Audio GUI: MINOS@work

A presentation

Bernd Paysan¹

¹Zetex GmbH

EuroForth 2007

Outline

1 Background

- Class–Z Amplifier
- Interfacing the Hardware

2 Implementation

- Requirements
- Hands on
- Solutions
- Graphic Equalizer

Things Learned

Class-Z Amplifier Interfacing the Hardware

Class–Z Amplifier

What I've been working on at Zetex in the last two years:

- Digital class-D amplifier system with feedback
- System consists of two chips: digital modulator + analog feedback
- The digital chip has many features and needs rather complex software to control it
- System developers aren't programmers, and therefore need a GUI. Must run under Windows (customer requirement). Must also run under Linux (my requirement).

Interfacing the Hardware

Interfacing SPI

- Audio input is via I²S or TDM¹, add a SPDIF decoder to the board, and you are done (SPDIF from PC or CD player)
- Register input is via SPI. Most MPUs have it, desktop PCs ٠ don't.
- FTDI has a chip to interface USB to SPI (FT2232C).
 - This comes with a driver and a library (both on Linux and Windows)
 - Basically is a serial port chip with a free programmable bitbang mode

¹Time Division Multiplex

Requirements Hands on Solutions Graphic Equalizer

Requirements

- GUI access to all features
- Direct access as well
- Scriptable
- Save and restore state
- · Obtain state from hardware
- · Must run without hardware attached for demonstration issues

Requirements Hands on Solutions Graphic Equalize

Hands on

Screen shot

Zetex DDF	A GUI							V D X
Direct input EQ DSPs STAMPs Global About								
Volume Config Novaload Clipping Limits PTE Short Status								
							CH6	СН7
-40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 🗍
Ramp	Ramp	Ramp	Ramp		Ramp	Ramp	Ramp	Ramp
Mute	Mute	Mute	Mute	Mute	Mute	Mute	Mute	Mute
hard	hard	hard	hard	hard	hard	hard	hard	hard
On	On	On	On	On	On	On	On	On
FB	FB	FB	FB	FB	FB	FB	FB	FB

Bernd Paysan

Requirements Hands on Solutions Graphic Equalizer

Solutions

State Remember everything written to the device in a list Run without hardware Bypass library, read from the device list (0 if none) MINOS Added flag actor for bit in a bit field (very useful to represent hardware registers) Performance Block readouts from the device, cache information, update periodically

Requirements Hands on Solutions Graphic Equalizer

Graphic Equalizer

- EQ DSP provides up to 14 4th order biquad filters, 12 are used
- Individual filters are calculated to have xdB gain/attenuation at target frequency, and constant Q (so that the gain is $\frac{x}{2}dB$ at half or twice the frequency
- · Equalizer coefficients are not independent of each others
- · Approximative solution: Linear equation system to be solved
- Visualization: Simulate impulse response, FFT the result, an draw it on a double logarithmic scale

Things Learned

- Good exercise to debug Theseus
- Added features to MINOS (like scale factor to sliders and bit-wise state for toggle buttons)
- · Components were a good idea (each register is a component)
- Alternative to Theseus-based UI might be to create the GUI out of a formal register description (in Forth syntax)
- · Cross-plattform development can work even close to hardware