
Region-based Memory Allocation in Forth

M. Anton Ertl∗

TU Wien

Abstract

Memory management has a pervasive effect on the
way we program. In region-based memory alloca-
tion, objects with roughly the same life expectancy
are allocated in one region, and in the end the whole
region is freed at once. This avoids the need to keep
track of the individual objects for free. Regions are
simple to implement and compatible with real-time
requirements and multi-threading, and seem to be
ideal for Forth, except for one thing: The region id
has to be passed to the allocation word, increasing
the stack load. We propose using context wrappers
to avoid that problem. This even allows to use ex-
isting allocate-based libraries with regions, but we
then have to decide what free and resize inside
these libraries do.

1 Introduction

The way that memory is allocated and deallocated
has far-ranging consequences on program design.

For example, consider a string concatenation
word. If you can allocate memory at will, and don’t
have to worry about deallocation (e.g., because you
work on a garbage-collected system), you might use
an interface like

astr+ (c-addr1 u1 c-addr2 u2

-- c-addr3 u3)

By contrast, if memory is allocated once and for
all (“static allocation”), you might go for an inter-
face like

bstr+ (c-addr1 u1 c-addr2 u2 c-addr3 u3

-- c-addr3 u4 n)

(inspired by the Forth-2012 word substitute).
Bstr+ writes the resulting string in the buffer
c-addr3 u3, with the length of the resulting string
in u4, and n indicating whether the operation was
successful (had enough buffer space).

If you need to free explicitly, you can use either
interface, but if you use astr+, you have to keep
track of c-addr3 and free it when you are done.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

The usage of these words varies depending
on how memory is allocated. E.g., consider
wanting to build a file path from a direc-
tory name dir (-- c-addr u) and a file name
file (-- c-addr u) and then using that file
path for opening a file:

\ astr+ with garbage collection

dir s" /" astr+ file astr+ r/o open-file throw

\ astr+ with allocate/free

dir s" /" file astr+ over >r astr+ r> free throw

over >r r/o open-file throw r> free throw

\ bstr+ with preallocated buffers:

create buf1 200 chars allot

create buf2 200 chars allot

dir s" /" buf1 200 bstr+ 0< abort" buf1 short"

file buf2 200 bstr+ 0< abort" buf2 short"

r/o open-file throw

Garbage collection makes such things easy, and
may be the decisive feature for distinguishing high-
level languages from lower-level languages, but it
seems like it does not quite fit Forth: Its imple-
mentation is complex, in particular in combination
with lack of type information (a fundamental prop-
erty of Forth), real-time requirements (relevant in
significant numbers of Forth applications), and mul-
tiprocessing (becoming more and more important
with the spread of multi-core CPUs). Nevertheless,
there has been a garbage collection library for Forth
available since 19991; however, this library does not
satisfy real-time requirements and is not designed
for multiprocessing.

The Forth standard supports allocate and free

(and resize) in the memory allocation wordset
since Forth-94 (heap allocation). Unfortunately,
this interface is cumbersome and error-prone:

• If you free too early, the system may allocate
the memory for some other use and if you then
try to access the (already-freed) object, you get
the wrong data or change data in the new, un-
related object (dangling reference).

• If you fail to keep track of all allocations, you
fail to free some, and you get a memory leak.2

1http://www.complang.tuwien.ac.at/forth/

garbage-collection.zip
2Note that freeing everything just before leaving the sys-

Ertl Regions

There are various techniques to avoid these prob-
lems, but they tend to restrict the way you pro-
gram, and they may cost performance; e.g., in the
extreme you can make a new copy of the object ev-
ery time you copy the address, and then you can be
sure that you can free the object when you consume
that address (because every object has only one live
address) [Bak94], but all that allocating, copying,
and freeing costs performance; also, this technique
does not work for mutable objects.

This paper discusses region-based memory allo-
cation, a technique in between free and garbage
collection that might be a good fit for Forth. It
describes what region-based memory allocation is
(Section 2), presents Forth words for regions (Sec-
tion 3), discusses how allocate/free/resize code
can be used with regions (Section 4), outlines and
implementation (Section 5) and discusses related
work (Section 6).

2 Region-Based Memory Allo-

cation

With region-based memory allocation, you can have
several regions active at the same time. You allo-
cate memory from one of these regions. When you
no longer need any of the memory in a region, you
free the region.

The way regions are typically used is: As ap-
plication programmer you know that a bunch of
things are guaranteed not to be needed beyond a
certain point, so you introduce a region for these
things, and allocate memory for these things from
this region. In between, you can allocate things
from longer-lived or shorter-lived regions. Typical
examples for this kind of pattern are:

• A web server typically has a lot of things that
don’t survive the HTTP request. These things
could be allocated in a region that is freed when
servicing the request is completed.

• A compiler could have regions for the basic
block (straight-line code sequences), and the
definition. As soon as it is done with one ba-
sic block, it frees the basic block region and
starts a new basic block region for the next ba-
sic block. Likewise for definitions.

• A text formatting program could have regions
for a line, a paragraph, a page, a section, and
the whole document.

Regions give programmers a wide range of control
over memory management. E.g., you could start

tem is counterproductive; it may page in stuff that would
just be freed (without paging) by the operating system as
part of terminating the process.

out with few regions (e.g., in the compiler only have
regions for definitions); when you notice that this
consumes more memory than you want, you can
introduce additional regions for more fine-grained
control (but with the potential for more bugs).

Regions are relatively easy to implement (about
the same difficulty as allocate/free), even in the
presence of real-time requirements and multipro-
cessing. So they appear to be a good fit for Forth.
Why have they not caught on?

3 Forth interface for regions

A straightforward region interface works with re-
gion IDs passed on the stack:

new-region (-- region-id)

region-alloc (usize region-id -- addr)

free-region (region-id --)

The disadvantage of this kind of interface is that
it requires passing the region-id around. E.g., for
our string concatenation example, we would have a
word

cstr+ (c-addr1 u1 c-addr2 u2 region-id

-- c-addr3 u3)

The region-id would have to be passed around on
the stack inside cstr+, and we would have to pass
the region-id to cstr+. For our file path example
this could look as follows:

new-region >r

dir s" /" r@ cstr+ file r@ cstr+

r/o open-file throw

r> free-region

This works passably in this case, but we con-
sumed the top-of-return-stack for the region-id, and
cannot use it for something else anymore. In any
case, this kind of region interface increases the stack
load by one item.

This has deterred me from using regions for a
long time, but recently I have thought about how to
use stack load reduction techniques [Ert11] to avoid
this problem. I settled for using context wrappers,
because this allows writing general-purpose words.
Region-alloc is split into:

ralloc (usize -- addr)

with-region (... region-id xt -- ...)

\ xt: (... -- ...)

So you pass the region-id to with-region, which
executes the xt, and while executing the xt, every
ralloc allocates from region-id (unless it is exe-
cuted in a nested with-region context).

Let’s look at our string concatenation example
again. We can now use the astr+ interface instead
fo cstr+:

Ertl Regions

new-region dup

[: dir s" /" astr+ file astr+

r/o open-file throw ;] with-region

free-region

This example uses the syntax [: ... ;] for
nestable unnamed definitions (quotations). The ex-
ample is not shorter than the cstr+ one, but the
return stack is now free for other uses (within the
quotation).

But there is still a stack item passed from
new-region to free-region. We can also have a
wrapper that replaces these two words:

do-region (... xt -- ...)

\ xt stack effect: (... region-id -- ...)

With that, our example looks as follows:

[: [: dir s" /" astr+ file astr+

r/o open-file throw

;] with-region

;] do-region

For cases like this example where do-region and
with-region work together, we can also have

do-with-region (... -- ...)

\ xt stack effect: (... -- ...)

which combines the effects, resulting in:

[: dir s" /" astr+ file astr+

r/o open-file throw ;] do-with-region

4 Allocate/free/resize

With the region passed implicitly, we can use an
interface that is compatible to the standard word

allocate (usize -- addr ior)

instead of ralloc. Indeed, we can even redefine
allocate to allocate from the current region when
called inside a with-region context. This allows
to use words or libraries written for the standard
memory-allocation wordset with regions.

To make this idea work, we also need to determine
what free and resize should do when called inside
a with-region context.

For free this is relatively straightforward: if
the memory has been allocted from a region, free
should not free anything (the memory will be freed
when the region is freed); if the memory has been
allocated from the heap, then free should perform
the standard free.
Resize is more complicated. One can see it as al-

locating memory from the current region, and free-
ing the original memory as described above. How-
ever, that would not always reflect the intent of the

programmer who wrote the resize, and may lead
to too-early freeing.

So how is resize used in practice? In my expe-
rience resize is used in two ways:

• To simulate statically allocated buffers of un-
limited size. The program first allocates a
small buffer (or stores 0 as buffer address), and
grows the buffer with resize when necessary.
These buffers are never freed.

• For temporary growing structures. These
structures are freed when the program no
longer needs them.

Given that, one approach for dealing with resize

is to always treat it as working on the heap. If
the memory was first allocated from a region, the
resize should be treated as allocating from the
heap. People who want to write code for regions
should not use resize.

One problem with these ideas is that it some-
times requires determining whether a piece of mem-
ory was allocated from the heap or from a region.
Determining this can require quite a bit of code
and can be slow (depending on the implementation
of regions and the heap).

The following assumptions would get rid of this
need:

• Resize only gets 0 or previously resized
memory as a-addr1 parameter. With this
assumption resize does not need to see if
the memory was allocated from a region (it
wasn’t). Unfortunately, the standard does
not specify that resize works for a-addr1=0
(Gforth does), so this assumption will not hold
for standard programs that use resize.

An alternative, less restrictive assumption is
that the resized memory was allocated from
the heap, but that would restrict the usage of
with-region in combination with code that
uses resize for temporary growing structures.
To avoid programs that don’t get this right,
it would be useful to check this assumption,
but that again requires determining whether
memory was allocated from the heap or from a
region.

If this assumption is made, but does not hold
(i.e., region-allocated memory is resized), the
result is unpredictable and depends on the
heap implementation.

The other alternative is to assume that the
memory is either from a region or previously re-
sized. Then, if it is not previously resized, we
just heap-allocate new memory, copy the old
memory there, and do not free the old memory.
If the old memory was actually heap-allocated,
this will lead to a memory leak.

Ertl Regions

region1

region2

Figure 1: Implementation based on allocate

region1

region2

Figure 2: Implementation based on one big memory block

• Free within a region only refers to region-
allocated memory, except possibly resized
memory. With this assumption, free needs
to check only if memory is resized, which is
cheaper to check. Ideally resized memory is
always freed with a separate word, then we can
do with a placebo free inside a region. If this
assumption is made, but does not hold (i.e.,
heap-allocated memory should be freed in re-
gion context), there will be a memory leak.

It is unclear which of the various options in this
design space is best. So it is probably best to use
the simplest option at first, build in checking to
make users aware of the restrictions, and ask users
for feedback.

5 Implementation

This section sketches two implememtation ap-
proaches.

5.1 Based on allocate

Each region is represented by a linked list of blocks.
Each block has a standard size (e.g., 16KB) and is
allocated. Within each block, there is a pointer to
the first free byte, and a new allocation in the region
is made there. If the rest of the block is too small for
the allocation, a new block is started (see Fig. 1).
If an allocation is bigger than the standard block,
it gets its own private block of the appropriate size.

When a region is freed, the linked list is traversed
and all the blocks in the linked list are freed. For
real-time requirements, one could arrange to delay

the freeing, such that only one block is freed per
region allocation.

For checking whether an address is allocated with
resize, one could have a simple array of resize ad-
dresses. If there are only few resize addresses at
the same time, this is sufficient. A more scalable
data structure (inspired by a sparse set represen-
tation [BT93]) would have an extra cell before the
resized memory that points to the array; if this ad-
dress points within the bounds of the array, and the
place where it points to points back to the address
we are looking at, the address has actually been
allocated with resize.

For checking whether an address is allocated in
a region or on the heap, we would have to walk all
the blocks of all the heaps, and check whether the
address is contained there.

The benefits of this kind of implementation over
one that uses one allocate per region-alloc and
links all the allocations together is less memory
overhead for links, and less time overhead in allo-
cation and deallocation.

5.2 Based on one big memory block

In an embeded system with full control over mem-
ory we may prefer to reserve one big block of mem-
ory for regions. Similarly, if we are working on a
decent virtual memory system, we could mmap a
big chunk of address space for regions (say, as big
as the physical memory of the machine).

This implementation is based on buddy memory
allocation. The first region starts out at the bottom
of the big block. When starting another region,
the block is divided into two parts (see Fig. 2). If

Ertl Regions

the part of one region runs out of space, one can
split the part of a region with more free space, and
continue there.

When freeing a region, all the parts it has are
freed, possibly regrowing parts of other regions.

Checking for resize addresses is the same as for
the other implementation.

Checking whether an address is allocated in a re-
gion or on the heap is very easy: If the address is
within the big block, it is in a region.

Overall this implementation approach is similar
to the other one, but you implement the base mem-
ory allocator yourself (as buddy allocator) instead
of using the system’s allocate. The benefits are
that you can use your knowledge of the base alloca-
tor’s implementation to simplify some of the opera-
tions of the region allocator (e.g., checking whether
something is in a region).

6 Related work

Region-based memory allocation is an old idea,
that has appeared under different names: regions
[GA98], arenas [Han90], pools (Apache), memory
contexts (PostgreSQL), obstacks (glibc). “Region”
is the name used in most recent papers and in
Wikipedia3.

Glibc’s obstacks extend the usual capabilities of
regions by allowing to grow allocations, and deal-
locate from an obstack in a stack-based way, i.e., a
very dictionary-like behaviour, except that you can
have several obstacks, and a growable object is not
addressable while it is still growable.

The regions implementation based on allocate

is the same as that described by Hanson [Han90],
and as described in the obstacks documentation of
glibc.

Gay and Aiken [GA98] evaluate regions empiri-
cally, and find that regions are either best or close
to the best alternative in both run-time and mem-
ory consumption. They also propose and evaluate
a safe version of this technique, based on reference
counting (references into a whole region).

Because regions and their implementation are so
simple, there is little academic literature on them
themselves, but rather on more complex ideas like
region inference, where the compiler tries to deter-
mine regions for allocations automatically.

Context wrappers are one of the techniques for
reducing the stack load [Ert11]. They were in-
spired by Jenny Brien, who proposed a wrapper for
dealing with the input stream on comp.lang.forth
<8s7mkl$4ql$1@news6.svr.pol.co.uk>.

3http://en.wikipedia.org/wiki/Region-based_

memory_management

7 Conclusion

Region-based memory allocation offers a more
convenient memory allocation model than
allocate/free, while avoiding the problems
of garbage collection: regions are much simpler
to implement, especially in combination with
multi-threading and real-time requirements.

So regions seem to be a good fit for Forth. How-
ever, they have not caught on yet, because they re-
quire passing the region id around, thus increasing
the load on the stack. By using context-wrappers
we can reduce this stack burden.

This opens up the possibility to use existing,
allocate-using code with regions, often avoiding
the need to keep track of each piece of allocated
memory for free. But one then has to do some-
thing about the frees and resizes in this code.
We have discussed this issue here, but are not sure
what the best approach is.

References

[Bak94] Henry Baker. Linear logic and permuta-
tion stacks — the Forth shall be first. ACM

Computer Architecture News, 22(1):34–43,
March 1994.

[BT93] Preston Briggs and Linda Torczon. An ef-
ficient representation for sparse sets. ACM

Letters on Programming Languages and

Systems, 2(1–4):59–69, 1993.

[Ert11] M. Anton Ertl. Ways to reduce the stack
depth. In 27th EuroForth Conference,
pages 36–41, 2011.

[GA98] David Gay and Alex Aiken. Memory
management with explicit regions. In
SIGPLAN ’98 Conference on Program-

ming Language Design and Implementa-

tion, pages 313–323, 1998.

[Han90] David R. Hanson. Fast allocation and deal-
location of memory based on object life-
times. Software—Practice and Experience,
20(1):5–12, January 1990.

