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Abstract

Oforth  is  a  Forth  dialect  that  implements  Object
Oriented  Programming  as  a  built-in  mechanism.  For
methods,  it  provides  a  full  dynamic  binding  :  two
classes that  are  unrelated (ie  Object  is  their  common
parent)  can  implement  methods  with  the  same  name
and  the  method  to  execute  is  resolved  at  runtime.
Furthermore,  classes  are  never  "closed"  and  it  is
possible  to  extend  a  class  with  new methods  at  any
moment. 
As  many  core  words  are  implemented  as  methods,
method dispatch must be as fast as possible, while, if
possible, limiting the memory used.
This  paper  discusses  the  implementation  of  method
dispatch  in  Oforth  :  classic  virtual  tables  are  used  to
cache  code  addresses  but  they  are  allocated  and
constructed  at  runtime,  while  methods  are  executed.
This  is  done  without  suffering  much  performance
penalties.

1 Introduction

Oforth is  a Forth dialect  that  implements a  full  OOP
model. Many core word, like #+, #-, ... are implemented
as  methods  so  method  dispatch  must  be  as  fast  as
possible.  There  are  two  more  constraints  to  be
addressed  :  dynamic  binding  and  non-closed  classes.
"Dynamic  binding"  means  that  all  classes  can
implement all methods, whatever their position in the
hierarchy and the selection of the method to run will
occur at runtime, according to the top of stack. "Non-
closed" classes means that  we can always add a new
methods  to  an  existing  class.  For  instance,  we  can
create the Integer class, then create the Float class, then
add the “>float” method to the Integer class.

With theses constraints, it  is not possible to create, at
compile  time,  a definitive virtual  table  for  each class
with a pointer to this VT stored in each object. We have
to adjust the virtual tables at runtime.

In this paper, we look at the syntax of messages, class
definition  and  method  definitions  (2),  the  dispatch
message  mechanism  implemented  (3),  optimizations
that occur at compile time (4), some discussion about
the  performances  and  memory  cost  (5),  and  some
discussions for future work (6).

There have been many works on method dispatch in the

general programming language literature ( [DUC11] for
instance)  and  some  work  in  the  Forth  community
([RP96], [ERT12]). This paper is not intended to expose
new ideas on this subject : its objective is to expose the
dispatch method used in Oforth and what choices have
led to this implementation.

2 Messages, classes and methods

Messages  are  represented  by  words  created  in  the
dictionary. They can be "ticked", executed, ...  as classic
words.  You  will  almost  never  create  a  new  message
without  its  first  method,  but,  if  necessary  (forward
definition for instance), you can do it using : 

message: foo

A class is also a word in the dictionary. It is created by
sending the #new: message to the Class class (a meta-
class) : 

Object Class new: A

This  creates  a  new  word,  A,  in  the  dictionary  with
Object  as  its  parent.  Oforth  only  supports  single-
inheritance.  Using A word will  push the class  on the
stack. 

Once a class is created, methods can be added :

A Class new: A1

A1 method: foo
   "Foo for A1 :" . self . ;

Object Class new: B

B method: foo
   "Foo for B :" . self . ;

A method: bar
   "Bar for A :" . self . ; 

A virtual: foo2
   "to be redefined" abort ;

A1 method: foo2
    "Redefined: " . self . ;

#bar .s 
[1] (Message) #bar

If  messages (here words foo,  bar and foo2) were not
created  yet,  they  are  created  when  the  first  method
corresponding to the message is created.



All methods call (whether they are virtual or not) have
dynamic binding,  according to object on top of stack. 
Calling  a  method is  just  like calling  a  word,  but  the
object that will receive the message have to be pushed
on the stack first. One important rule is that this TOS is
removed from the stack when calling the method, and
stored on the return stack. In order to push this TOS
(called  the  method  receiver)  on  the  stack  in  the
method's body, the self word can be used. For instance,
this is how the previous words are called on objects : 

A1 new foo
Foo for A1 : aA1 ok

B new foo
Foo for A2 : aB ok

A new dup bar foo2
Bar for A : aA [console:1] #Exception : to
be redefined

A1 new dup bar foo2
Bar for A : aA1 Redefined:  aA1 ok

Methods can't be redefined into subclasses unless they
are  declared  as virtual  (here  foo2,  for  instance).  Non
virtual methods correspond to final methods in Java :
they  can't  be  redefined  in  subclasses.  Declaring  a
method  as  virtual  can  have  impact  on  optimizations
during compilation (see chapter 4).

Ticking a word is done using the # word and not ' (' is
dedicated to characters). No space is needed between #
and the name. So #bar will push the word bar (here a
message)  on  the  stack,  or  compile  a  literal  into  the
current definition when compiling.

There is no word such as "end-class". The #bar method
is added to A after A1 and B are declared. This allows
to extend a class whenever we want, but this also adds
constraints  on  the  dispatch  mechanism as  the  list  of
messages a particular class can respond to is never fixed
once for all.

Furthermore,  many  core  words  are  implemented  as
methods. The number of messages a class may respond
to can be very important and this also adds constraints
to the dispatch performances.

3 Dispatch mechanism

3.1 Object's tag field

Instead  of  associating  an  index  with  each  message,
Oforth uses an "orthogonal" mechanism : an index is
associated  with  each  class.  In  the  first  slot  of  each
object,  a tag is  stored,  which includes its  class  index
(attributes are stored after this field). On 32bits systems,
the class index is present in the 12 least-significant bits

of the tag field :

0xnnnnnIII

Here,  the  class  index  value  is  III.  By  the  way,  this
means that, on a 32bits Oforth systems, we can't declare
more than 4095 classes (the Object class index is 1).

Other information in  the tag field is  not used for  the
dispatch mechanism and is not discussed here. Figure 1
shows the tag field stored into each object.

class A
index = 8 A object

0xnnnnn008
attribute a
attribute b

____________________________________
Figure 1 : tag field

3.2 One virtual table by message : the MVT.

As  indexes  are  associated  with  each  class,  messages
hold  the  virtual  tables  :  the  Message  Virtual  Table
(MVT). Each slot of the MVT contains the address of
the  method's  code  to  execute  for  the  class
corresponding to the index slot. The first slot of a MVT
(index 0) holds its size.

When a message is created, it points to an empty virtual
table (a static slot with value 0).

Figure 2 shows a MVT for message foo. At index 8, we
find the code address of the method to be executed for
objects of class A.

MVT

MVT pointer

Message foo
Name = foo Size = 10

method code address for class 1
method code address for class 2
method code address for class 3
method code address for class 4
method code address for class 5
method code address for class 6
method code address for class 7
method code address for class 8 (A)
method code address for class 9
method code address for class 10

____________________________________
Figure 2 : a Message Virtual Table



3.3 Sending a message

As it is not possible to populate the MVT when classes
are  declared,  everything  must  be handled  at  runtime,
when messages are sent.

Listing below is the assembler code (x86 32bits) that is
executed to send a message (in register r1). The method
to execute is retrieved according to the Top Of Stack
(TOS) class : 

func(runMessage)
   test $1, TOS (1)
   jne LcallMethodInteger (1)
   test TOS, TOS (1)
   je  LcallMethodNull (1)

   movl (TOS), r0 (2)
   andl 0x00000FFF, r0 (2)

   cmpl IDClass, r0 (3)
   je LcallMethodClass (3)

   movl virtualTable(r1), r2 (4)

   cmp r0, *r2 (5)
   jl reallocMVT (5)

   movl (r2, r0, 4), r3 (6)
   jmp *r3 (6)

Registers used are macros to map CPU registers.  For
x86 CPU, register allocation is : 

#define r0          %eax
#define TOS         %ebx
#define r1          %ebp
#define r2          %ecx
#define r3          %edx

virtualTable(r1) is the field offset of the
MVT pointer in the message objects.

Steps that occur during the runMessage function are : 

(1)  If  TOS is  a  primitive integer or  null,  TOS is  the
value itself (and not a pointer) and we can't retrieve the
tag field value from those objects. Class index (r0) is set
manually before going to (step 4)

(2) Otherwise, we retrieve the class index (in r0) from
TOS tag field.

(3) If  it  is the index of Class meta-class, we have to
search for a class method to execute and the dispatch is
done using another mechanism (see 3.6).

(4) The MVT associated with the message is retrieved
(in r2)

(5) The MVT size is checked. If the size is smaller than
the TOS class index, the MVT is reallocated (see 3.4).

(6)  An  indirect  jump  to  the  MVT  slot  value
corresponding to the class index is performed.

3.4 MVT dynamic setting and reallocation

When a message is created, it points to an empty static
MVT of size 0 (one  static  slot  with 0 value).  So no
memory  is  consumed  until  the  message  is  actually
performed.

When the  message  is  performed,  if  the  MVT size  is
smaller than TOS class index (this will always be the
case if the MVT is the static empty MVT), a new MVT
of greater size is allocated and all its slots are populated
with the address of  a function named "polymorphic",
then  we go  back  to  the  dispatch  mechanism.  At  this
point, the MVT is larger enough and we can retrieve the
value of the slot corresponding to the class index and
run  the  "polymorphic"  function.  The  purpose  of  this
function is to retrieve the code address to be executed
for class r0 and to adjust the slot value with thus value.
This is done only once and, the next time, the slot will
hold this calculated address code of the method to run
and will jump directly to this address.

Figure 3 shows the MVT for foo message just after its
first execution for class A. If it  is executed again for
class  A,  the  method  code  is  now performed.  If  it  is
performed for another class (index 5 for instance), the
"polymorphic" function will update the slot 5 with the
address of method code to run for class “5”.

The same code (step 6 in code 3.4) is used to adjust the
MVT slots values (when their value is "polymorphic")
and to run  the method code  (when their  value  is  the
method code address).

Also, as the MVT pointer is always accessed when a
polymorphic call is performed for a message (step 4),
we can extend classes by adding new methods without
needing to adjust objects already created.

10
MVT

Method foo MVT for foo message
name

polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
code for class index 8 (A)
polymorphic
polymorphic

____________________________________
Figure 3 : MVT after executing foo for class A



3.5 The "polymorphic" function

The "polymorphic" function job is to retrieve the code
address to execute for the message and TOS, and store
its value in the message's MVT.

Each message in the dictionary has a linked list of all
the  methods  declared  and  each  method  has  two
attributes : the class and the code address. A message is
a word (with a name), but a method is not a word.

The "polymorphic" function starts with the TOS class
and tries to retrieve into the linked list a method for this
class.  If  not  found,  it  retrieves  the  superclass  of  this
class  and searches again until  it  finds a method or it
reaches null (null is the superclass of Object).
The algorithm is actually a little more complex, as it
takes into account Properties (at each level, the search
is done for the class and its properties).

If a method is found, the MVT slot is updated with  its
code  address.  Otherwise  (ie  the  superclass  null  is
reached),  the  virtual  #doesNotUnderstand  message  is
executed for TOS (default behavior, at Object level, is
to raise a "does not understand" exception, but it can be
redefined for a particular class). 

3.6 Dispatch for class methods

For class methods, the dispatch mechanism is different.
The correct implementation is also retrieved at runtime
but  without  MVT  :  each  time,  the  search  is  done
through  the  hierarchy  to  retrieve  the  correct  code  to
run : each class is searched one by one in the order of
the  inheritance  until  a  method  is  found.  This  (slow)
dispatch search has been chosen as it will not be used a
lot  because  of  optimizations  that  occur  during
compilation (see next chapter) : class methods call will
mostly  be  optimized.  This  will  save  memory,  as  no
MVT is allocated for class methods.

4 Optimizations during compilation

Those  optimizations  are  handled  by  the  #compile
method  implemented  for  messages  words.  If  an
optimization  is  possible,  the  polymorphic  call  is
reduced to a procedure call.

4.1 When TOS is self

When the last word compiled is self, the receiver will
be pushed on the stack. For instance : 

A method: foo 
   self bar ;

In this case, we know the type of the TOS object when
#bar is performed (here A or one of its subclasses). So,
at compile time, we search for a method to run. If we
find  a  non-virtual  method,  it  is  the  one  that  will  be
performed at runtime, so we can optimize by compiling
a direct call to this method's code.

If  the  method  found  is  virtual,  no  optimization  is
possible.

4.2 When TOS is a literal

When the last instruction is a push of a literal on the
stack (Integer, Float, String, Word, ...),  we also know
the type of TOS at compile time and we can optimize
by compiling a direct call.

A  literal  can  be  word,  including  a  class.  So  this
optimization will often apply when performing a class
method : 

: test
    120 Array newSize ;

Here the call to message #newSize will be optimized as
we know that TOS will be the Array class. That is why
there is no MVT allocated for class methods (see 3.6
dispatch for class methods).

4.3 When the message is declared for Object

If the message to compile is declared at the Object level
and is not virtual, a direct call is compiled. It is the case
for messages like #apply, #detect, #include?, ...

4.4 Otherwise...

If the type of TOS can't be detected at compile time and
no  optimization  is  possible,  a  polymorphic  call  is
generated by calling the runMessage described before.
Using the message word (its "name token"), the code
generated in the current definition is : 

   movl message, r1
   call runMessage

5 Performances and memory used

5.1 Performances considerations

When  a  polymorphic  call  is  performed,  4  memory
accesses and one indirect jump are executed : 
- Access to the tag field of TOS (step 2).
- Access to the message's MVT (step 4). 
- Access to the MVT's size (step 5).
- Access to the code to run and jump (step 6)



Memory access for step 2 and 6 are  mandatory :  we
need  to  access  the  object  to  retrieve  an  information
about its type, and we need to retrieve the MVT slot
value. Furthermore, on modern processors, access to the
field tag probably cache the object's attributes that can
be accessed in the method.

Memory  access  for  steps  4  and  5  are  not  strictly
necessary but needed if we want to re-allocate the MVT
at  runtime  and  have  extendable  classes.  On  modern
processors, (5) may cache the access to method's code
address (6).

Two  other  mechanisms  are  used  to  optimize
performances : 

1) A static MVT of size 0 is associated with the newly
created message.  So there is  no need to  check if  the
MVT is  null  :  we directly  check if  the  MVT size is
greater than the index (step 5). 

2)  Polymorphism  is  calculated  by  a  function
("polymorphic")  whose  code  address  initializes  the
MVT slots. So the same jump to the slot address (step
6) allows to calculate the method to run (the first time)
and to directly run the method code (the next times).
There is no need to check if the slot value is empty or
not.

5.2 Memory used

Main  objective  for  the  dispatch  mechanism  is
performances,  but  it  allows  to  save  some  memory
compared to a "n classes x m messages" matrix : 

1) Newly created messages don't allocate virtual table.
A MVT is created only if the message is sent at runtime.
This is important as many core words are messages and
not all declared messages are used at runtime.

2)  MVT size  are  calculated  at  runtime and won't  be
greater than necessary (the max index of the class that
receives the message).

3) MVT are "by message" and not "by class", so there
are many “small” MVT instead of few big virtual tables
(one by class). 

4) There is no MVT for class methods so no memory is
allocated.

Nevertheless, there may still have lot of unused slots in
a  MVT.  It  could  be  interesting  to  implement  other
mechanisms  (hold  also  a  minimum  index  or  hash
MVT,  ...).  Those  mechanisms  have  not  been
implemented yet.

5.3 Benchmarks

The following (simplistic) benchmark tests the various
cases.  On  modern  processors,  everything  will  be  in
cache  (particularly  the  message  and  its  MVT)  and
branch prediction will apply.

Tests have been run on a core i7-4720 HQ 2,6Ghz on
Windows 10.

: f ( -- )  ;

Object virtual: m   ;
Float method: m ;

Object Class new: A
A method:      m   ;
A classMethod: m   ;

A Class new: B

: em | i | #[ loop: i [ ] ]     bench . ;

: fc | i | #[ loop: i [ f ] ]   bench . ;

: mf | i | #[ loop: i [ 5.0 m ] ] bench . ;

: mb | i b |
   B new ->b
   #[ loop: i [ b m ] ] bench . ;

: mi | i j |
   10 ->j
   #[ loop: i [ j m ] ] bench . ;

: ca | i | #[ loop: i [ A m ] ] bench . ;

: cm | i cl |
   A ->cl
   #[ loop: i [ cl m ] ] bench . ;

Results are : 

The first column is the total time in milliseconds. The
second column is the total time for calls (ie subtracting
the time spent for the empty loop). The third column is
the cost of a the polymorphic call compared to a direct
call.

#em is the benchmark for an empty loop.

#fc calls an empty function (f) n times. Of course, here,
a direct call is compiled.



#mf  test  calls  a  message  that  is  optimized  during
compile  time  into  a  direct  call  (because  TOS  is  a
literal). It runs in the same time as #fc

#mb calls a message that will not be optimized during
compile  time.  It  uses  the  dispatch  code  described  in
(3.3).  This  test  shows  that  a  polymorphic  call  takes
twice the time compared to a direct call.

#mi calls a message that will not be optimized during
compile  time.  It  uses  the  dispatch  code  described  in
(3.3), but as the receiver is an integer, it uses the special
case  for  integers/null  (step  1).  In  this  case,   the
polymorphic call takes three times the time for  a direct
call. This is probably the result of explicit  jumps that
breaks CPU optimizations.

#ca  calls  a  class  method  on  class  A.  It  is  optimized
(because TOS is  a literal)  and runs in  the same time
than a direct call.

#cm  calls  a  message  on  class  A  that  will  not  be
optimized. The code to run is searched each time in the
hierarchy, without VTM. Those calls are 3 times slower
than MVT dispatch for methods and 6 times slower that
a direct function call.

6 Future work

The main purpose of this dispatch implementation is to
keep  high  performances  while  allowing  extended
classes. 

Nevertheless,  future  work  may  be  interesting  on
alternative mechanisms for MVT storage.

In a typical application :
-  Some  messages  will  be  implemented  only  for  one
class  and  a  big  MVT will  be  allocated  for  only  one
pertinent slot (this is the worst pattern). 
- Some messages will be implemented only at Object
level and the MVT will be very small.
- Some messages will be in-between (#read, #+, #size ,
#<<, #log, ...) and the MVT will be partially filled.

In order to handle the first pattern, a possibility would
be to have 2 sizes for each MVT : the minimum class
index  and  the  maximum  class  index.  This  would
complexify  a  little  the  rumMessage  function  with  a
performance  penalty,  but  save  a  lot  of  space  when a
message is implemented only for a few classes.

Other  mechanisms  have  also  been  discussed  in  the
literature  ([ERTL11])  and  could  be  implemented  and
benchmarked in a future work.

7 Conclusion

Oforth implements a full dynamic binding for method
dispatch  for  methods,  associated  with  extendable
classes.

During  compile  time,  some  optimizations  occur  to
reduce, when possible, messages call to direct call.

Virtual  tables  are  "by  message"  and  not  "by  class".
They are not defined at compile time but calculated and
reallocated at runtime, while messages are performed.
This  allows to  save  some memory (unused  messages
don't use MVT) and to extend classes.

This  is  done  without  suffering  much  performances
penalties as the same code is used to manage MVT and
to call methods : everything is done by calling to the
addresses stored in the MVT slots.
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