
Sections

M. Anton Ertl∗

TU Wien

Abstract

A section is a contiguous region of memory, to which
data or code can be appended (like the Forth dic-
tionary). Assembly languages and linkers have sup-
ported multiple sections for a long time. This paper
describes the benefits of supporting multiple sec-
tions in Forth, interfaces and implementation tech-
niques.

1 Introduction

A section is a contiguous memory area, to which
new data can be appended at the end; the Forth
dictionary is a section. Assemblers and linkers
have supported multiple sections or segments for
many decades [Lev00]. In contrast, Forth tradition-
ally has had only one section; some systems have
had separated headers (another section), and cross-
compilers have uninitialized memory for buffer:,
but by and large, Forth systems have made do
with just one section: the dictionary. With mul-
tiple sections, each section has it’s own start, dic-
tionary pointer (what here reads), and end (used
in unused, but otherwise not used much).

This paper presents various uses of sections and
why they are better than the current workarounds
(Section 2), presents a programming interface (Sec-
tion 3), and discusses various implementation ap-
proaches (Section 4).

2 Uses

2.1 Nested structures

You often build one structure A in memory, and in
the middle of that, have to build some out-of-line
part B, and afterwards continue building A. If you
have two sections, that is easy: you put A in one
section, and B in the other section. In Forth, you
traditionally use one of the workarounds:

• You select a representation for A that does not
require contiguity.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

• You put B in allocated memory. Unfortu-
nately, that usually means that B does not sur-
vive a savesystem, and it’s also cumbersome
if B is a growable structure.

A particular instance of this problem is when A
is a colon definition under construction, and B is
the data for a string or floating-point literal. Forth
compilers traditionally work around this by not re-
quiring contiguity.
A typical solution is to call a word such as (s")

or flit, and follow that with the inline data. These
words get the return address from the return stack,
use that to push the relevant data on the data/FP
stack, then increment the return address to skip
over the data, and then either return to the changed
return address or jump to it. Both ways are very ex-
pensive on modern CPUs, because they cause mis-
predictions from the hardware return stack1: If the
changed address is returned from, the return incurs
a branch misprediction (about 20 cycles on a mod-
ern Intel or AMD CPU); if the changed address is
jumped to, the jump has a chance to predict cor-
rectly, but all outer returns will mispredict once (at
about 20 cycles per misprediction).
A faster approach is to jump across the data, and

then let some code push the data on the data/FP
stack. This does not cause significant mispredic-
tions, but the code is bigger (jump plus inlined lit-
eral code).
Finally, if you put the data elsewhere (i.e., a dif-

ferent section), you get fewer mispredictions, and
you save the space for the jump around the data.
As an example of the benefit of putting the

data out-of-line, consider the following micro-
benchmark:

\ inline variant

: foo1 123e f+ ;

\ out-of-line simulation

123e fconstant x

: foo2 x f+ ;

defer foo

: bench 0e 100000000 0 do foo loop f. cr ;

1The hardware return stack is not the Forth return stack;
it is a hardware branch predictor that predicts that returns
will return right behind the corresponding calls).

Ertl Sections

With VFX2 4.71 on a Core i3-3227U (Ivy Bridge),
the foo1 version takes 48 cycles, 11 instructions
and 1 branch misprediction per iteration, while the
foo2 version takes 6.5 cycles, 7 instructions, and 0
branch mispredictions per iteration. If VFX would
put the floating-point number in foo1 in a separate
section instead of inline, it could achieve the same
performance as foo2.

Quotations are another case of having to build
something else in the middle of a colon definition;
in this case the “something else” is a colon defini-
tion itself. Again, the usual implementation is to
jump around it (used in, e.g., Gforth), and putting
the quotation in a separate section can save that
overhead. In this case, however, two sections are
not sufficient, as quotations can be nested arbitrar-
ily deeply, so you need a whole stack of sections.

Locals are another case where you have to build
some additional stuff (in this case, headers) in the
middle of a colon definition; the headers are no
longer needed at the end of the colon definition and
their space can be reclaimed, so the usual inline-
and-skip approach is particularly inefficient here.
Locals in Gforth were developed before sections,
and the code for dealing with that problem is com-
plicated; we foresee it becoming much simpler once
we take advantage of sections, but we have not made
these changes yet.

One way of implementing recognizers is to create
a temporary word for each recognized string, then
treat the temporary word like an ordinary word
(i.e., execute or compile, it), and finally, delete
the temporary if no longer needed [Ert16]. With
sections, this is relatively straightforward to imple-
ment (especially the case when you cannot delete
the “temporary” and have to make it permanent).

2.2 Separate code and data

Most Forth systems still put code and data in the
dictionary in an interleaved way. Since the Pen-
tium (1993) and its separate instruction and data
caches, this interleaving has been a performance
problem on Intel and AMD CPUs (e.g.,). Forth
systems have tried to mitigate this problem by at
least not putting code and data in the same cache
line (by inserting appropriate padding); e.g., VFX
aligns data to 32-byte boundaries, but apparently
64-byte alignment is necessary on recent Intel CPUs
to achieve the desired effect. And in some cases an
important padding is missing, resulting in 350–500
cycles per iteration in VFX and SwiftForth:

0 value x

2I use VFX for the performance results in this paper,
because it is a high-performance system, where one would
expect good performance also for the micro-benchmarks I
present.

: foo 10000000 0 do 1 x +! loop ;

here to x 0 ,

foo

With sections, the data can just stay in the or-
dinary dictionary section, and the code can have a
separate section (or a stack of them, for quotations),
thus separating code and data for good. Moreover,
systems can get rid of all the padding they insert at
the moment to work around this problem.

2.3 Further uses

The uses above are not an exhaustive list. When I
presented sections to other Gforth developers, they
came up with uses I had not thought of during de-
velopment (e.g., simplifying the locals implementa-
tion).

3 Progamming interface

In the following, “switching a section” means that
the dictionary pointer (what here reports, and
where allot allocates) is now the dictionary pointer
of the switched-to section.
The words for working with sections are:

.sections (--)

display all sections

next-section (--)

switch the current section to the next section
in the stack, creating it if necessary

previous-section (--)

switch the current section to previous section
(the next section still exists afterwards).

extra-section (size "name" --)

create a named section stack name.
name execution: (xt --)

switch the current section to the first section of
name if there is no outer call to name, or the
next section if there is; execute xt, and switch
the current section back on leaving name.

For multi-tasking, the dictionary and the named
section stacks should have per-task instances that
are instantiated on-demand.
Currently the section implementation in Gforth

only supports the dictionary as a section stack,
named sections without stack, and no proper han-
dling of per-task section stacks, yet.

4 Implementation

The implementation of sections for use within a ses-
sion is pretty straightforward: Just a data struc-
ture with start, end, and section-dp per section,

Ertl Sections

and ways to manage named sections and a stack
of sections.
Things get more interesting when it comes to im-

plementing savesystem. There are two basic op-
tions:

• Keep all the sections, and preserve them into
the next session.

• Collapse all the sections into one (the dictio-
nary), and start the next session with just the
dictionary, and with empty named sections.

The current implementation in Gforth takes the
collapsing approach. One advantage is that the
loader (which does not know about sections) does
not need to be changed.
Traditionally, Gforth creates a relocatable image

by running Gforth twice and doing the same things,
and finally saving one non-relocatable image per
run; the non-relocatable images are for different ad-
dresses, and by comparing them, we can tell if a
cell is an address (then they differ by the difference
in image start addresses), or something else (then
they do not differ); if they differ, but by a different
amount (e.g., because the cell contains the address
of an allocated piece of memory), the process out-
puts a warning.
With sections, this process had to be enhanced

as follows: When saving an image, first the dictio-
nary is written, then the other sections, and sec-
tions meta-data last. The sections meta-data con-
tains the length and the original start address of
each section, and also allows us to determine where
in the non-relocatable image the sections are. If two
cells differ, the comparison program looks for each
image, whether the value of the cell, interpreted as
address points into one of the sections, and com-
putes the offset into the collapsed image from that;
if, for both images, this gives the same offset o, then
the cell is a relocatable address, with value image-

start+o, and that’s what the comparator stores in
the relocatable image. I.e., in the relocatable image,
the original section structure is no longer present.
Of course, that is not the only option. E.g., a

system without relocatable images could just save
each section as ELF or COFF section with a fixed
virtual start address. The OS loader would then
load all the sections where they belong (untested).

5 Conclusion

Supporting multiple sections in a Forth system pro-
vides a number of benefits. Forth systems have used
workarounds to deal with the absence of sections,
but these workarounds have a cost both in complex-
ity and sometimes also in performance that can be
eliminated by adding sections.

The interface for working with sections is simple,
consisting of just a few words.
The implementation is not that complex, either.

Dealing with sections across savesystem does take
some additional effort, however.

References

[Ert16] M. Anton Ertl. Recognizers: Arguments
and design decisions. In 32nd EuroForth

Conference, 2016.

[Lev00] Levine. Linkers and Loaders. Morgan
Kaufmann, San Francisco, 2000.

