointer) and we can't retrieve the
tag field value from those objects. Class index (r0) is set
manually before going to (step 4)

(2) Otherwise, we retrieve the class index (in r0) from
TOS tag field.

(3) If it is the index of Class meta-class, we have to
search for a class method to execute and the dispatch is
done using another mechanism (see 3.6).

(4) The MVT associated with the message is retrieved
(in r2)

(5) The MVT size is checked. If the size is smaller than
the TOS class index, the MVT is reallocated (see 3.4).

(6) An indirect jump to the MVT slot value
corresponding to the class index is performed.

3.4 MVT dynamic setting and reallocation

When a message is created, it points to an empty static
MVT of size 0 (one static slot with 0 value). So no
memory is consumed until the message is actually
performed.

When the message is performed, if the MVT size is
smaller than TOS class index (this will always be the
case if the MVT is the static empty MVT), a new MVT
of greater size is allocated and all its slots are populated
with the address of a function named "polymorphic",
then we go back to the dispatch mechanism. At this
point, the MVT is larger enough and we can retrieve the
value of the slot corresponding to the class index and
run the "polymorphic" function. The purpose of this
function is to retrieve the code address to be executed
for class r0 and to adjust the slot value with thus value.
This is done only once and, the next time, the slot will
hold this calculated address code of the method to run
and will jump directly to this address.

Figure 3 shows the MVT for foo message just after its
first execution for class A. If it is executed again for
class A, the method code is now performed. If it is
performed for another class (index 5 for instance), the
"polymorphic" function will update the slot 5 with the
address of method code to run for class “5”.

The same code (step 6 in code 3.4) is used to adjust the
MVT slots values (when their value is "polymorphic")
and to run the method code (when their value is the
method code address).

Also, as the MVT pointer is always accessed when a
polymorphic call is performed for a message (step 4),
we can extend classes by adding new methods without
needing to adjust objects already created.

10
MVT

Method foo MVT for foo message
name

polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
code for class index 8 (A)
polymorphic
polymorphic

Figure 3 : MVT after executing foo for class A

3.5 The "polymorphic" function

The "polymorphic" function job is to retrieve the code
address to execute for the message and TOS, and store
its value in the message's MVT.

Each message in the dictionary has a linked list of all
the methods declared and each method has two
attributes : the class and the code address. A message is
a word (with a name), but a method is not a word.

The "polymorphic" function starts with the TOS class
and tries to retrieve into the linked list a method for this
class. If not found, it retrieves the superclass of this
class and searches again until it finds a method or it
reaches null (null is the superclass of Object).
The algorithm is actually a little more complex, as it
takes into account Properties (at each level, the search
is done for the class and its properties).

If a method is found, the MVT slot is updated with its
code address. Otherwise (ie the superclass null is
reached), the virtual #doesNotUnderstand message is
executed for TOS (default behavior, at Object level, is
to raise a "does not understand" exception, but it can be
redefined for a particular class).

3.6 Dispatch for class methods

For class methods, the dispatch mechanism is different.
The correct implementation is also retrieved at runtime
but without MVT : each time, the search is done
through the hierarchy to retrieve the correct code to
run : each class is searched one by one in the order of
the inheritance until a method is found. This (slow)
dispatch search has been chosen as it will not be used a
lot because of optimizations that occur during
compilation (see next chapter) : class methods call will
mostly be optimized. This will save memory, as no
MVT is allocated for class methods.

4 Optimizations during compilation

Those optimizations are handled by the #compile
method implemented for messages words. If an
optimization is possible, the polymorphic call is
reduced to a procedure call.

4.1 When TOS is self

When the last word compiled is self, the receiver will
be pushed on the stack. For instance :

A method: foo
 self bar ;

In this case, we know the type of the TOS object when
#bar is performed (here A or one of its subclasses). So,
at compile time, we search for a method to run. If we
find a non-virtual method, it is the one that will be
performed at runtime, so we can optimize by compiling
a direct call to this method's code.

If the method found is virtual, no optimization is
possible.

4.2 When TOS is a literal

When the last instruction is a push of a literal on the
stack (Integer, Float, String, Word, ...), we also know
the type of TOS at compile time and we can optimize
by compiling a direct call.

A literal can be word, including a class. So this
optimization will often apply when performing a class
method :

: test
 120 Array newSize ;

Here the call to message #newSize will be optimized as
we know that TOS will be the Array class. That is why
there is no MVT allocated for class methods (see 3.6
dispatch for class methods).

4.3 When the message is declared for Object

If the message to compile is declared at the Object level
and is not virtual, a direct call is compiled. It is the case
for messages like #apply, #detect, #include?, ...

4.4 Otherwise...

If the type of TOS can't be detected at compile time and
no optimization is possible, a polymorphic call is
generated by calling the runMessage described before.
Using the message word (its "name token"), the code
generated in the current definition is :

 movl message, r1
 call runMessage

5 Performances and memory used

5.1 Performances considerations

When a polymorphic call is performed, 4 memory
accesses and one indirect jump are executed :
- Access to the tag field of TOS (step 2).
- Access to the message's MVT (step 4).
- Access to the MVT's size (step 5).
- Access to the code to run and jump (step 6)

Memory access for step 2 and 6 are mandatory : we
need to access the object to retrieve an information
about its type, and we need to retrieve the MVT slot
value. Furthermore, on modern processors, access to the
field tag probably cache the object's attributes that can
be accessed in the method.

Memory access for steps 4 and 5 are not strictly
necessary but needed if we want to re-allocate the MVT
at runtime and have extendable classes. On modern
processors, (5) may cache the access to method's code
address (6).

Two other mechanisms are used to optimize
performances :

1) A static MVT of size 0 is associated with the newly
created message. So there is no need to check if the
MVT is null : we directly check if the MVT size is
greater than the index (step 5).

2) Polymorphism is calculated by a function
("polymorphic") whose code address initializes the
MVT slots. So the same jump to the slot address (step
6) allows to calculate the method to run (the first time)
and to directly run the method code (the next times).
There is no need to check if the slot value is empty or
not.

5.2 Memory used

Main objective for the dispatch mechanism is
performances, but it allows to save some memory
compared to a "n classes x m messages" matrix :

1) Newly created messages don't allocate virtual table.
A MVT is created only if the message is sent at runtime.
This is important as many core words are messages and
not all declared messages are used at runtime.

2) MVT size are calculated at runtime and won't be
greater than necessary (the max index of the class that
receives the message).

3) MVT are "by message" and not "by class", so there
are many “small” MVT instead of few big virtual tables
(one by class).

4) There is no MVT for class methods so no memory is
allocated.

Nevertheless, there may still have lot of unused slots in
a MVT. It could be interesting to implement other
mechanisms (hold also a minimum index or hash
MVT, ...). Those mechanisms have not been
implemented yet.

5.3 Benchmarks

The following (simplistic) benchmark tests the various
cases. On modern processors, everything will be in
cache (particularly the message and its MVT) and
branch prediction will apply.

Tests have been run on a core i7-4720 HQ 2,6Ghz on
Windows 10.

: f (--) ;

Object virtual: m ;
Float method: m ;

Object Class new: A
A method: m ;
A classMethod: m ;

A Class new: B

: em | i | #[loop: i []] bench . ;

: fc | i | #[loop: i [f]] bench . ;

: mf | i | #[loop: i [5.0 m]] bench . ;

: mb | i b |
 B new ->b
 #[loop: i [b m]] bench . ;

: mi | i j |
 10 ->j
 #[loop: i [j m]] bench . ;

: ca | i | #[loop: i [A m]] bench . ;

: cm | i cl |
 A ->cl
 #[loop: i [cl m]] bench . ;

Results are :

The first column is the total time in milliseconds. The
second column is the total time for calls (ie subtracting
the time spent for the empty loop). The third column is
the cost of a the polymorphic call compared to a direct
call.

#em is the benchmark for an empty loop.

#fc calls an empty function (f) n times. Of course, here,
a direct call is compiled.

#mf test calls a message that is optimized during
compile time into a direct call (because TOS is a
literal). It runs in the same time as #fc

#mb calls a message that will not be optimized during
compile time. It uses the dispatch code described in
(3.3). This test shows that a polymorphic call takes
twice the time compared to a direct call.

#mi calls a message that will not be optimized during
compile time. It uses the dispatch code described in
(3.3), but as the receiver is an integer, it uses the special
case for integers/null (step 1). In this case, the
polymorphic call takes three times the time for a direct
call. This is probably the result of explicit jumps that
breaks CPU optimizations.

#ca calls a class method on class A. It is optimized
(because TOS is a literal) and runs in the same time
than a direct call.

#cm calls a message on class A that will not be
optimized. The code to run is searched each time in the
hierarchy, without VTM. Those calls are 3 times slower
than MVT dispatch for methods and 6 times slower that
a direct function call.

6 Future work

The main purpose of this dispatch implementation is to
keep high performances while allowing extended
classes.

Nevertheless, future work may be interesting on
alternative mechanisms for MVT storage.

In a typical application :
- Some messages will be implemented only for one
class and a big MVT will be allocated for only one
pertinent slot (this is the worst pattern).
- Some messages will be implemented only at Object
level and the MVT will be very small.
- Some messages will be in-between (#read, #+, #size ,
#<<, #log, ...) and the MVT will be partially filled.

In order to handle the first pattern, a possibility would
be to have 2 sizes for each MVT : the minimum class
index and the maximum class index. This would
complexify a little the rumMessage function with a
performance penalty, but save a lot of space when a
message is implemented only for a few classes.

Other mechanisms have also been discussed in the
literature ([ERTL11]) and could be implemented and
benchmarked in a future work.

7 Conclusion

Oforth implements a full dynamic binding for method
dispatch for methods, associated with extendable
classes.

During compile time, some optimizations occur to
reduce, when possible, messages call to direct call.

Virtual tables are "by message" and not "by class".
They are not defined at compile time but calculated and
reallocated at runtime, while messages are performed.
This allows to save some memory (unused messages
don't use MVT) and to extend classes.

This is done without suffering much performances
penalties as the same code is used to manage MVT and
to call methods : everything is done by calling to the
addresses stored in the MVT slots.

8 References

[RP96] Bradford J. Rodriguez and W. F. S. Poehlman. A
survey of object-oriented Forths. SIGPLAN Notices,
pages 39–42, April 1996.

[DUC11] Roland Ducournau. Implementing statically
typed object-oriented programming languages. ACM
Computing Surveys, 43(3):Article 18, April 2011.

[ERT12] M. Anton Ertl. Methods in objects2: Duck
Typing and Performance. 28th EuroForth Conference
2012.

