
net : Command Language
A universal structured data language

Bernd Paysan

September 26, EuroForth 2014, Palma di Mallorca

Overview

Motivation

Object Oriented Forth Code as Data

A Few Examples

Forth–Style Communication

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

• Extremely simple interpreter
• Extensible, but extensions must be allowed by the receiver
• Universal, i.e. only one interpreter to audit and verify
• Triviality makes it difficult to explain

Forth–Style Communication

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

• Extremely simple interpreter
• Extensible, but extensions must be allowed by the receiver
• Universal, i.e. only one interpreter to audit and verify
• Triviality makes it difficult to explain

Forth–Style Communication

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

• Extremely simple interpreter
• Extensible, but extensions must be allowed by the receiver
• Universal, i.e. only one interpreter to audit and verify
• Triviality makes it difficult to explain

Forth–Style Communication

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

• Extremely simple interpreter
• Extensible, but extensions must be allowed by the receiver
• Universal, i.e. only one interpreter to audit and verify
• Triviality makes it difficult to explain

Forth–Style Communication

Requirements for secure communication (secure as in “no exploitation through
misinterpretation”)

• Extremely simple interpreter
• Extensible, but extensions must be allowed by the receiver
• Universal, i.e. only one interpreter to audit and verify
• Triviality makes it difficult to explain

Basics
• Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte

array), IEEE double float, objects
• Instructions and data encoding derived from Protobuf (7 bits per byte,

MSB=1 means “data continues”, most significant part first)
• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and commands
• oswap to transfer the current object to the object stack, to be inserted in

the outer object
• words for reflection (words are listed with token number, identifier and stack

effect to make automatic bindigs possible)

Basics
• Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte

array), IEEE double float, objects
• Instructions and data encoding derived from Protobuf (7 bits per byte,

MSB=1 means “data continues”, most significant part first)
• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and commands
• oswap to transfer the current object to the object stack, to be inserted in

the outer object
• words for reflection (words are listed with token number, identifier and stack

effect to make automatic bindigs possible)

Basics
• Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte

array), IEEE double float, objects
• Instructions and data encoding derived from Protobuf (7 bits per byte,

MSB=1 means “data continues”, most significant part first)
• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and commands
• oswap to transfer the current object to the object stack, to be inserted in

the outer object
• words for reflection (words are listed with token number, identifier and stack

effect to make automatic bindigs possible)

Basics
• Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte

array), IEEE double float, objects
• Instructions and data encoding derived from Protobuf (7 bits per byte,

MSB=1 means “data continues”, most significant part first)
• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and commands
• oswap to transfer the current object to the object stack, to be inserted in

the outer object
• words for reflection (words are listed with token number, identifier and stack

effect to make automatic bindigs possible)

Basics
• Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte

array), IEEE double float, objects
• Instructions and data encoding derived from Protobuf (7 bits per byte,

MSB=1 means “data continues”, most significant part first)
• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and commands
• oswap to transfer the current object to the object stack, to be inserted in

the outer object
• words for reflection (words are listed with token number, identifier and stack

effect to make automatic bindigs possible)

Basics
• Five data types: Integer (64 bits signed+unsigned), flag, string (generic byte

array), IEEE double float, objects
• Instructions and data encoding derived from Protobuf (7 bits per byte,

MSB=1 means “data continues”, most significant part first)
• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and commands
• oswap to transfer the current object to the object stack, to be inserted in

the outer object
• words for reflection (words are listed with token number, identifier and stack

effect to make automatic bindigs possible)

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack vector)
• Ability to enter commands on the fly in text form through a frontend

interpreter still exists
• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific logic extremely

simple

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack vector)
• Ability to enter commands on the fly in text form through a frontend

interpreter still exists
• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific logic extremely

simple

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack vector)
• Ability to enter commands on the fly in text form through a frontend

interpreter still exists
• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific logic extremely

simple

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack vector)
• Ability to enter commands on the fly in text form through a frontend

interpreter still exists
• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific logic extremely

simple

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

• Net2o idea (derived from ONF): Keep the entire object synchronized by
sending only the changes to it — these changes are simple messages
(setters)

• This allows multi–message passing, and reduces latency

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

• Net2o idea (derived from ONF): Keep the entire object synchronized by
sending only the changes to it — these changes are simple messages
(setters)

• This allows multi–message passing, and reduces latency

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

• Net2o idea (derived from ONF): Keep the entire object synchronized by
sending only the changes to it — these changes are simple messages
(setters)

• This allows multi–message passing, and reduces latency

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have to implement
more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the entire object
(with subobjects), and call a function on that object

• Net2o idea (derived from ONF): Keep the entire object synchronized by
sending only the changes to it — these changes are simple messages
(setters)

• This allows multi–message passing, and reduces latency

Security
Lemma: every sufficiently complex format can be exploited

Therefore stick to a very simple format, i.e.: simplify and factor the code

Interpreter

: cmd@ (-- u)
buf-state 2@ over + >r p@+ r> over - buf-state 2! 64>n ;

: n>cmd (n -- addr) cells >r
o IF token-table ELSE setup-table THEN
$@ r@ u<= IF net2o-crash THEN r> + ;

: cmd-dispatch (addr u -- addr' u') buf-state 2!
cmd@ n>cmd @ ?dup IF execute ELSE net2o-crash THEN
buf-state 2@ ;

: cmd-loop (addr u --)
BEGIN cmd-dispatch dup 0<= UNTIL 2drop ;

Security
Lemma: every sufficiently complex format can be exploited

Therefore stick to a very simple format, i.e.: simplify and factor the code

Interpreter

: cmd@ (-- u)
buf-state 2@ over + >r p@+ r> over - buf-state 2! 64>n ;

: n>cmd (n -- addr) cells >r
o IF token-table ELSE setup-table THEN
$@ r@ u<= IF net2o-crash THEN r> + ;

: cmd-dispatch (addr u -- addr' u') buf-state 2!
cmd@ n>cmd @ ?dup IF execute ELSE net2o-crash THEN
buf-state 2@ ;

: cmd-loop (addr u --)
BEGIN cmd-dispatch dup 0<= UNTIL 2drop ;

Reading Files

reading three files
0 lit, file-id "net2o.fs" $, 0 lit,
open-file <req-file get-size get-stat req> endwith
1 lit, file-id "data/2011-05-13_11-26-57-small.jpg" $, 0 lit,
open-file <req-file get-size get-stat req> endwith
2 lit, file-id "data/2011-05-20_17-01-12-small.jpg" $, 0 lit,
open-file <req-file get-size get-stat req> endwith

Reading Files: Reply

reading three files: replies
0 lit, file-id 12B9A lit, set-size

138D607CB83D0F06 lit, 1A4 lit, set-stat endwith
1 lit, file-id 9C65C lit, set-size

13849CAE1F3B6EA8 lit, 1A4 lit, set-stat endwith
2 lit, file-id 9D240 lit, set-size

13849CAE2643FDCC lit, 1A4 lit, set-stat endwith

Messages

messages
msg 13977C927BF7F1AA lit, msg-at "Hi Bob!" $, msg-text

85" Z(&3*>qxl*bWM*DUCA-Mf9N~u;<ddcW0C<XR)ezh?=jmn7zq4RFduAe=aOjKE*2y)I`t;Xi^buBc*@f2"
$, msg-sig endwith

85" e}&3&Kep3Im`T3?tIU=8fs>4=(C`Uic<rhs{(J`k&c5k8{H2^0*}`rV0(F3e"
$, push-$ push' nest 0 lit, ok?

Structured Text a la HTML
HTML–like structured text

body
p "Some text with " text

bold "bold" text oswap add
" markup" text

oswap add
li

ul "a bullet point" text oswap add
ul "another bullet point" text oswap add

oswap add
oswap add

Literature&Links

Bernd Paysan
net2o fossil repository
http://fossil.net2o.de/net2o/

http://fossil.net2o.de/net2o/

	Motivation
	Object Oriented Forth Code as Data
	A Few Examples
	Appendix

