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The PowerPC 604 RISC microprocessor uses out-of-order and speculative execution 
techniques to extract instruction-level parallelism. Its nonblocking execution pipelines, fast 
branch misprediction recovery, and decoupled memory queues support speculative 
execution. 

he 604 microprocessor is the third 
member of the PowerPC family being 
developed jointly by Apple, IBM, and U Motorola. Developed for use in desk- 

top personal computers, workstations, and ser- 
vers, this 32-bit implementation works with the 
software and bus in the PowerPC 601 and 603 
 microprocessor^.'-^ While keeping the system 
interface compatible with the 601 microproces- 
sor, we improved upon it by incorporating a 
phase-locked loop and an IEEE-Std 1149.1 
boundary-scan WAG) interface on chip. In addi- 
tion, an advanced machine organization deliv- 
ers one and a half to two times the 601’s integer 
performance. 

Performance strategy 
Processor performance depends on three fac- 

tors: the number of instructions in a task, the 
number of cycles a processor takes to complete 
the task, and the processor’s frequency.*s5 Our 
architecture, which we optimized to produce 
compact code while adhering to the reduced 
instruction set computer (RISC) philosophy, 
addresses the first factor. The high instruction 
execution rate and clock frequency addresses 
the other two factors. The 604 provides deep 
pipelines, multiple execution units, register 
renaming, branch prediction, speculative exe- 
cution, and serialization. 

Six-stage superscalar pipeline. As shown 

in Figure 1, this deep pipeline enables the 604 
to achieve its 100-MHz design. The stages are 

Fetch. This stage translates an instruction 
fetch address and accesses the cache for up 
to four instructions. 
Decode. Instruction decoding determines 
needed resources, such as source operands 
and an execution unit. 
Dispatch. When the resources are available, 
dispatch sends instructions to a reservation 
station in the appropriate execution unit. A 
reservation station permits an instruction to 
be dispatched before all of its operands are 
available.‘ As they become available, the 
reservation station forwards operands to the 
execution units. Dispatch can send up to 
four instructions in program order (in-order 
dispatch) to four of six execution units: two 
single-cycle integers, a multicycle integer, a 
load/store, a floating point, and a branch. 
Issue/execute. In each execution unit, this 
stage issues one instruction from its reser- 
vation station and executes it to produce 
results. The instructions can execute out of 
program order (out-of-order execution) 
across the six execution units as well as with- 
in an execution unit that has an out-of-order 
issue reservation station. Table 1 lists the 
latency and throughput of the execution 
stages. 
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Completion, An instruction is 
said to be jinished when it 
passes the execute stage. A fin- 
ished instruction can be com- 
pleted 1) if it does not cause an 
exception condition and 2) 
when all instructions that 
appear earlier in program 
order complete. Tnis is known 
as in-order completion. 
Write buck. This stage writes 
the results of completed 
instructions to the architec- 
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Figure 1. Pipeline description. 
tural state (or the state that is 
visible to programmer). By- 
pass logic permits most instructions to complete and 
write back in one cycle. 

Although some designs use even deeper pipelines to 
achieve higher clock frequencies than the 604 does, we felt 
that such a design point does not suit today’s personal com- 
puters. It relies too heavily on one of, or a combination of, a 
very large on-chip cache, a wide data bus, or a fast memory 
system to deliver its performance. It would be less than com- 
petitive in today’s cost-sensitive personal computer market. 
Precise interrupts and register renaming. Most pro- 

grammers expect a pipelined processor to behave as a non- 
pipelined processor, in which one instruction goes through 
the fetch to write-back stages before the next one begins. A 
processor meets that expectation if it supports precise inter- 
rupts, in which it stops at the first instruction that should not 
be processed. When it stops (to process an interrupt), the 
processor’s state reflects the results of executing all instruc- 
tions prior to the interrupt-causing instruction and none of 
the later instructions, including the interrupt-causing instruc- 
tion. This is not a trivial problem to solve in multiple, out-of- 
order execution pipelines. An earlier instruction executing 
after a later instruction can change the processor’s state to 
make later instruction processing illegal. Sohi gives a gen- 
eral overview of the design issues and solutions.’ 

The 604 uses a variant of the reorder buffer described by 
Smith and Pleszkun to implement precise interrupts.8 The 
16-entry reorder buffer keeps track of instruction order as 
well as the state of the instructions. The dispatch stage assigns 
each instruction a reorder buffer entry as it is dispatched. 
When the instruction finishes execution, the execution unit 
records the instruction’s execution status in the assigned 
reorder buffer entry. Since the reorder buffer is managed as 
a first-idfirst-out queue, its examining order matches the 
instruction flow sequence. To enforce in-order completion, 
all prior instructions in the reorder buffer must complete 
before an instruction can be considered for completion. The 
reorder buffer examines four entries every cycle to allow 

I I Table 1.604 execution timings. 

I Instruction Latency Throughput I 
Most integer 1 
Integer multiply (32x32) 4 
Integer multiply (others) 3 
Integer divide 20 
Integer load 2 
Floating-point load 3 

Floating-point multiply-add 3 
Store 3 

Single-precision floating-point divide 18 
Double-precision floating-point divide 31 

1 
2 
1 

19 
1 
1 
1 
1 

18 
31 

completion of up to four instructions per cycle. 
Unlike Smith and Pleszkun’s reorder buffer, the 604’s 

reorder buffer does not store instruction results. Temporary 
buffers hold them until the instructions that generated them 
complete. At that time, the write-back stage copies the results 
to the architectural registers. The 604 renames registers to 
achieve this; instead of writing results directly to specified reg- 
isters, they are written to rename buffers and later copied to 
specified registers. Since instructions can execute out of order, 
their results can also be produced and written out of order 
into the rename buffers. The results are, however, copied from 
the buffers to the specified registers in program order. Register 
renaming minimizes architectural resource dependencies, 
namely the output-dependency (or write-after-write hazard) 
and antidependency (or write-after-read hazard), that would 
otherwise limit opportunities for out-of-order execution? 

Figure 2 (next page) depicts the format of a rename buffer 
entry. The 604 contains a 12-entry rename buffer for the 
general-purpose registers (GPRs) that are used for 32-bit inte- 
ger operations. The 604 allocates a GPR rename buffer entry 
upon dispatch of an instruction that modifies a GPR. The dis- 
patch stage writes a destination register number of the 
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Figure 2. Rename buffer entry format. 

instruction to the Reg num field, sets a Rename valid bit, and 
clears the Result valid bit. When the instruction executes, the 
execution unit writes its result to the Result field and sets the 
Result valid bit. After the instruction completes, the write- 
back stage copies its result from the rename buffer entry to 
the GPR specified by the Reg num field, freeing the entry for 
reallocation. For a load-with-update instruction that modi- 
fies two GPRs, one for load data and another for address, 
the 604 allocates two rename buffer entries. 

Register renaming complicates the process of locating the 
source operands for an instruction since they can also reside 
in rename buffers. In dispatching an integer instruction, the 
dispatch stage searches its source operands simultaneously 
from the GPR file and its rename buffer. If a source operand 
has not been renamed, the processor uses the value read 
from the GPR file. If a rename exists (indicated by an entry 
with the Rename valid set and its Reg num field matching 
the source register number), the Result in the rename buffer 
is used. It is, however, possible that the result is not yet valid 
because the instruction that produces the GPR has not yet 
executed. The dispatch stage still dispatches the instruction 
since the operand will be supplied by the reservation sta- 
tion when the result is produced. The dispatched instruction 
contains the rename buffer entry identifier in place of the 
operand. The GPR file and its rename buffer can use eight 
read ports for source operands to support dispatching of four 
integer instructions each cycle. 

The 604 also uses a rename buffer for floating-point reg- 
isters (FPRs) and one more for the condition register (CR). 
The FPR rename buffer has eight 90-bit-wide entries to hold 
a double-precision result with its data type and exception 
status. The FPR file and its renamc buffcr access three read 
ports for dispatching one floating-point instruction per cycle. 
In addition to compare instructions, most integer and float- 
ing-point instructions can also generate negative, positive, 
zero, and overflow condition results. One of the eight fields 
in the 32-bit CR stores these 4-bit condition results. The 604 
treats each field as a 4-bit register and applies register renam- 
ing using an eight-entry CR rename buffer. 

Branch prediction and speculative execution. Because 
today’s application software contain a high percentage of 
branch instructions, correctly predicting the outcome of these 
instructions is crucial to keeping the multiple instruction 
pipelines flowing and for achieving two to three times the 
execution rate of scalar processors. The 604 uses dynamic 
branch prediction in the fetch, decode, and dispatch stages 
to predict as well as correct branch instructions early. 
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The 604’s speculative execution strategy complements its 
branch prediction mechanisms. The strategy is to fetch and 
execute beyond two unresolved branch instructions. The 
results of these speculatively executed instructions reside in 
rename buffers and in other temporary registers. If the pre- 
diction is correct, the write-back stage copies the results of 
speculatively executed instructions to the specified registers 
after the instructions complete. 

Upon detection of a branch misprediction, the 604 takes 
quick action to recover in one cycle. It selectively cancels 
the instructions that belong in the mispredicted path from 
the reservation stations, execution units, and memory 
queues. It also discards their results from the temporary 
buffers. In addition, the processor resumes its previous state 
to start executing from the correct path even before the mis- 
predicted branch and its earlier instructions have completed. 
Since the 604 detects a branch misprediction many cycles 
before the branch instruction completes, its fast recovery 
scheme helps to maintain performance of those applications 
with high data cache miss rates and whose branches are dif- 
ficult to predict. 

Serialization. A serialization mechanism delays execu- 
tion of certain instructions that would otherwise be expen- 
sive to execute speculatively in the 604’s multiple-pipeline, 
out-of-order execution design. This mechanism delays infre- 
quently used instructions until they can safely execute while 
permitting later instructions to execute. Some examples are 
the move to and from special-purpose register instructions, 
the extended arithmetic instructions that read the carry bit, 
and the instructions that directly operate on the CR, which 
the PowerPC architecture provides for calculating complex 
branch conditions. This mechanism also controls store 
instructions since it is difficult to undo stores. 

The dispatch stage sends a serialized instruction to the 
proper execution unit with an indication that it should not 
be executed. When all prior instructions have completed and 
updated their results to the architectural state, the comple- 
tion stage allows the serialized instruction to execute. Once 
the serialized instruction is dispatched, dispatch continues 
to dispatch the following instructions so they can executc 
before the serialized instruction. When the serialized instruc- 
tion is completed, the later instructions also complete upon 
finishing execution. This minimizes the penalty of serialized 
instructions. 

Machine organization 
Figure 3 shows the fetch address generation logic. The 

fetch stage selects an address from the addresses generated 
in the different pipeline stages each cycle. Since an address 
generated in a later stage belongs to an earlier instruction, its 
selection precedes an address from an earlier stage. 

The completion stage detects exception conditions and 
generates an exception handler address. This stage also 
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updates the program counter (PC) with 
the target address of a taken branch 
instruction, or advances it by the number 
of instructions being completed. The 
branch execute stage may correct the 
instruction fetch with the branch target 
address if the branch is mispredicted as 
not taken and with the sequential address 
if the branch is mispredicted as taken. 
The dispatch and decode stages may 
change the fetch address with either the 
target or sequential address of a branch 
instruction being predicted. There are 
two copies of the target and sequential 
address registers in the decode, dispatch, 
and execute stages, since there can be up 
to two branch instructions in each stage. 
The completion stage also has two target 
registers to handle up to two finished 
branch instructions. 

If the fetch address hits in the branch 
target address cache (BTAC), the target 
address becomes the fetch address. 
Otherwise, the instruction fetch contin- 
ues sequentially. The bCentry, fully asso- 
ciative BTAC holds the target addresses 
of the branches that are predicted to be 
taken. If a branch is predicted as not 
taken for its next encounter, the branch 
execute stage removes it from the BTAC. 
The BTAC is accessed with the fetch 
address, and not with a branch instruc- 
tion address, providing a zero-cycle fetch 
penalty for taken branches. Although 
there may be multiple branch instruc- 
tions in the four instructions being 
fetched, the BTAC provides the target 
address of the first-predicted taken 
branch instruction. 

- + + + a 
Instruction $ 4  

BHT cache - 
1 + 

Fetch 
1 I 

I I I I I  

I' 
I 

Decode I 
I I * * v 

Prediction logic 
(4 instructions) b 
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I Target hl SEQ 

Dispatch 
I v I 

I Branch execute 

Instructions 
completed 

Completion 

BHT Branch history table 

FAR Fetch address register 

PC Program counter 
SEQ Sequential address BTAC Branch target address cache 

Figure 3. Instruction fetch address generation logic. 

Instruction decode and dispatch. The pipeline decodes 
four instructions every cycle to determine exception condi- 
tions, as well as the resources needed by the instructions. 
The resources include the execution unit, source operands, 
and destination registers. DecodiQg the instructions before 
the dispatch stage simplifies the dispatch logic without using 
predecoded bits in the instruction cache. Predicting branch 
instructions in the first two entries of the decode buffer min- 
imizes the performance penalty of adding the decode stage. 

When the decode stage detects an unconditional branch 
that was not in the BTAC, it corrects the instruction fetch to the 
target address of the branch. It also predicts conditional 
branches with the execution history found in the branch his- 
tory table (BHT).'O Each entry of the 512-entry BHT denotes 

one of the four history states: strong not taken, weak not taken, 
weak taken, and strong taken. The table updates the history 
state with the actual outcome of the branch that is mapped to 
the entry. To simpllfy the design, each entry in the BHT maps 
to every 512th instruction address. This allows the BHT to be 
accessed with the fetch address and to retum the four entries 
mapped to the four instructions starting with the fetch address. 

Not all conditional branch instructions use the BHT. The 
architecture provides a count register (CTR) value as a branch 
condition to support loops in programs. Only the conditional 
branch instructions that do not depend on the CTR value 
use, as well as update, the BHT. Those that do depend on 
the CTR are predicted, based on the value of the shadow 
CTR. The shadow CTR has a future state of the CTR that is 
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updated by speculatively executed move-to-CTR or branch- 
and-decrement instructions. This prediction scheme is very 
effective on branches that control loop iteration. 

The dispatch buffer sends up to four instructions to four of 
the six execution units each cycle. As space allows, more 
instructions advance from the decode stage into the four- 
entry dispatch buffer. The 604 places only a few restrictions 
on dispatch to enable a high-speed implementation. They are 

1) One instruction per execution unit. Since each execu- 
tion unit can start only one instruction per cycle and an 
instruction can bypass the reservation station if the exe- 
cution unit is available, dispatching one instruction per 
unit simplifies the logic without imposing an undue per- 
formance penalty. Two identical single-cycle integer 
units handle the more frequent instructions. 

2) Resources available. Each instruction needs a reorder 
buffer entry, a reservation station entry in the appro- 
priate execution unit, and rename buffer entries to hold 
its results. Available resources depend on the state of 
the instructions previously dispatched as well as those 
currently being dispatched. 

3) Stop dispatch a fer  branch. Instructions following a 
branch instruction are not dispatched in the same cycle 
as the branch is dispatched. This restriction simplifies 
saving the processor state, which allows immediate can- 
celing of speculatively executed instructions that follow 
predicted branches. 

4) Zn-order dispatch. Dispatching instructions in order 
results in only a small cost in performance and greatly 
simplifies resource allocation and dispatch logic. Out-of- 
order execution is introduced with six independent exe- 
cution pipelines and out-of-order issue reservation 
stations to achieve performance comparable to an out- 
of-order dispatch design. 

Reservation stations and result forwarding. A two- 
entry reservation station on every execution unit allows 
instructions to be dispatched before obtaining all of their 
operands. Without a reservation station, an instruction can- 
not be dispatched until all of its source operands become 
available, either in the register file or in its rename buffer. 
Without reservation stations, the 604’s in-order dispatch 
design would be more complex, since it would have to detect 
data dependencies and would frequently stall. The reserva- 
tion stations in the three integer units can issue instructions 
out of order to allow a later instruction to bypass an earlier 
stalled instruction. The branch, load/store, and floating-point 
unit reservation stations may only issue instructions in order. 

Each execution unit provides one result bus for each type 
of result it produces. For instance, the multicycle integer unit 
has one result bus for the GPR and another for the CR data 
types. Figure 4 shows the four GPR result buses and the reser- 

vation stations and GPR rename buffer that are connected to 
them. Each GPR reservation station entry monitors all four 
GPR result buses for any missing A or B operands, denoted 
as A op and B op in the figure. When an execution unit 
returns a result and the associated GPR rename buffer entry 
identifier, the reservation station compares the identifier 
against those in its entries. When a match is found, it forwards 
the result to the waiting instruction. For returning the update 
address of a load-with-update instruction while executing 
one load instruction per cycle, the load/store unit shares the 
result bus of the less frequently used multicycle integer unit. 

It is interesting to note why the 604 uses a reorder buffer, 
rename buffers, and reservation stations to provide the same 
functions that a DRIS (deferred-scheduling, register-renaming 
instruction shelf) in the Metaflow architecture provides.” A 
DRIS entry consists of instruction status fields that a reorder 
buffer entry would have, source operand fields that a reser- 
vation station entry would have, and destination fields that a 
rename buffer entry would have. (The 604’s reservation sta- 
tion entry uses a separate source operand to store either an 
immediate or a copy of the source operand. Although the 
DRIS figure in the Metaflow article shows only the ID field to 
indicate the DRIS entry with the source operand, it is likely 
that another field is needed to store an immediate operand.) 

Two disadvantages of the DFUS had we used it in the 604 
design are 

Scheduling overhead. The DRIS instruction scheduling 
is more complicated than the 604’s dedicated reservation 
stations since the next instruction for an execution unit 
must be the first “ready” instruction of the “right” type 
in all DRIS entries. 
Single result type. DRIS supports renaming of only one 
register type, whereas the 604 needs three. Say that more 
than one DRIS is used, as described in Popescu et al.,” 
to support separate integer and floating-point registers. 
One of them would have to house all instructions to prc- 
vide precise interrupts while not being able to provide 
register renaming. An alternative is to design one DRIS 
to accommodate the largest register type. 

Execution units. The branch execution unit can hold two 
branch instructions in its reservation station and two more fin- 
ished branch instructions. It serves to validate branch predic- 
tions made in earlier stages, and also verifies that the predicted 
target matches the actual target address. If a misprediction is 
detected, the branch execution unit redirects the fetch to the 
correct address and starts the branch misprediction recovery. 

The 604 has a three-stage complex integer unit (CFX) to 
execute integer multiply, divide, and all move to and from 
special-purpose register instructions. The CFX can sustain 
one multiply instruction per cycle for 32~16-bit and those 
32~32-bit multiplies whose B operand is representable as a 
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17-bit signed integer. It can sustain one 
multiply per two cycles for larger 32x32- 
bit operands. The CFX also uses the 
multiply pipeline stages to execute a 
divide instruction in 20 cycles. The 604's 
two simple integer units execute all 
other integer instructions in one cycle. 

The three-stage floating-point unit can 
sustain one double-precision multiply- 
add per cycle, one single-precision 
divide every 18 cycles, or one double- 
precision divide every 31 cycles. It com- 
plies fully with the IEEE-Std 754 
floating-point arithmetic standard. The 
604 provides hardware support for 

- ~~~~ 

GPR General-purpose register 
Op Operand 

Figure 4. GPR result buses, reservation stations, and rename buffer. 
denormalization, exceptions, and three 
graphics instructions. It also provides a 
non-IEEE mode for graphics support. The non-IEEE mode 
converts a denormalized result to zero to avoid prenormal- 
ization in subsequent operations. 

Instruction completion and write back. After an 
instruction executes, the execution unit copies results to its 
rename buffer entries and the execution status to its reorder 
buffer entry. Among other things, the execution status indi- 
cates whether the instruction finished execution without an 
exception. Of the four reorder buffer entries examined every 
cycle, up to four instructions that finished without an excep- 
tion complete in program order. 

Other than the in-order completion necessary to support 
precise exceptions, the 604 imposes only a few additional 
restrictions on instruction completion. They are 

1) Stop before a store instruction. Since a store data 
operand is read from the register file in the completion 
stage, a store instruction cannot complete if its store 
operand is still in the rename buffer. Stopping comple- 
tion before a store instruction allows the store operand 
to be written to the register file, even if it is produced 
by an instruction currently being completed. 

2) Stop after a taken branch instruction. Since a taken 
branch instruction sets the program counter to its tar- 
get address, it is speed critical to advance the program 
counter from the new target address by the number of 
instructions completed after the taken branch in one 
cycle. Stopping completion aft& a taken branch instruc- 
tion avoids this logic altogether. 

To minimize effects of long execution latency on in-order 
completion, the completion stage overlaps with the last exe- 
cution cycle for those instructions with multicycle execution 
stage. These include the multiply, divide, store, load miss, and 
execution serialized instructions. A store instruction completes 
as soon as it is translated without an exception. Similarly, a 

load instruction that misses in the data cache completes upon 
translation without an exception. Since the reservation stations 
can forward the load data when it is available to the dependent 
instructions, the load miss can safely be completed. 

Most superscalar designs impose additional restrictions 
due to a limited number of ports to register files. For instance, 
four write ports would be required to complete up to four 
instructions if each one can update one register. The 604 
GPR file would require eight write ports to complete four 
load-with-update instructions per cycle. The 604 avoids this 
problem by decoupling instruction completion from regis- 
ter file updates using the write-back stage. Instructions com- 
plete without regard to the type or number of registers they 
update. The completion stage updates their results if ports are 
available; if not, the write-back stage updates them. The 
rename buffer entries function as temporary buffers for those 
instructions that are not completed and as write-back buffers 
for those that are. All three GPR, FPR, and CR rename buffers 
contain two read ports for write back. Correspondingly, the 
three register files have two write ports for write back. 

Memory operations 
High-speed superscalar processors require a greater mem- 

ory bandwidth to sustain their performance. The 604 meets 
the increased demand with large on-chip caches, non- 
blocking memory operations, and a high-bandwidth system 
interface. The 604 takes advantage of the weakly ordered 
memory model, to which the PowerPC architecture sub- 
scribes, to offer efficient memory operations. Although loads 
and stores that hit in the data cache can bypass earlier loads 
and stores, program order memory access can be enforced 
with instructions provided for this purpose. 

Load/store unit. Figure 5 (next page) shows a block dia- 
gram of the loadstore unit and the memory queues. This 
unit has a two-cycle execution stage. It calculates the mem- 
ory address and translates that address with a 12&entry, two- 
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Reservation station e+ EA (20:31) 

& I  Data TLB (64 x 2) * RA(0:19) 

I Data cache 

Figure 5. Loadhtore unit and memory queues. 

way set-associative translation lookaside buffer (TLB) in the 
first cycle. The second cycle processes loads making a spec- 
ulative cache access and aligns bytes when the access hits in 
the cache. The pipelined execution stage executes one load 
or store instruction per cycle. 

In the first half cycle, the load/store unit calculates a load 
instruction’s memory address, denoted as EA in the figure. 
It translates the real address, denoted as RA in the figure, 
and the data cache access begins in the second half cycle. If 
the access hits in the cache, the unit aligns the data and for- 
wards it to the rename buffer and the execution units in the 
second cycle. If the access misses, the unit places the instruc- 
tion and its real address in the four-entry load queue. When 
a load miss completes, it accesses the cache a second time. 
If the load is still a miss, the unit moves it to the load miss 
register while reloading the missing cache line. This permits 
a second load miss to access the cache and to initiate the 
second cache line reload before the first is brought in. 

The unit calculates the memory address of a store and trans- 
lates it in the first cycle. It does not write the data to the cache, 
however, until after the store instruction completes. The unit 
places the instruction and its real adbess in the six-entry store 
queue. Since the data cache is not accessed in the second 
cycle, it is available for an earlier store from the store queue 
(if necessary) or load miss from the load queue (if necessary). 

When a store instruction completes, the load/store unit 
marks it completed in the store queue so that instruction com- 
pletion can continue without waiting for storage to the cache 
or memory. If the store hits in the cache, the unit writes it to 
the cache and removes it from the store queue. If the store 
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is a miss, the unit will bypass it in the store queue to allow 
later stores to take place while cache reloading proceeds. 
Multiple store misses can be bypassed in the store queue. 

Figure 6 shows the store queue structure. Four pointers 
identlfy the state of the store instructions in the circular store 
queue. When a store has finished execution (or successful 
translation), the load/store unit places it in the finished state. 
When it completes, the finish pointer advances to place it in 
the completed state. When it is committed to cache or mem- 
ory, the completion pointer advances to place it in the com- 
mitted state. If the store hits in the cache, advancing the 
commit pointer removes it from the queue. If the store is a 
miss, the commit pointer does not advance until the missing 
cache line is reloaded and the store is written to the cache. 
While the cache line is being reloaded, the next store indi- 
cated by the completion pointer can access the cache. If this 
store hits in the cache, the unit removes it from the queue. 
If it misses, another cache line reload begins. 

Caches. The 604 provides separate instruction and data 
caches to allow simultaneous instruction and data accesses 
every cycle. Both 16-Kbyte caches provide byte parity pro- 
tection and a four-way set-associative organization with 32- 
byte lines. They are indexed with physical addresses, have 
physical tags, and make use of the least recently used 
replacement algorithm. 

The instruction cache provides a 16-byte interface to the 
fetch unit to support the four-instruction dispatch design. 
This nonblocking cache allows subsequent instructions to 
be fetched while a prior cache line is being reloaded. This 
design is particularly beneficial if the missing cache line 
belongs in a mispredicted path, since it allows the correct 
instructions to be accessed immediately after a branch mis- 
prediction recovery. The instruction cache also provides 
streaming, a mechanism to forward instructions as they are 
received from off-chip cache or memory. 

The instruction cache does not maintain coherency; 
instead, the architecture provides a set of instructions for 
software to manage coherency. In particular, the instruction 
cache block invalidate (ICBI) instruction causes all copies of 
the addressed cache line to be invalidated in the system. The 
ICBI generates an invalidation request, to which all coherent 
caches must comply. 

The data cache contains a &-bit data interface to the 
loadstore unit for data access, MMU for tablewalking, and 
bus interface unit (BIU) for cache line reloading and snoop- 
ing. (The architecture specifies an algorithm to traverse page 
table entries that define the virtual-to-physical memory map- 
pings. “Tablewalk refers to a hardware implementation of 
the algorithm.) The data cache’s two copy-back buffers sup- 
port nonblocking cache operations. A copy-back buffer holds 
a duty (modified) cache line that is being replaced or that hits 
on a snoop request. The data cache moves an entire cache 
line into a copy-back buffer in one cycle to minimize the 
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Figure 6. Store queue structure. 

cycles the cache is unavailable. 
The MESI (modified, exclusive, shared, invalid) coheren- 

cy protocol defined in the PowerPC 60x Pmcessor Inteq$ace 
Specification keeps the data cache coherent.’* A duplicated 
data tag array supports two-cycle snoop response with min- 
imum performance impact to the normal cache operations. 

To further support nonblocking cache operations, we’ve 
extended the MESI coherency protocol with one more state. 
As illustrated in a simplified state diagram in Figure 7 ,  the 
protocol assigns the new state, Allocated, to the block select- 
ed to hold the missing cache line. All necessary information 
for this particular miss, including the address and set num- 
ber, remains in the memory queue and later completes the 
cache line reload. The cache line becomes either shared or 
exclusive, based on the coherency response. 

The software can individually disable, invalidate, or lock 
both instruction and data caches. While a cache is disabled, 
all accesses bypass it and directly access the off-chip cache 
or memory. While a cache is locked, it is accessible but its 
contents cannot be replaced. All cache misses, in this case, 
are accessed from off chip as cache-inhibited accesses. 
Coherency is, however, maintained even when a cache is 
locked. The data cache supports the cache touch instruc- 
tions, which initiate reloading of the specified cache line if 
it is not in the cache. These instructions can effectively short- 
en cache miss rates and latency. 

Bus interface unit and memory queues. The 604’s BIU 
implements the PowerPC 60X Processor Znt&ace Specijica- 
tion to ensure bus compatibillgr with the 601 and 603 micro- 
processors. A split transaction mode allows the address bus 
to operate independently of the dab  bus, freeing the data 
bus during memory wait states. To support the split trans- 
action mode, the BIU uses the address and data buses only 
during what are known as address tenure and data tenure 
cycles. The BIU also provides a pipelined mode, in which up 
to three address tenures can be outstanding before data for 
the first address is received. If permitted, the BIU will com- 
plete one or more write transactions between the address 
and data tenures of a read transaction. Byte parity protects 

Y /  

(cast out) Snoop-read 
(cast out) 

Cache-line clean 
(Modified] 

Store-hit 

Figure 7. Simplified data cache state diagram. 

its 32-bit address and 64-bit data buses. 
Figure 8 (next page) shows the address and data queues 

that implement split and pipelined transaction modes. Four 
types of memory queues support the four types of opera- 
tions: line fill, write, copy back, and cache control. For a line- 
fill operation, the line-fill address from either the instruction 
or data cache remains in the memory address queue until 
the address can be sent out in an address tenure. After the 
address tenure, the address transfers to the line-fill address 
queue. This releases the address bus for other transactions 
in the split transaction mode. As each double word for the 
cache line retums, it moves to the line-fill buffer and also 
forwards to the loadstore unit. 

During a write operation the address stays in the memory 
address queue, and the data in the write buffer, until both 
the address and data can move out in a write transaction. The 
size of a write transaction can vary from 1 to 8 bytes to han- 
dle nondouble-word aligned writes. Similarly during a copy- 
back operation, the address remains in the copy-back address 
queue, and the data in the copy-back buffer, until both the 
address and data transfer in a 32-byte burst write transaction. 
For a cache control instruction or a store to a shared cache 
line, the address stays in the cache control address queue 
until an address-only transaction broadcasts the cache con- 
trol command. Since all address queues in the 604 are con- 
sidered part of the coherent memory system, the BIU checks 
them against data cache and snoop addresses to ensure data 
consistency and maintain MESI coherency protocol. 

System support features 
The 604 provides several features to support robust system 

design such as instruction and data address breakpoints and 
single-step and branch instruction tracing facilities for soft- 
ware debugging. It also provides performance-monitoring 
functions for the system to profile software performance 
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Data address Data address Data 4 
Instruction include setting instruction or data 

Data address breakpoints, single stepping, 
running Ncycles, and reading and writ- 
ing system memory locations as well as 
any storage element within the proces- 
sor. The COP functions are imple- 
mented as an extension to the 
IEEE-1149.1 specification, and are con- 
trolled entirely through that interface. 

System designers can configure the 
604 processor operating frequency as 
one, one-and-a-half, two, or three 
times the system bus frequency. The 
on-chip phase-locked loop generates 
the necessary processor clocks from 
the bus clock. The 604 also Drovides 
a nap mode, which clocks only exter- 
nal interrupt detection logic and the 
phase-locked loop. It enters nap 
mode under software control and 
exits from the mode upon detecting 
an interrupt. The 604 can still service 

Data bus Address bus 

Figure 8. Address and data queue organization. 

I Table 2. The 604 physical characteristics. I 
Characteristics I 

Technology 
Die size 
Transistor count 
Cache size 
Voltage 
Power dissipation 
Signal I/Os 
Package 

0.5-km CMOS, 4 metal layers 
196 mm2, 12.4x15.8 mm 
3.6 million 
16-Kbyte I-cache and D-cache 
3.3V, 5V I/O tolerant 
Less than 1 OW at 100 MHz 
171; CMOS/TTL compatible 
304-pin CQFP 

without additional hardware. These functions can determine 
many key performance parameters, such as instruction exe- 
cution rate, branch prediction rate, cache hit rates, and aver- 
age cache miss latency. 

The 604 design follows the level-sensitive scan design 
methodology to provide high test coverage. As required by 
LSSD rules, every storage element, except in arrays, connects 
to a scan chain that starts with a chip input pin and ends on a 
chip output pin. During test mode, storage elements in a scan 
chain behave as a shift register that can also capture inputs to 
exercise a sequential digital network in a combinational man- 
ner. The 604’s common on-chip processor (COP) provides 
many functions to control and observe the storage elements. 
Some of the functions useful for chip and system debugging 
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snoop requests if the system asserts 
the RUN pin to run the clocks while 
in the nap mode. We estimate nap 

Table 2 lists some of key physical characteristics of the 
mode power consumption at less than 0.4 watts. 

604. Figure 9 shows the 604 die photo. 

DESIGNED TO MEET LOW-COST needs of the personal 
computer market, the 604 performs well with inexpensive, 
as well as expensive, memory systems. The 604’s large on- 
chip caches help to maintain performance of well-behaved 
applications that exhibit localities. For those with erratic 
behaviors and access pattems, speculative execution guided 
by dynamic branch prediction helps to reduce on-chip cache 
miss latency. The nonblocking execution pipelines and the 
memory queues that decouple the pipelines from memory 
access further help to reduce the effects of cache misses. The 
split and pipelined modes use the system bus to provide 
greater bandwidth while maintaining compatibility with the 
601 and 603 microprocessors. -@ 
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Figure 9. Die photo of the PowerPC 604. 
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