
EuroForth 2017
In Cahoots

Forth, GTK and Glade working secretly together

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
R.J. Merrett B.Eng.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Emails: njn@micross.co.uk rjm@micross.co.uk

Abstract
Forth is a very good language for working with other tools and libraries. In this paper
we will introduce some techniques to make GTK and Glade work with Forth as
seamlessly as possible.

1. Introduction
Cahoots in this instance does not refer to that well-known town in New York state on
the banks of the Hudson River.1 Its alternative meaning is when two or more parties
conspire to act together secretly. The parties in this case are:
Forth
Our favourite language for conciseness, readability, and in this case ease of
interoperability.
GTK
This is one of several open source toolkits for graphical programming.
It was chosen because it is being very actively developed, and has a straightforward
interface method.
Glade
This is a graphical design tool for GTK. It produces XML code that can be loaded by
GTK as required.

2. Compilers, versions and targets
We have been working with the MPE VFX Forth compiler, using GTK+ version 3,
for the Ubuntu Linux operating system on both single-board computers with ARM
processors, and industrial PCs with x86 CPUs.

1 Roger S. Brody RDP, Chairman of the Smithsonian Museum Philatelic Research Committee.

3. Library bindings
The MPE compiler came with a basic set of bindings to the GTK+ V2 libraries. We
adapted these to GTK+ V3, added many new bindings and enumerations as needed,
and removed features that we concluded were dead ends. Since GTK+ is written in
C, the bindings are very straightforward e.g.

extern: void "c" gtk_button_set_image(int * button, int * image);

4. Maintaining interactivity
A major difference between MPE VFX for Linux and MPE VFX for Windows, is that
the Linux version runs straight from a standard Linux terminal. This means that
interactivity is lost as soon as the GTK message pump starts. Since we regard
interactivity as an essential debugger tool, it was necessary to restore it somehow.

Because there are always small differences needed in behaviour between programs
when run in debug and when run normally (e.g. so that logon is not necessary every
time you run in debug), we always create two different build files which set or clear a
debugging flag e.g.

Debug
TRUE VALUE DEBUGGING \ Set debugging mode
include PackingLabel.bld \ Main build file
.BadExterns \ Report any library failures
PACKINGLABELMODULE \ Run in debug

Compile
FALSE VALUE DEBUGGING \ Clear debugging mode
include PackingLabel.bld \ Main build file
PACKINGLABELMODULE \ Run, to get it all set up
save PackingLabel \ Save ELF file

This debugging flag can then be used to start the GTK message pump in a separate
thread, when in debug mode.

TASK MAINTASK \ For GTK in debug
: MAINACTION (---) \ GTK action, when in debug
 gtk_main \ Start the message pump
;

...
 INIT-MULTI \ Initialise the multitasker
 MULTI \ Start the multitasker
 DEBUGGING IF \ Running in debug
 ['] MAINACTION MAINTASK INITIATE \ Start main in separate thread
 ELSE
 gtk_main \ Start the message pump
 THEN
...

Forth commands can then continue to be run from the Linux terminal, when in debug
mode.

5. Structuring the Glade files

The VFX Forth comes with a nice wrapper which both loads the Glade XML file, and
resolves the signals, in one operation. However, this is restricted to a single Glade
file, and in a real application a single Glade file soon becomes too big to handle. We
started to split the files by function, which also makes for re-usability. However, a
single builder object is used for all the Glade files, so that all windows, dialogs and
other features can be handled together. We also separated the file load from the signal
resolution, because of the next feature.

: LOADGLADE { | be[cell] -- } \ Loads the glade files
 gtk_builder_new -> PBUILDER \ Create builder
 PBUILDER IF
 be[OFF
 PBUILDER Z" SW1015.glade" be[gtk_builder_add_from_file \ Main glade
 PBUILDER Z" Logon.glade" be[gtk_builder_add_from_file AND \ Logon glade
\ PBUILDER Z" next file .." be[gtk_builder_add_from_file AND \ More ...
 0= IF
 be[@ 2 cells + @ .z$ \ Error string
 be[@ g_error_free
 PBUILDER g_object_unref
 THEN
 THEN
;

6. Handling the handles

In order to do anything with a GTK+ widget, you need to know its magic number -
the equivalent of a "handle" in Windows. When designing in Glade, you specify a
name, then at run time you can ask the "builder" into which you loaded the Glade
file, for the number of an object, from its name. You can then store it in a value
(typically of the same name).

: GETHANDLE (z$---h) \ Get handle of builder element from name
 PBUILDER SWAP gtk_builder_get_object
;

Z" Mybutton" GETHANDLE -> MYBUTTON

That was OK for simple applications, but then we soon realised that we were typing
the name of every widget three times before we even used it - once in the Glade
design, once to declare the value, and once to get the magic number.

In any other language other than Forth, you are stuck with that.

But as so often happens, the unique ability of Forth to do things during compilation
time as well as during run time, comes to the rescue. We soon discovered that it's
possible to get the builder to create a list of all objects, which can then be scanned for
names.

: MAKEGLADENAMES { | pslist pobject -- } \ Create values for every object
 PBUILDER gtk_builder_get_objects -> pslist \ Make list of objects
 pslist g_slist_length 0 ?DO \ For all objects
 pslist I g_slist_nth_data -> pobject \ Get data
 pobject gtk_buildable_get_name \ Get name
 pobject ZVALUE \ Create value for each name
 LOOP
 pslist g_slist_free \ Free list
;

This uses a very cunning feature - the ability to create Forth values automatically.

: ZVALUE (zname, ival ---) \ Creates a new value with name and initialisation
 SWAP ZCOUNT ($CREATE)
 , ['] valComp, set-compiler
 interp>
 valInterp
;

Note: you need an up-to-date version of VFX to make this work.

All that is necessary during a debug, is to call both LOADGLADE and
MAKEGLADENAMES during the compile, and all the values are ready for you to
use. However, when you then run an executable, you've got the value names, but not
their magic numbers. It's necessary to distinguish between debug and normal run
mode again, to load the numbers when necessary.

: SETGLADEVALS { | pslist pobject -- } \ Set values for glade objects
 PBUILDER gtk_builder_get_objects -> pslist \ Make list of objects
 pslist g_slist_length 0 ?DO \ For all objects
 pslist I g_slist_nth_data -> pobject \ Get data
 pobject gtk_buildable_get_name \ Get name
 zcount search-context IF \ Name is in dictionary
 >body pobject SWAP ! \ Set value
 THEN
 LOOP
 pslist g_slist_free \ Free list
;

Notice that it's rather important to make sure the Glade widget names are Forth-
unique, otherwise strange things happen.

Now in our initialisation, we simply include

...
 PBUILDER 0= IF \ Glade not loaded
 do_gtk_init \ Initialise GTK
 LOADGLADE \ Load glade files
 SETGLADEVALS \ Set values for glade objects
 THEN
 RESOLVEGLADE \ Resolve Glade signals
...

7. To do - automatic resizing

Most of the applications that we have written recently have been for touchscreens, in
"kiosk" mode i.e. the operator has no access to the underlying operating system. This
is far easier to achieve in Linux than it is in Windows, where it has become more and
more difficult to eliminate the infuriating little things that Windows "pops up"
without being asked.

Of course, any kiosk applications must run full screen. But screen resolution may
vary. In Windows, the size and position of each element is under the exact control of
the programmer. We used to design each display based on the minimum plausible
resolution (say, 800 x 600 pixels) then use a Forth word that ran through all possible
windows, and resized and repositioned them according to the actual screen resolution.
The fonts were also resized to match the vertical resolution.

: CTRL2RES { ahctrl -- } \ Set size and position of control
 ahctrl HIROANIM @ = \ Animation control
 ahctrl HIRONSETUP @ = OR IF \ or, superimposed button
 ahctrl \ Move only, do not size
 ahctrl WINDOW-X ahctrl WINDOW-Y 0 0
 RESVAR-XYWH 2DROP WINDOW-AMOVE
 ELSE \ All other controls
 ahctrl 0 \ Resize and move
 ahctrl WINDOW-X ahctrl WINDOW-Y
 ahctrl WINDOW-WIDTH ahctrl WINDOW-HEIGHT
 RESVAR-XYWH
 SWP_NOZORDER SWP_NOSENDCHANGING OR
 WINSETWINDOWPOS DROP
 ahctrl RESVAR-FONT \ New font
 THEN
;

: WIN2RES (Whndl ---) \ Set size and position of window and all controls
 DUP 0 0 WINDOW-AMOVE
 DUP CURRHORZRES @ CURRVERTRES @ WINDOW-ASIZE
 DUP RESVAR-FONT
 WINGETTOPWINDOW ?DUP IF
 BEGIN
 DUP CTRL2RES
 GW_HWNDNEXT WINGETNEXTWINDOW ?DUP
 0=
 UNTIL
 THEN
;

Unfortunately, this is not so easy in GTK. There is a heavy emphasis on automatic
sizing of widgets. Before rendering, each container widget asks all the contained
elements right down the chain, for the size they'd like to be. This can be a minimum
size that has been set in Glade, but it is usually not possible to set a maximum size.
So if you have a label widget, and increase the length of its string or the size of its
font, and it will automatically resize itself, which in turn will resize its container, and
so on up the chain. If the topmost window is now too big for the screen resolution, it
will create scrollbars for itself, and worse still, reveal the Ubuntu toolbar.

We have still not fully resolved this problem, and for the time being there is the very
irritating and time-consuming process of making a different set of Glade files for
each screen resolution.

We're sure we cannot be the only people with this issue, and suggestions are very
welcome.

8. Conclusion

Only in Forth, can one successively improve the compilation process so that each
application becomes more compact and easier to write.

NJN
RJM
30/8/17

