
Halting misconceived?

Bill Stoddart

August 25, 2017

Abstract

The halting problem is considered to be an essential part of the

theoretical background to computing. That halting is not in general

computable has been �proved� in many text books and taught on many

computer science courses, and is supposed to illustrate the limits of

computation. However, there is a dissenting view that these proofs

are misconceived. In this paper we look at what is perhaps the sim-

plest such proof, based on a program that interrogates its own halting

behaviour and then decides to thwart it. This leads to a contradiction

that is generally held to show that a halting function cannot be im-

plemented. The dissenting view agrees with the conclusion that the

halting function, as described, cannot be implemented, but suggests

that this is because its speci�cation is inconsistent. Our paper uses

Forth to illustrate complex abstract arguments.

Keywords: Forth, halting problem, proof

1 Introduction

In his invited paper [2] at The First International Conference on Unifying
Theories of Programming, Eric Hehner dedicates a section to the proof of the
halting problem, claiming that it entails an unstated assumption. He agrees
that the halt test program cannot exist, but concludes that this is due to
an inconsistency in its speci�cation. Hehner has republished his arguments
using less formal notation in [3].

The halting problem is considered to be an essential part of the theoretical
background to computing. That halting is not in general computable has

been �proved� in many text books and taught on many computer science
courses to illustrate the limits of computation. Hehner's claim is therefore
extraordinary. Nevertheless he is an eminent computer scientist1 whose opin-
ions reward careful attention. In judging Hehner's thesis we will take the view
that to illustrate the limits of computation we need a program which can be
consistently speci�ed, but not implemented.

In this paper our aims are to examine Hehner's arguments by expressing them
in Forth. A secondary aim is to show the suitability of Forth for performing
such an analysis.

The halting problem is typically stated as follows. Given a Turing machine
equivalent (TME) language there is no halt test program H (P ,X) which
will tell us, for arbitrary program P and data X , whether P will halt when
applied to X .

Hehner simpli�es this, saying there is no need to consider a program applied
to data, as data passed to a program could always be incorporated within
the program. So his version is that there is no halt test H (P) which tells us,
for an arbitrary program P , whether execution of P will halt.

To express the halting proof in Forth, we assume we have implemented a
program H with stack e�ect (xt −− f) which, for any token xt , reports
whether execution of xt will halt.2 We write ′P to represent the token for
program P .

Were H to exist, we could use it as follows:

: Skip ; : Loop BEGIN AGAIN ;
′Skip H .

�

−1 ok
′Loop H .

�

0 ok

1In the area of programming semantics, Hehner was the �rst to propose �programs
as predicates�, an approach later adopted in Hoare and He's work on unifying theories.
He was the �rst person to express the semantics of selection and iteration in terms of two
simple semantic primitives, choice and guard, an approach now generally adopted and used,
for example, in Abrial's B-Method. He has proposed a reformulation of set theory that
supports unpacked collections and gives semantic meaning to the contents of a set, which
is referred to as a bunch, and has properties perfect for representing non-determinism. His
other contributions have been in areas as diverse as quantum computing and the semantics
of OO languages. When the book "Beauty is our business" was conceived as a tribute to
the work of E W Dijkstra, Hehner contributed a chapter discussing Gödel's incompleteness
theorem. His book A Practical Theory of Programming [1] is available online in updated
form.

2Our tokens are abstract analogies of Forth execution tokens, freed from any �niteness
constraints.

When a Forth program is executed from the keyboard it either comes back
with an �ok� response, or exhibits some pathological behaviour such as re-
porting an error, not responding because it is in an in�nite loop, or crashing
the whole system. We classify the �ok� response as what we mean by �halt-
ing�.

The proof that H cannot be implemented goes as follows. Under the assump-
tion that we have implemented H , we ask whether the following program will
halt:3

: S ′S H IF Loop THEN ;

Now within S , H must halt and leave either a true or false judgement for
the halting of S . If it leaves a true �ag (judging that S will halt) then S will
enter a non-terminating Loop. If it leaves a false �ag (judging that S will
not halt), then S will immediately halt.

Since H cannot pass a correct judgement for S , we must withdraw our as-
sumption that there is an implementation of H . Thus halting behaviour
cannot, in general, be computed. �

Hehner asks us to look in more detail at the speci�cation of H . Since it must
report on the halting behaviour of any program, it must assume the objective
existence of such a behaviour. But S contains a �twisted self reference� and
the halting behaviour of S is altered by passing judgement on it. H does
not have a consistent speci�cation. It cannot be implemented, but this has
little signi�cance, as it is due to the inconsistency of its speci�cation. When
someone claims a universal halt test is uncomputable, and you reply, �What
do you mean by a universal halt test?� you won't receive a mathematically
consistent answer.

From a programming perspective, we can add that S looks as if it will NOT
terminate, because when ′S H is executed, it will be faced with again
commencing execution of ′S H , and with no additional information to help
it. S will not terminate, but this is because the halt test invoked within it
cannot terminate.

The paper is structured as follows. In section 2 we verify Hehner's simpli�-
cation of the halting problem. In section 3 we make some general remarks on
halting, �nite memory computations, and connections between halt tests and
mathematical proofs. In section 4 we present a tiny language consisting of

3The program accesses its own token. Later, in some code experiments, we show how
this is achieved.

three Forth programs with access to a halt test. We �nd we can still use the
same proof, that a halt test cannot be implemented. We examine the spec-
i�cation of the halt test for this minimal scenario in detail, and we produce
a Forth implementation of an amended halt test that is allowed to report
non-halting either by the return of a stack argument or by an error message.
In section 5 we perform a semantic analysis of S , taking its de�nition as a
recursive equation, and conclude that its de�ning equation has no solution.
S does not exist as a conceptual object, and neither does H .

The halting problem is generally attributed to Turing's paper on Computable
Numbers [6], but this attribution is misleading. In an appendix we brie�y
describe Turing's paper and how the halting problem emerged from it. We
also give an example of uncomputability which has a consistent speci�cation.

The original aspects of this paper are: a careful examination of Hehner's
arguments by re-expressing them in Forth; a translation of the halting prob-
lem proof to a minimal language where exactly the same argument can be
made; an examination of the consistency of the halt test speci�cation for our
minimal language with an extension of this argument to the general case;
an implementation of a less strict halt test for the minimal language which
allows a result to be computed except in the self referential case, where non-
halting is reported as an error; a semantic analysis of S and H as a conceptual
objects; and a critique of the response to Hehner's 2006 paper [2] presented
in Halting still standing [5].

2 Hehner's simpli�cation of the halting prob-

lem

Normally the halting problem is discussed in terms of a halt test taking data
D and program P and reporting whether P halts when applied to D .

Hehner's simpli�ed halt test takes a program P and reports whether it halts.

We refer to the �rst of these halt tests as H2, since it takes two arguments,
and the second as H .

To verify Hehner's simpli�cation of the halting problem we show that any
test that can be performed by H2 can also be performed by H , and any test
that can be performed by H can also be performed by H2.

Proof Given P0 (−− ?), P1 (x −− ?) and D (−− x), where P0,P1 are

arbitrary Forth de�nitions with the given signatures and D is arbitrary Forth
code that returns a single stack value, and assuming tests H (xt −− f)
and H2 (x xt −− f) where ′P0 H reports whether P0 halts, and D ′P1 H2

reports whether D P1 halts, then:

The test D ′P1 H2 can be performed by H with the aid of the de�nition
: T D P1 ; as ′T H .

The test ′P0 H can be performed by H2 with the aid of the de�nition
: U DROP P0 ; as D ′U H2. �

3 Some notes on halting analysis

Fermat's last theorem states that for any integer n > 2 there are no integers
a, b, c such that:

an + bn = cn

Fermat died leaving a note in a copy of Diophantus's Arithmetica saying he
had found a truly marvellous proof of his theorem, but it was too long to
write in the margin. No proof was never found. All subsequent attempts
failed until 1995, when Andrew Wiles produced a proof 150 pages long.

However, given a program FERMAT which searches exhaustively for a counter
example and halts when it �nds one, and a halt test H we could have proved
the theorem by the execution:

′FERMAT H .

�

0 ok

This would tell us the program FERMAT does not halt, implying that the
search for a counter example will continue forever, in other words that no
counter example exists and the theorem is therefore true.

In the same way we could explore many mathematical conjectures by writing
a program to search exhaustively over the variables of the conjecture for a
counter example. Then use H to determine whether the program fails to
halt, in which case there is no counter example, and the conjecture is proved.

3.1 Known, bounded, and unbounded memory require-

ments

If a program has a known memory requirement of n bits its state transitions
can take it to at most 2n di�erent states. We can solve the halting problem
by running it in a memory space of 2n bits and using the additional n bits as
a counter. When we have counted 2n state transitions and the program has
not halted, we know it will never halt because it must have, at some point,
revisited a previous state.

The postulated FERMAT program above has an unbounded memory require-
ment, since as it performs its exhaustive search for a counter example it will
need to work with larger and larger integers.

Now consider the Goldbach conjecture, which states that every even inte-
ger can be expressed as the sum of two primes (we include 1 in the prime
numbers). This is an unproved conjecture, but so far no counter example has
been found, although it has been checked for all numbers up to and somewhat
beyond 1018.

Now suppose we have a program GOLDBACH which performs an exhaustive
search for a counter example to Goldbach's conjecture and halts when it �nds
one. If Goldbach's conjecture is true, this program has unbounded memory
requirements. If the conjecture is false, it has bounded memory requirements,
but the bound is unknown.

When Turing formulated his Turing machines he gave them an unbounded
memory resource in the form of in�nite tapes. This allows a Turing machine
to be formulated which will perform an unbounded calculation, such as cal-
culating the value of π. Although we cannot ever complete the calculation,
we can complete it to any required degree of accuracy, and the existence of
an e�ective procedure for calculating π gives us a �nite representation of its
value.

A Turing machine consists of a �nite state machine (FSM) plus an in�nite
tape. To be TME a language needs to be powerful enough to program a
FSM, and needs to be idealised to the extent of having an in�nite memory
resource corresponding to the tape of the Turing machine. Providing Forth
with a pair of in�nite stacks is su�cient to simulate an in�nite tape.

Unbounded memory resources are important for the discussion of halting in
this section, but they do not play a part in our discussion of the halting
proof.

4 Halting in a trivial language

The conventional view of the halting problem proof is that it shows a univer-
sal halt test is impossible in a TME language. We have also seen that failure
to halt can be detected in programs with known memory requirements, be-
cause after a known number of transitions such programs are bound to have
revisited a previous state, which tells us they will never terminate.

It is rather strange, therefore, that we can apply the halting program proof
to a minimal language whose only programs, in semantic terms, are one that
terminates and one that does not.

Consider a language L0 consisting of two words, Skip and Loop.

This is a stateless language for which we can specify and implement a halt
test H0. The speci�cation is consistent because it has a model:

{ ′Skip 7→ true , ′Loop 7→ false }

Now we become ambitious and wish to consider a more complex language L1

which consists of three words, Skip, Loop, and S , with a halt test H .

Our de�nition of S is still:

: S ′S H IF Loop THEN ;

and note that, were S to exist it will either behave like Skip or Loop,

and our speci�cation for H is:

H (xt −− f) Where xt is the execution token of Skip, Loop, or S , return
a �ag that is true if and only if execution of xt halts.

But what is the model for H ?

{ ′Skip 7→ true , ′Loop 7→ false, ′S 7→ ? }

Our model must map ′S to either true or false, but whichever is chosen
will be wrong. We have no model for H , so it cannot have a consistent
speci�cation.

We have reduced the halting scenario to a minimal language so we can write
out the model of halting, but exactly the same argument applies to halting
in a TME language.

In this minimal scenario of a state free language we can make the same
�proof� that halting is uncomputable that we used for TME languages in
the introduction. Yet we have seen that for programs with known memory
requirements halting can be veri�ed by monitoring execution of the program
until it terminates or has performed enough steps for us to know that it
will not halt. Of course the question being answered by the proof, on the
one hand, and the monitoring of execution, on the other, are not the same.
Monitoring execution does not require a �twisted self reference�. There is a
separation between the monitor, as observer, and the executing program, as
the thing observed.

4.1 Experiments with code

We have already noted in the introduction that S looks as if it will NOT
terminate, because when ′S H is executed, it will be faced with again
commencing execution of ′S H with no additional information to help it. S
will not terminate, but this is because the halt test invoked within it cannot
terminate.

There is no reason, however, why a halt test cannot terminate in other situ-
ations, or why failure to halt cannot be reported via an error message when
the halt test itself cannot halt.

Here is a speci�cation of a slightly di�erent halting test.

H1 (xt −− f), Return a true �ag if execution of xt halts. If execution
of xt does not halt return a false �ag, unless that failure to halt is due to
non-termination within H1, in which case report an error.

We de�ne : S1
′S1 H1 IF Loop THEN ;

Here is the error report when S1 is invoked.

S1

�

Error at S1

Cannot terminate
reported at H1 in file ...

And here is the interaction when halt tests are invoked directly from the
keyboard.

′Loop H1 .

�

0 ok
′Skip H1 .

�

− 1 ok
′S1 H1 .

�

0 ok

Implementation requires H1 to know when it is being invoked within S1. This
information is present in the run time system, and we obtain it from the word
S1X �S1 executing� which, when used in H1, will return true if and only if
H1 has been invoked by S1.

0 VALUE ′Skip 0 VALUE ′Loop 0 VALUE ′S1 0 VALUE ′H1

: S1X (−− f , true if S1 is executing , implementation specific code)
R> R@ SWAP >R ′S1 − 16 = ;

: Skip ; : Loop BEGIN AGAIN ;

: H1 (xt −− f , , If H1 has been invoked within xt and cannot terminate
without compromising the termination behaviour of xt , report a
Cannot terminate error . Otherwise return the halting behaviour of xt)

CASE
′Skip OF TRUE ENDOF
′Loop OF FALSE ENDOF
′S1 OF S1X ABORT“ Cannot terminate ′′ FALSE ENDOF
DROP

ENDCASE ;

: S1 (−−) ′S1 H1 IF Loop THEN ;

′ Skip to ′Skip ′ Loop to ′Loop ′ S1 to ′S1
′ H1 to ′H1

This illustrates that the problem is not that halting of S1 cannot be com-
puted, but that the result cannot always be communicated in the speci�ed
way. Requiring H (or in this case H1) to halt in all cases is too strong, as it
may be the halt test itself that cannot halt. We may, however, require that
the halt test should always halt when not invoked recursively within S1.

5 Proof and paradox

In [2] the halting problem is compared to the Barber's paradox. �The barber,
who is a man, shaves all and only the men in the village who do not shave
themselves. Who shaves the barber?� If we assume he shaves himself, we see
we must be wrong, because the barber shaves only men who do not shave
themselves. If we assume he does not shave himself, we again see we must
be wrong, because the barber shaves all men who do not shave themselves.
The statement of the paradox seems to tell us something about the village,
but it does not, since conceptually no such village can exist.

In a similar way, the program S which we have used in the halting problem
proof, does not exist as a conceptual object4 so what we say about it can be
paradoxical.

To prove this we need a rule for the termination of the form g IF T THEN
under the assumption that computation of g terminates. To formulate the
rule we need a mixture of Forth notation and formal logic notation: where
the Forth program P has stack e�ect −− x we use dPe to represent the
value of x in our formal logic. We use trm(T) for the predicate which is true
if and only if T will terminate.

Now we can state our rule as:5

trm(g) ⇒ (trm(g IF T THEN) ⇔ (¬ dge ∨ (dge ⇒ trm(T))) (1)

And we can state the speci�cation of ′P H as:

d′P H e ⇔ trm(P)

Bearing in mind that trm(H) is true by the speci�cation of H , we argue:

trm(S) ⇔ by de�nition of S
trm(′S H IF Loop THEN) ⇔ by rule (1) above
¬ d′S H e ∨ (d′S H e ⇒ trm(Loop) ⇔ property of Loop
¬ d′S H e ∨ (d′S H e ⇒ false) ⇔ logic
¬ d′S H e ∨ ¬ d′S H e ⇔ logic
¬ d′S H e ⇔ speci�cation of H
¬ trm(S)

So we have proved that trm(S) ⇔ ¬ trm(S). This tells us that S does not
exist as a conceptual object, let alone as a program. We have seen in the
previous section that by relaxing the speci�cation of H we can implement
the same textual de�nition of S , so the non existence of S proved here can
only be due to the speci�cation of H being inconsistent.

The proof of the halting problem assumes a universal halt test exists and
then provides S as an example of a program that the test cannot handle.
But S is not a program at all. It is not even a conceptual object, and this

4Examples of conceptual objects include numbers, sets, predicates, and programs. Sup-
pose we have P , which is supposed to be a predicate, but is claimed to have the property
P ⇔ ¬ P . No such predicate exists: P is not a conceptual object. P ⇔ ¬ P reduces to
false, from which we can prove anything, including paradoxical properties.

5A referee queried whether we need to refer to a formal semantics of recursion. Such
a semantics would suggest that S might not exist as a conceptual object [5]. However,
since the only semantic question concerns termination, we can show it does not exist with
a simple direct approach.

is due to inconsistencies in the speci�cation of the halting function. H also
doesn't exist as a conceptual object, and we have already seen this from a
previous argument where we show it has no model.

A response to Hehner's Unifying Theories paper was given by by Verhoe�
et al [5]. This paper, like [2], frames its arguments in the specialist notation
of [4]. They note that Hehner's proof that the speci�cation of S does not
de�ne a conceptual object is based on an analysis of the de�nition S =
¬ ok ′ C H (S) B ok ′. This just says S halts if H says it doesn't and vice

versa. But Hehner de�nes S = “¬ ok ′C H (S) B ok ′ �, i.e. S is a string, and
this is what is passed to H . This can be �xed with a notational adjustment.
Their second point is that whilst speci�cations, which are just mathematics,
may not de�ne conceptual objects (not all equations have solutions) the same
is not true of programs. Code always de�nes a semantic object. However
we �nd that, under the assumption that H has been implemented, we don't
have the right mathematical conditions for the implementation of S to have
a solution, and this is enough to establish the contradiction. This point
caused Hehner to change his rhetoric slightly � his point is not that the
proof does not con�rm the non-existence of a universal halt test, but rather
that a universal halt test does not exist conceptually, so we can't expect to
implement it.

Our notion of an uncomputable speci�cation requires the speci�cation to
have a model, but no implementation. An example is provided by Turing's
uncomputable sequence β, discussed brie�y in the appendix.

6 Conclusions

The halting problem is universally used in university courses on Computer
Science to illustrate the limits of computation. Hehner claims the halting
problem is misconceived. Presented with a claim that a universal halt test
cannot be implemented we might ask � what is the speci�cation of this test
that cannot be implemented? The informal answer, that there is no program
H which can be used to test the halting behaviour of an arbitrary program,
cannot be formalised as a consistent speci�cation.

The program S , used as example of a program whose halting cannot be
analysed, observes its own halting behaviour and does the opposite. Hehner
calls this a �twisted self reference�. It violates the key scienti�c principle of,
where possible, keeping what we are observing free from the e�ects of the

observation.

To better understand Hehner's thesis we have re-expressed his argument
using Forth as our programming language. We have veri�ed Hehner's simpli-
�cation of the problem, and proposed a minimal language of three programs
and a halt test, to which exactly the same proof can be applied.

Our programming intuition tells us that S will not terminate because when
′S H is invoked within S , H will not terminate. However, we cannot require
H to return a value to report this, because that would require it to terminate!
We provide a programming example based on a minimal language where we
resolve this by allowing the option for a halt test to report via an error
message when it �nds itself in this situation. However, we can require that
the halt test should always halt other situations. The problem is not the
uncomputability of halting!

We have also performed semantic analysis using Forth. This analysis con�rms
that the halt test and S do not exist as conceptual objects.

We have found nothing to make us disagree with Hehner's analysis. Defenders
of the status quo might say � so the halt test can't even be conceived, so it
doesn't exist. What's the di�erence? Hehner says that uncomputability
requires a consistent speci�cation that cannot be implemented. Turing's
uncomputable sequence β can provide such an example. A computation
that inputs n and outputs β(n) has a model, since β is mathematically
well de�ned, but if we could compute it for arbitrary n, then β would be a
computable sequence. The uncomputability of β is proved in the appendix.

Forth has been invaluable in this work in providing a concise notation, and
in helping us combine programming intuition with abstract arguments. We
have used it to transfer the argument to the scenario of a minimal language,
where the proof still holds, and to play with a variation of the halt test
that demonstrates that he problem in the scenarios we examine is not the
uncomputabilty of halting.

Acknowledgements.

Thanks to Ric Hehner for extensive electronic conversations; Steve Dunne
for extended discussions; participants at EuroForth 2016 for the stimulating
comments and questions in response to my talk �The halting problem in
Forth�; to the referees and Ric Hehner for their corrections of, and interesting
comments on, a draft paper; also to Campbell Ritchie for proof reading the
�nal version.

References

[1] E C R Hehner. A Practical Theory of Programming. Springer Verlag,
1993. Latest version available on-line.

[2] E C R Hehner. Retrospective and Prospective for Unifying Theories of
Programming. In S E Dunne and W Stoddart, editors, UTP2006 The

First International Symposium on Unifying Theories of Programming,
number 4010 in Lecture Notes in Computer Science, 2006.

[3] E C R Hehner. Problems with the halting problem. Advances in Computer

Science and Engineering, 10(1):31�60, 2013.

[4] C A R Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall, 1998.

[5] Cornelis Huizing, Ruurd Kuiper, and Tom Verhoe�. Halting Still Stand-

ing � Programs versus Speci�cations, pages 226�233. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[6] Alan M Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230�265, 1936.

Appendix: Turing's 1936 paper and the halting problem

On computable numbers, with a contribution to the Entscheidungsproblem,
Turing's paper from 1936 [6] is cited as the source of the halting problem,
but it does not mention halting. The paper captures Hilbert's notion of an
�e�ective procedure� by de�ning �computing machines�, consisting of �nite
state machines with an in�nite tape, which are similar to what we now call
Turing machines but with signi�cant di�erences. He uses such machines to
de�ne all numbers with a �nite representation as �computable numbers�, with
the fractional part of such a number being represented by a machine that
computes an in�nite binary sequence. The description of these machines is
�nite, so numbers such as π, which are computable to any desired accuracy,
can have a �nite representation in terms of the machines that compute them.

Turing's idea of a computer calculating π would perhaps have been of a
human being at a desk, performing the calculation, and now and then writing
down another signi�cant �gure. His �computing machines� are supposed
to continue generating the bits of their computable sequence inde�nitely,

but faulty machines may fail to do so, and these are not associated with
computable sequences.

The computing machines that generate the computable sequences can be
arranged in order. Turing orders them by an encoding method which yields
a di�erent number for each computing machine, but we can just as well think
of them being lexigraphically ordered by their textual descriptions.

The computable sequences de�ne binary fractions that can be computed.
Turing's contribution to the Entscheidungsproblem is in de�ning a binary
sequence β that cannot be computed. Let M (n) be the nth computable se-
quence, and de�ne the sequence:

β(n) = if M (n)(n) = 1 then 0 else 1 end .

By a diagonalisation argument β is not one of the computable sequences: it is
de�nable but not computable. The link with halting comes from asking why
it cannot be computed, the reason being that although we can talk about
the sequence of computing machines that generate in�nite binary sequences
of 0's and 1's we cannot distinguish these from machines which have the
correct syntactic properties but which do not generate in�nite sequences. So
we cannot compute which of the computable sequences is the nth computable
sequence because we cannot distinguish good and bad computing machines.

The �rst reference to the �halting problem� I have been able to �nd comes
in Martin Davis's book Computability and Unsolvability, from 1958. By then
Turing machines had taken their current form and were required to halt
before the output was read from their tape. He credits Turing's 1936 paper
as the source of the problem's formulation.

A proof using a computing mechanism which enquires about its own halting
behaviour and then does the opposite appears in Marvin Minsky, Computa-

tion. Finite and in�nite machines, from 1967.

