
How to get rid of C

M. Anton Ertl

TU Wien



Problem: C has become unreliable

• 186 undefined behaviours in C standard

• every real-world program has them

• C compiler maintainers focus exclusively on

programs without undefined behaviours

benchmarks (SPEC)

• bug reports are not taken seriously

• ⇒ We want to get rid of C



Gforth components

Primitives
signals
loader
setup

support
 functions

C library

OS

high-level code
(gforth.fi)

c-call
wrappers



Primitives

• replace with native-code compiler on popular platforms

• keep existing primitives on other platforms

⇒ we cannot get rid of C

remove non-standard usage when gcc acts up

no longer work around performance problems

⇒ slowdown

• Or maybe some primitives in assembly language

high-level replacement for others



Native-code compiler

• Still want to use image files

• Compiler from image files to native code

• For interactive use:

Compiler from threaded-like code to native code

threaded-like code allows storing image files

• For bootstrapping:

Compiler from image files to assembly language



Support functions

• Called by primitives

e.g. mixed division

• replaced by native-code compiler

• or high-level code



Calling C

• For system calls

Alternative: direct system calls

additional system-specific stuff to implement

CPU-specific optimizations

• For library calls

• use wrappers like now?

• teach calling convention to native-code compiler

Use extern: for specifying C functions



Setup, loader, signals

• Could be replaced with Forth code

on systems with native-code compiler

• But: two versions to maintain

• not performance-sensitive

Slowdown from C standards compliance should not be noticable



Conclusion

• Getting away from C is a long-term effort

• Is it worthwhile to get rid of C completely?


