

1

RFC

 Andrew Read (AR) / Ulli Hoffmann (UH)

 EuroForth 2017

Forth: A New Synthesis

1. Introduction and objective

It is well-known that Forth scales-down well to the smallest

platforms and applications. However, it is less obvious that Forth

scales-up well to large applications or development projects. Our

hypothesis is that some of the features of Forth that enable it to

minimize so successfully, are constraints on the language in scaling

up.

These days small code size and fast execution speed are relative

rather than absolute merits. This project aims to produce a new

synthesis of Forth that rebalances the requirement for scaling-down

against the opportunity for scaling up.

We propose a “new synthesis” of Forth in a similar spirit to the

Forth Modification Laboratory workshops.

Any new synthesis of a computer language runs the risk of being

formed solely out of individual preferences and experiences. That

remains the case with this project, but to provide guidance two

governing principles have been adopted: biological analogy and

disaggregation.

2. Principle: biological analogy

The biological cell provides a fascinating model of a complex system

that processes stored information. With imagination, direct

analogies can be drawn between the component parts of a cell and the

component parts of a Forth system (Appendix I)

The most compelling rationale for consulting our understanding of the

biological cell for ideas is that the biological cell is a proven-

successful system that scales-down (to virus and single-celled life-

forms), scales-up (to self-conscious Homo sapiens), and diversifies

(to the different kinds of cell specialization within a single

organism and to the multitude of life-forms on Earth), whilst broadly
maintaining a common internal architecture of structure and function.

2

3. Principle: disaggregation

The project aims to identify the component parts of Forth and
separate them, even when this separation may be to the detriment of

efficiency. Experience suggests that proper disaggregation by itself

frequently solves existing problems. Table 1 makes some specific

proposals

 Traditional Forth New synthesis Implications

1 Forth words have
direct access to byte-
by-byte contiguous
memory

Interpose an allocation
based memory management
system between system
memory and the Forth
system

Allows further
disaggregation of
the dictionary and
heap (e.g. S" or
colon data) data
structures

2 Dictionary and the
heap may be built up
together in memory

Impose the separation
of the dictionary and
the heap

The dictionary and
the heap may
independently be
rewound or modified

3 Dictionary may contain
headers and code

Use the allocable
memory mode to separate
headers and code

All Forth words can
be erased and
rewritten

4 The input stream is
locked into the
INTERPRET loop

Interpose an extendible
text processor that
exclusively handles the
input stream

Rather than using
parsing words, the
text processor
provides a general
model for extending
the language

5 Both interpret or
compile states are
handled by the
INTERPRET loop and
state-smart words

Disaggregate by
eliminating state:
everything is compiled,
but depending on
context some
compilations may
immediately be executed
and then rewound

Removes ambiguity in
word definitions and
divergence in the
way the language is
extended

Table 1. New synthesis disaggregation proposals

3

4. Practical experiments and observations

UH prepared two model systems for experimentation since EuroFORTH
2016

i. A Forth system built on the GO language that implements an

allocable memory model foundation for a Forth system. The reason for

wanting this memory model was to enable the redefinition of

dictionary Forth words with new code. We experimented along two

dimensions, as follows

What to do with old
instances of the word?
/ what to do with
recursive references?

Not true recursion -
reference the prior
word definition, if
available

True recursion –
reference the new
definition

Old instances retain old
code

Traditional Forth “Mixed”

Replace all instances
with the new definition

n/a LISP-like

One interesting implication of the LISP-like model is that it might

allow a Forth system to completely replace its dictionary with a new

set of definitions. This is explored further in future directions,

below.

ii. An extension to Forth that “opens” the INTERPRET loop and

interposes an extendible text processor. The key finding was that

with this model there is no need for recognizers as their function is

already a natural part of the system. See "Recognizers Dissolved",

Ulli Hoffmann, EuroForth 2017

5. Conceptual next steps

We are interested in developing the new synthesis, guided at a high

level by the biological analogy. Some specific thoughts are as

follows

i. All living organisms on the Earth share a common (i.e. highly

evolutionary preserved) fundamental core (DNA/RNA, the genetic code,

proteins, cells, etc.). Yet the complexity and diversity of life on

Earth depends on the variation between their biological systems. For

example, the fore limb apparatus can be adapted into arms and hands
by primates, into legs by four-legged animals, or into wings by

birds.

Should the same be true for Forth systems? A common operating

framework (WORDS, STACKS and BLOCKS?) with a minimal dictionary in

4

all Forth systems, but then wide variation at higher levels between

systems in both the vocabulary of available words and their

definitions. This would be contrary to the ANSI approach, but could
it be sympathetic to Chuck Moore’s original vision?

ii. All multi-cellular organisms grow from a single cell, typically

the egg.

Should a similar approach be taken to ‘growing’ Forth onto a new

target? For example: The Forth ‘egg’ in ROM implements the minimal

framework and dictionary. It has the capability to read an input-

stream from a small EEPROM, but otherwise no input/output firmware.

The EEPROM contains plain-text Forth code in byte-by-byte format.

The egg reads from the EEPROM and ‘grows’ by implementing further i/o

and other firmware, including if necessary a FAT file system on SD

card. An SD card may contain further Forth files with application

software. At each stage the Forth system will be re-engineering its

input stream apparatus with a more sophisticated version.

iii. Biological systems are not static – they continue to evolve.

Should Forth be the same? For example, rather than standardizing

more and more of the language, should the curation of Forth encourage

"forking" of new versions of Forth, even if most die out.

iv. Some biological systems are super-organisms, such as colonies of

ants or bees. Individual organisms are specialized into different

roles, and the loss of one individual does not jeopardize the hive.

Should some Forth systems strive to adopt a distributed model, with a

"queen" system spinning off specialized, limited capability "worker"

Forth systems on very low cost peripheral processors.

v. Biological organisms are single-purpose: a dog is a dog, a cat is

a cat and a man is a man. Conventional computer systems are now

multipurpose: a desktop computer is a word-processor and a CAD

platform and a music player. This results in the "layered" operating

system / middle-ware / package approach with standardized interfaces,

all programmed by thousands of different individuals

Is Forth better off devoting itself to single-purpose systems that

are developed by individuals or small teams? In this domain inter-

compatibility, wide library support, the layers and standardized

definitions are not critical. (See also unikernal.org for some

interesting thinking on this topic.)

In this model, ANSI Forth remains important for thought leadership

and communication, but not for its word definitions per se.

5

In exploring these ideas we will certainly need to address at least

two questions.

Firstly, what is the basic operating framework needed across all

Forth systems, analogous to the highly conserved structures of the

biological cell. For example, memory allocation, a dictionary, a

heap? Specified at what level of detail?

Secondly, what should a Forth ‘egg’ contain? In common with a

biological egg it should contain the operating framework and a small

dictionary. What needs to be in the dictionary? How is the egg

‘primed’ at power on, etc..

6. Conclusion

We are exploring the future of Forth in the spirit of the Forth

Modification Laboratory. Our work is motivated by the observation

that Forth has been left behind as computer systems have scaled up,

and by our optimism that somehow Forth might still be refreshed and

reinvented in interesting new ways.

Two principles are guiding us. Firstly, on modern hardware

minimalization of code size and optimization of execution speed are

no longer extreme necessities. We are prepared to make some

sacrifices on these dimensions for the sake of a more disaggregated

architecture that has the potential to scale up more easily. In

other words we want to be more aware of the degrees of freedom on any

given target and make conscious decisions that may differ from

historical precedent.

Secondly, we note an exciting analogy between Forth and biological

systems and wish to see if this inspiration can guide us to a
“Cambrian Explosion” in the diversity and sophistication of Forth

Life.

6

Appendix I – Forth biological analogy

 Cell Forth Analogy

1 DNA is the genetic
material that defines
the functioning of the
cell

Source code is the
material that defines
the functioning of the
application

DNA <=> Source code

2 The DNA of a cell is
located in the
chromosomes

The source code of a
Forth application is
located in blocks

Chromosome <=>
Blocks

3 Foreign DNA may be
expressed in a cell
(viruses / genetic
engineering)

The input stream may be
directed to the
keyboard, serial line
or other port

Foreign DNA <=>
Keyboard input

4

DNA that is to be
expressed is
translated into mRNA

Source code that is to
be run is directed to
the input stream

mRNA <=> Input
stream

5 Gene expression is
mediated by
controlling the
transcription of DNA
into mRNA

Source code may be
chosen by directing the
input stream to the
relevant blocks

Gene expression
control <=>
Redirection of the
input stream

6 mRNA is translated
into proteins;
proteins make the cell
function

Source code is compiled
into words; words make
the application
function

Proteins <=> Words

7 Proteins are comprised
of amino acids

Words are comprised of
assembly language
instructions

Amino acids <=>
assembly language
instructions

8 Translation takes
place at the active
sites of ribosomes

Source code is compiled
into words by the
compiler

Ribosomes <=>
Compiler

9 Translation is
mediated by tRNA
molecules that parse
the sequences of the
genetic code

Compilation is mediated
by recognizers that
parse the input stream

tRNA <=> Recognizers

10 mRNA coding regions
begin with start
codons and end with
stop codons

The input stream
defines words with
colon and semi-colon

Start codon <=>
Colon
Stop codon <=> Semi-
colon

