
HiTex

LATEX gets a helping hand from Forth

Bill Stoddart

September 17, 2014

Abstract

HiTeX is a simple LaTeX pre-processor that works through token

replacement. It provides improved readability of mathematical text

in a source document by allowing free use of Unicode characters and

eliminating any need for speci�c spacing and new line commands. Hi-

TeX gains considerable power from the ability to incorporate sections

of Forth text within a document. Output generated by Forth can be

directed to the output �le, or can be used to de�ne place-holders which,

when used within maths mode in a HiTeX document, will be replaced

by the result of the corresponding computation.

Keywords: LaTeX, Unicode, Computable Document, RVM-Forth

1 Introduction

LaTeX is a versatile type setting system that gives excellent results on both
mathematical and normal text. However, the mathematical markup is not
always easy to read as mathematics. The advent of Unicode should have
improved this, allowing us to write, for example,

√
α instead of the standard

latex markup \sqrt\alpha. However, Unicode and its utf8 encoding have
only partially been adopted by the LaTeX community, with the promising
ucs package left unmaintained and un�nished. The projects XeLaTex and
LauTeX are complete reworkings of TeX and Latex which are based from the
outset on Unicode utf8 input. Our research group produced some papers in
XeLaTex, but it was not a happy experience. One problem is that journal

1

editors and submission portals may not accept documents written with these
tools. We also had a problem with Greek characters, due to the fact that a
font suitable for publishing an article written in Demotic Greek will not be
suitable for providing the Greek letters used in mathematics. Also, we felt
that the availability of Unicode should make the markup language su�ciently
compact that it would be possible to revise the LaTeX practice of ignoring
white space and requiring speci�c markups for additional space and new
lines. We wanted a markup language where spaces and newlines would, by
default, be taken into account in the �nal markup.

It also seemed to us to us that, rather than completely rewrite TeX and
LaTeX, which are absolutely brilliant as they are, it would be better to write
a simple pre-processor to translate a Unicode mathematical language into
classical LaTeX. The result is HiTex. The last page of this document gives
an example of HiteX markup and the resulting output.

HiTex is a hybrid of Forth and Latex which has its own variant of the LaTeX
mathematical markup language. A HiTeX document contains 3 types of text.
Initially, it is in pass-through mode, in which text is just streamed from the
input �le to the output �le. All the HiTeX interpreter is doing at this time
is checking for tokens that will take it either into a mathematical mode or
into Forth.

Within a mathematical mode, HiTeX performs token replacements, recognis-
ing tokens in the HiTeX source, and replacing them by a corresponding token
in the LaTeX output �le. A token can be any sequence of characters. Some of
the tokens are Unicode characters, such as ∀, ∃, dot etc, which are replaced
by their corresponding LaTeX markups, \forall, \exists, \bullet. How-
ever, a token can also be something like a new line character, a space, or a
sequence of spaces. Where one token is the pre�x of another (for example
a token consisting of two spaces would be a pre�x of a token consisting of
three spaces) the longer token is matched �rst. This ensures a correct match
for all tokens.

HiTeX is implemented in RVM-Forth and uses Frank Zeyda'a set package,
(see EuroForth 2002 proceedings), which supports arbitrary �nite homoge-
neous sets. We use ascii zero format strings.

The corresponding pairs of tokens used by HiTeX are held in the set LaTeX-MARKUP.
Here is the beginning of its de�nition:

STRING STRING PAIR { " ∀" \forall" 7→ ,

" ∃" " \exist " 7→ , ...

2

Text before the opening brace gives the type information required to con-
struct the set. The set consists of pairs of strings. The maplet operator
7→ combines two strings on the stack into an ordered pair of strings. The
following comma compiles this element into the set. The set construction is
terminated by a closing brace, at which point the set (i.e. a pointer to the
data structure which represents the set) is left on the stack

Within a Forth section a user can add new markups using set union ∪ or
remove markups using domain subtraction <<|.

2 Including computation results in a document,

an integer maths example

A interesting case is where the token to be inserted in a document is produced
by a Forth computation. To de�ne a token that captures an integer result,
we can use the de�ning word n†. Here is an example of its use.

1234 n† s

This de�nes a new dictionary entry s which, when executed, gives the address
of an asciiz string containing the text �1234�. We adopt a naming convention
that strings generated in this way that will subsequently be used as tokens
will be given a name that begins with †. Words that create such tokens have
names that end in †.

We look at a simple example where we add the values of two constants and
display the original values and their sum in a document.

2.1 Source code of the supporting Forth section

In the following Forth section the de�nitions †α, †β and †α+β will return
asciiz strings containing the text �10�, �20� and �30� respectively. Let us
suppose that these are the numeric strings that are to be placed in the La-
TeX output in response to seeing †α, †β or †α+β respectively in the HiTeX
source document. The tokens are paired up in a set, which is combined
with LaTeX-MARKUP using set union. The updates are disseminated to the
requisite HiTeX data structures with the CONFIG command.

3

Here is how these tokens can be used in a HiTeX math environment, along
with the result.

HiTex markup Final output

α = 10, β = 20, α+ β = 30

3 A �oating point example

Floating point results are captured in a similar way, but using the de�ning
word f† to de�ne the output tokens. After the �rst line of Forth code the
de�nition †

√
2 returns the address of an asciiz string representing

√
2 to 6

decimal places (our default output precision).

3.1 The supporting Forth section

And here is an example of HiTeX markup and the resulting �nal output.

HiTex markup Final output
√

2 = 1.41421√
3/2 = 1.22474x

4

4 Con�guraton tasks

A Forth section can be used for general con�guration tasks, both of the
HiTeX application and of the underlying Forth system.

In the example above, French �guillemets �were used as HiTex scope delim-
iters. These are preferred to the standard tex/latex delimiters { and }, as we
use the latter as set brackets, and consider them to be essential mathematical
symbols.

HiTeX holds its scope delimiters in the VALUEs {SCOPE and SCOPE} .

The following Forth section shows how we change these delimiters to Unicode
bold brackets.

We also change the precision of the �oating point output, recalculate the
string produced by printing

√
3/2, update our markups, and recon�gure.

4.1 The supporting Forth section

Now our markup for
√

3/2 and the corresponding output are as follows

HiTex markup Final output

√
3/2 = 1.2247449

5

5 Implementation note 1

The de�ning words n† and f† have a lot in common, and both are de�ned in
terms of a more primitive word P2† as follows:

P2† takes an execution token fromthe stack, plus whatever extra parameters
are required for the token's execution. It CREATEs a new dictionary entry and
vectors EMIT to compile its output into the dictionary. It executes xt, and
restores EMIT

6 A more general example

.

We provide for an arbitrary section of Forth source code to produce output,
which we assume will be in the HiTeX markup format, rather than in Latex.
This output must therefore be processed by the HiTeX maths pre-processor
before being inserted in the LaTeX document. This is done with the pair of
words [: ... :]. For example, suppose A .SET gives the output {1,2,3}
This is not suitable to be immediately passed into the output document,
since LaTeX will not see the braces as set delimiters, but as scope delimiters,
and they will not appear on the �nal output. The phrase [: A .SET :] †A
creates the Forth word †A which returns the address of the string obtained by
passing the text output by the Forth between [: and :] through the HiTeX
math pre-processor. Thus this de�nes †A as the string " \{1,2,3\}", which
is the correct LaTeX markup for the value of set A.

6

6.1 The supporting Forth section

HiTeX markup Final output

A = {1, 2, 3}
B = {2, 3, 4}
A ∪ B = {1, 2, 3, 4}
A ∩ B = {2, 3}
A \ B = {1}

7 Implementation note 2

HiTeX reads a source �le into an input bu�er, and places its LaTeX output
in an output bu�er. An asciiz string computed within a Forth section, and
whose address is on the top of the stack, can be sent directly to the output
bu�er with the phrase:

DUP AZLENGTH TO-OUTBUFF

The outermost HiTeX interpreter passes text from the input bu�er to the
output bu�er until it encounters a token that causes it to enter either Math
mode, or Forth. The mathmode interpreter checks at each point in the
input bu�er whether the following characters match one its tokens. These
tokens are those from the domain of LaTeX-MARKUP plus other tokens that
require special action. If the token is from the domain of LaTeX-MARKUP the

7

corresponding token from the range of LaTeX-MARKUP is added to the output
bu�er. Other tokens are special cases which require additional action. For
example, a new line character in the input bu�ere requires a line count to be
incremented, and the new line itself plus the LaTeX markup for a newline
must be passed to the output bu�er.

The input and output bu�ers are managed by a collection of VALUEs holding
bu�er start addresses, pointers to the current position in each bu�er, etc.
When text generated within a Forth section is to be processed by the HiTeX
maths pre-processor, e.g. when using a [: . :]. structure, these bu�er
management values are saved, and the pointers etc are set to work from
temporary bu�ers. After the text is processed, the resulting LaTeX markup
is compiled into the dictionary and the temporary bu�ers are free for future
use.

We return to the point of distinguishing between tokens such as †A and †A+B.
The �rst of these tokens matches the start of the second, i.e. the �rst token
is a pre�x of the second. How do we ensure that †A+B won't be mistaken for
†A?

We do this by searching for tokens in the same order as they occur in a
sequence. We place our tokens in a sequence in such a way that any token
that has pre�xes that are also tokens will occur before its pre�xes in the
sequence. Reverse lexical order will achieve this.

The properties of our set implementation and the reversible features of RVM-
Forth make this simple to implement. Every set is held as an ordered set, and
the CHOICE operator selects the maximal element of each set, or if invoked
after backtracking will select the maximal element not yet chosen.

For strings the ordering is lexical. Thus �†A� comes before �†A+B�

We can create a sequence in which tokens in the domain of LaTeX-MARKUP
occur in reverse lexical order using the following code:

LaTeX-MARKUP DOM SET2SEQ

Where the de�nition of SET2SEQ is:

: SET2SEQ (x:P(X) -- y:seq(X), ran(y)=x) (: set :)

set [<RUN set CHOICE RUN>] ;

In this code the square brackets enclose a sequence construction. (They are
not the Forth Standard square brackets). The set before the open square

8

bracket provides type information. The code bracketed by <RUN ... RUN>

chooses an element of set and compiles it as the next element sequence.
Execution then reverses back to CHOICE, which makes a di�erent choice if
one is available, and this is then added to the sequence. This is repeated
until no further choices are available, at which point execution continues
beyond] The result is a sequence of strings held in reverse lexical order.
This code is based on the premise that our sets are ordered; we know how
but we can't control how. But the order of elements in a sequence is entirely
under programmer control.

8 Conclusions and Future Work

HiTeX has been very valuable to us for writing dense mathematical docu-
ments. Its main limitation is that it does not support a verbatim mode which
accepts Unicode - that's why we have used screen shots for the most of the
Forth source code and HiTeX markup examples in this document.

9

Appendices

A HiTeX markup example

{ ρ | ρ ∈ E ∧
∀ x ′.(x ′ ∈ choice(JsKν(ρ)) ⇒
{ ρ′ | ρ′ ∈ {ρ ⊕ L x ; {x ′} M}∧
JxKν(ρ ⊕ L x ; {x ′} M) ⊆ choice(JtKν(ρ))
} 6= {}

)
}
∩
{ ρ | ρ ∈ E ∧
∀ x ′.(x ′ ∈ choice(JtKν(ρ)) ⇒
{ ρ′ | ρ′ ∈ {ρ ⊕ L x ; {x ′} M}∧
JxKν(ρ ⊕ L x ; {x ′} M) ⊆ choice(JsKν(ρ))
} 6= {}

)
}

10

