
22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

1

High Integrity Systems
C.O.D.E.

Developing Certified Components for
High Integrity Embedded Systems

http://www.hidecs.co.uk/

Email: Paul_E.Bennett@topmail.co.uk

http://www.hidecs.co.uk/

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

2

In a paper by Phil Koopman, titled “The Grand
Challenge of Embedded System Dependability”
he sets out that “Four significant challenges in
embedded system dependability are:

• embedded-specific security approaches,

• unifying security with safety,

• dealing with composable emergent properties,

• and enabling domain experts to use advanced
dependability techniques.”

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

3

Where mistakes are made

(Out of control, 2nd edition 2003, Health & Safety Executive HSE – UK)

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

4

Capability & Correctness

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

5

Software Needs Hardware

● Software does not operate without the support
of the hardware on which it runs.

● Hardware can suffer random failures
● Environmental Factors
● Stress Induced Failures
● Wear-Out Failures

● Software only suffers systematic failures

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

6

Software Needs Hardware

Failure = f(h)+f(s)

f(h) f(s)

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

7

Software Needs Hardware

Failure = f(h)+f(s)

f(h) f(s)

10E0 to 10E-3

For a Single Channel of Control

10E0 to <10E-99

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

8

Design Integrity is vital

● Know the working environmnt
● Design to operate within limitations of that enviornment

● Be clear about the Tasks to be performed
● Task Description
● Task Analysis
● Hazop Study & Risk Assessment

● Revisit the early concept
● It will not usually be right on the first pass so go back and

look at what you can improve as early as possible.

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

9

Have a Robust Process

● To develop a High Integrity System you need to
be at CMM-3 or better from the start

● Your process needs to manage a multitude of
versions and changes

● You need to keep the information and
knowledge safe and secure

● You need to know that you and your clients are
working to the same specification

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

10

Requirements
Specification

Task
Analysis

Job
Design

Training

Function
Analysis

Human/
Computer
Interface
Design

Functional
Design

Manufacture

Operational
Trials

Specification and Design

Specification Discovery
Implementation

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

11

The Document Trail

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

12

An Engineering Process Model

Accept
Requirements Issue

Process
Function Review

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

13

Review

An Engineering Process Model

Accept
Requirements Issue

Process
Function Review

Problem
Report

Simple
Explanation

Work
Instruction

Work
Instruction

Change
Proposal

Change
Proposal

Change
Review

f1

f1

f1

f4

f2

f3

f4

f1

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

14

Why Forth?

● Stable Virtual Machine (about 40 years)
● Extensible
● Supportive of Structured Programming
● Supportive of Component Oriented Approach
● Does not rely on sub-setting to be “Safe”
● Fully Certifiable

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

15

Why Forth?

ProcessorPerihperal Interfaces

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

16

Why Forth?

ProcessorPerihperal Interfaces

Parameter Stack Return Stack

Forth Kernel

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

17

Why Forth?

ProcessorPerihperal Interfaces

Parameter Stack Return Stack

Forth Kernel

Peripheral Support Code

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

18

Why Forth?

ProcessorPerihperal Interfaces

Parameter Stack Return Stack

Forth Kernel

Peripheral Support Code

Application Specific Base

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

19

Why Forth?

ProcessorPerihperal Interfaces

Application

Parameter Stack Return Stack

Forth Kernel

Peripheral Support Code

Application Specific Base

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

20

Component Oriented

● All systems are constructed from components
● Components have Datasheets describing their

attributes, functionaility and limitations.
● Components are complete in themselves
● Components can be certified for compliance

with their specification.
● Non-compliance becomes obvious upon proper

inspection.

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

21

Certifiying Software Components

● NPL have been running approximately 5,000
random C compilations per evening on a
selection of C compilers. So far there have been
no matches observed at the object code level.

● Forth already has at least two fully certified
compiler implementations for High Integrity
Applications.

● Choosing Forth made such certification effort
much easier to complete.

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

22

Producing High Integrity Code
● Think of writing the comments first (use the comments as

a statement of what you expect to be achieved).
● Review the comments to establish the state the true

intent for the code you have yet to write.
● Write the code to meet the statement of requirements

expressed by the comments.
● Statically Inspect the code to ensure implementation

matches intent
● Perform a functional test of all logical paths in the code.
● Perform a limitations test (trying to make the code fail).
● 100% Path and Function Coverage is possible.

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

23

Code Inspection Sample

\ DSQRT (c) PEB 28/10/05

: DSQRT (ud -- u)
(G u is the nearest integer value of the square root of the)
(unsigned number ud. Results are rounded down.)
 -1 >R
 BEGIN R> 1+ >R
 R@ 2* 1+ S>D D-
 2DUP D0>= NOT
 UNTIL 2DROP R>
;

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

24

Code Inspection Sample

\ DSQRT (c) PEB 28/10/05

: DSQRT (ud -- u)
(G u is the nearest integer value of the square root of the)
(unsigned number ud. Results are rounded down.)
 -1 >R
 BEGIN R> 1+ >R
 R@ 2* 1+ S>D D-
 2DUP D0>= NOT
 UNTIL 2DROP R>
;

The above code fails certification as the word's glossary comment does not match
the actual action of the code below it. The result returned is only valid if the input
value is a positive signed number (31 bits instead of 32 - based on system with 16
bit width).

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

25

Code Inspection Sample

\ DSQRT (c) PEB 28/10/05

: DSQRT (+dn -- +n)
(G +n is the nearest positive integer value of the square root of)
(the positive double length integer +dn. Results are rounded)
(down to the nearest positive integer.)
 -1 >R
 BEGIN R> 1+ >R
 R@ 2* 1+ S>D D-
 2DUP D0>= NOT
 UNTIL 2DROP R>
;

After analysis, the code was deemed suitable for the application it was intended
for but the glossary entry had to be re-worded to properly document its intention
and limitations.

22 February 2013 Paul E. Bennett IEng MIET
HIDECS Consultancy

26

Summary

● You need a development process to at least
CMM level 3 capability.

● Component Oriented Approaches keep the
problems bounded.

● Forth is a very good Component Oriented
Development Environment

● Forth code can be as certifiable as hardware.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

