
The PowerPC 604 RISC Microprocessor

S. Peter Song

Marvin Denman

Joe Chang

Somerset Design Center

8 IEEEMicra

111

The PowerPC 604 RISC microprocessor uses out-of-order and speculative execution
techniques to extract instruction-level parallelism. Its nonblocking execution pipelines, fast
branch misprediction recovery, and decoupled memory queues support speculative
execution.

he 604 microprocessor is the third
member of the PowerPC family being
developed jointly by Apple, IBM, and U Motorola. Developed for use in desk-

top personal computers, workstations, and ser-
vers, this 32-bit implementation works with the
software and bus in the PowerPC 601 and 603
 microprocessor^.'-^ While keeping the system
interface compatible with the 601 microproces-
sor, we improved upon it by incorporating a
phase-locked loop and an IEEE-Std 1149.1
boundary-scan WAG) interface on chip. In addi-
tion, an advanced machine organization deliv-
ers one and a half to two times the 601’s integer
performance.

Performance strategy
Processor performance depends on three fac-

tors: the number of instructions in a task, the
number of cycles a processor takes to complete
the task, and the processor’s frequency.*s5 Our
architecture, which we optimized to produce
compact code while adhering to the reduced
instruction set computer (RISC) philosophy,
addresses the first factor. The high instruction
execution rate and clock frequency addresses
the other two factors. The 604 provides deep
pipelines, multiple execution units, register
renaming, branch prediction, speculative exe-
cution, and serialization.

Six-stage superscalar pipeline. As shown

in Figure 1, this deep pipeline enables the 604
to achieve its 100-MHz design. The stages are

Fetch. This stage translates an instruction
fetch address and accesses the cache for up
to four instructions.
Decode. Instruction decoding determines
needed resources, such as source operands
and an execution unit.
Dispatch. When the resources are available,
dispatch sends instructions to a reservation
station in the appropriate execution unit. A
reservation station permits an instruction to
be dispatched before all of its operands are
available.‘ As they become available, the
reservation station forwards operands to the
execution units. Dispatch can send up to
four instructions in program order (in-order
dispatch) to four of six execution units: two
single-cycle integers, a multicycle integer, a
load/store, a floating point, and a branch.
Issue/execute. In each execution unit, this
stage issues one instruction from its reser-
vation station and executes it to produce
results. The instructions can execute out of
program order (out-of-order execution)
across the six execution units as well as with-
in an execution unit that has an out-of-order
issue reservation station. Table 1 lists the
latency and throughput of the execution
stages.

0740-7475/94/$04.00 0 1994 IEEE

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

Completion, An instruction is
said to be jinished when it
passes the execute stage. A fin-
ished instruction can be com-
pleted 1) if it does not cause an
exception condition and 2)
when all instructions that
appear earlier in program
order complete. Tnis is known
as in-order completion.
Write buck. This stage writes
the results of completed
instructions to the architec-

Branch instructions

1 :;kt I Predict Validate I Complete I Decode I E v a Z h I
Integer instructions

Loadstore instructions

(Fetch (Decode (Dispatch (Execute IComplete (Write back/

IFetch (Decode IDispatch I Cache (Align IComplete (Write bacq

(Fetch IDecode (Dispatch (Multiply (Add (Rndnorm (Complete (Write back/
Floating-point instructions

Figure 1. Pipeline description.
tural state (or the state that is
visible to programmer). By-
pass logic permits most instructions to complete and
write back in one cycle.

Although some designs use even deeper pipelines to
achieve higher clock frequencies than the 604 does, we felt
that such a design point does not suit today’s personal com-
puters. It relies too heavily on one of, or a combination of, a
very large on-chip cache, a wide data bus, or a fast memory
system to deliver its performance. It would be less than com-
petitive in today’s cost-sensitive personal computer market.
Precise interrupts and register renaming. Most pro-

grammers expect a pipelined processor to behave as a non-
pipelined processor, in which one instruction goes through
the fetch to write-back stages before the next one begins. A
processor meets that expectation if it supports precise inter-
rupts, in which it stops at the first instruction that should not
be processed. When it stops (to process an interrupt), the
processor’s state reflects the results of executing all instruc-
tions prior to the interrupt-causing instruction and none of
the later instructions, including the interrupt-causing instruc-
tion. This is not a trivial problem to solve in multiple, out-of-
order execution pipelines. An earlier instruction executing
after a later instruction can change the processor’s state to
make later instruction processing illegal. Sohi gives a gen-
eral overview of the design issues and solutions.’

The 604 uses a variant of the reorder buffer described by
Smith and Pleszkun to implement precise interrupts.8 The
16-entry reorder buffer keeps track of instruction order as
well as the state of the instructions. The dispatch stage assigns
each instruction a reorder buffer entry as it is dispatched.
When the instruction finishes execution, the execution unit
records the instruction’s execution status in the assigned
reorder buffer entry. Since the reorder buffer is managed as
a first-idfirst-out queue, its examining order matches the
instruction flow sequence. To enforce in-order completion,
all prior instructions in the reorder buffer must complete
before an instruction can be considered for completion. The
reorder buffer examines four entries every cycle to allow

I I Table 1.604 execution timings.

I Instruction Latency Throughput I
Most integer 1
Integer multiply (32x32) 4
Integer multiply (others) 3
Integer divide 20
Integer load 2
Floating-point load 3

Floating-point multiply-add 3
Store 3

Single-precision floating-point divide 18
Double-precision floating-point divide 31

1
2
1

19
1
1
1
1

18
31

completion of up to four instructions per cycle.
Unlike Smith and Pleszkun’s reorder buffer, the 604’s

reorder buffer does not store instruction results. Temporary
buffers hold them until the instructions that generated them
complete. At that time, the write-back stage copies the results
to the architectural registers. The 604 renames registers to
achieve this; instead of writing results directly to specified reg-
isters, they are written to rename buffers and later copied to
specified registers. Since instructions can execute out of order,
their results can also be produced and written out of order
into the rename buffers. The results are, however, copied from
the buffers to the specified registers in program order. Register
renaming minimizes architectural resource dependencies,
namely the output-dependency (or write-after-write hazard)
and antidependency (or write-after-read hazard), that would
otherwise limit opportunities for out-of-order execution?

Figure 2 (next page) depicts the format of a rename buffer
entry. The 604 contains a 12-entry rename buffer for the
general-purpose registers (GPRs) that are used for 32-bit inte-
ger operations. The 604 allocates a GPR rename buffer entry
upon dispatch of an instruction that modifies a GPR. The dis-
patch stage writes a destination register number of the

October 1994 9

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Rename buffer entry format.

instruction to the Reg num field, sets a Rename valid bit, and
clears the Result valid bit. When the instruction executes, the
execution unit writes its result to the Result field and sets the
Result valid bit. After the instruction completes, the write-
back stage copies its result from the rename buffer entry to
the GPR specified by the Reg num field, freeing the entry for
reallocation. For a load-with-update instruction that modi-
fies two GPRs, one for load data and another for address,
the 604 allocates two rename buffer entries.

Register renaming complicates the process of locating the
source operands for an instruction since they can also reside
in rename buffers. In dispatching an integer instruction, the
dispatch stage searches its source operands simultaneously
from the GPR file and its rename buffer. If a source operand
has not been renamed, the processor uses the value read
from the GPR file. If a rename exists (indicated by an entry
with the Rename valid set and its Reg num field matching
the source register number), the Result in the rename buffer
is used. It is, however, possible that the result is not yet valid
because the instruction that produces the GPR has not yet
executed. The dispatch stage still dispatches the instruction
since the operand will be supplied by the reservation sta-
tion when the result is produced. The dispatched instruction
contains the rename buffer entry identifier in place of the
operand. The GPR file and its rename buffer can use eight
read ports for source operands to support dispatching of four
integer instructions each cycle.

The 604 also uses a rename buffer for floating-point reg-
isters (FPRs) and one more for the condition register (CR).
The FPR rename buffer has eight 90-bit-wide entries to hold
a double-precision result with its data type and exception
status. The FPR file and its renamc buffcr access three read
ports for dispatching one floating-point instruction per cycle.
In addition to compare instructions, most integer and float-
ing-point instructions can also generate negative, positive,
zero, and overflow condition results. One of the eight fields
in the 32-bit CR stores these 4-bit condition results. The 604
treats each field as a 4-bit register and applies register renam-
ing using an eight-entry CR rename buffer.

Branch prediction and speculative execution. Because
today’s application software contain a high percentage of
branch instructions, correctly predicting the outcome of these
instructions is crucial to keeping the multiple instruction
pipelines flowing and for achieving two to three times the
execution rate of scalar processors. The 604 uses dynamic
branch prediction in the fetch, decode, and dispatch stages
to predict as well as correct branch instructions early.

10 /€€€Micro

111

The 604’s speculative execution strategy complements its
branch prediction mechanisms. The strategy is to fetch and
execute beyond two unresolved branch instructions. The
results of these speculatively executed instructions reside in
rename buffers and in other temporary registers. If the pre-
diction is correct, the write-back stage copies the results of
speculatively executed instructions to the specified registers
after the instructions complete.

Upon detection of a branch misprediction, the 604 takes
quick action to recover in one cycle. It selectively cancels
the instructions that belong in the mispredicted path from
the reservation stations, execution units, and memory
queues. It also discards their results from the temporary
buffers. In addition, the processor resumes its previous state
to start executing from the correct path even before the mis-
predicted branch and its earlier instructions have completed.
Since the 604 detects a branch misprediction many cycles
before the branch instruction completes, its fast recovery
scheme helps to maintain performance of those applications
with high data cache miss rates and whose branches are dif-
ficult to predict.

Serialization. A serialization mechanism delays execu-
tion of certain instructions that would otherwise be expen-
sive to execute speculatively in the 604’s multiple-pipeline,
out-of-order execution design. This mechanism delays infre-
quently used instructions until they can safely execute while
permitting later instructions to execute. Some examples are
the move to and from special-purpose register instructions,
the extended arithmetic instructions that read the carry bit,
and the instructions that directly operate on the CR, which
the PowerPC architecture provides for calculating complex
branch conditions. This mechanism also controls store
instructions since it is difficult to undo stores.

The dispatch stage sends a serialized instruction to the
proper execution unit with an indication that it should not
be executed. When all prior instructions have completed and
updated their results to the architectural state, the comple-
tion stage allows the serialized instruction to execute. Once
the serialized instruction is dispatched, dispatch continues
to dispatch the following instructions so they can executc
before the serialized instruction. When the serialized instruc-
tion is completed, the later instructions also complete upon
finishing execution. This minimizes the penalty of serialized
instructions.

Machine organization
Figure 3 shows the fetch address generation logic. The

fetch stage selects an address from the addresses generated
in the different pipeline stages each cycle. Since an address
generated in a later stage belongs to an earlier instruction, its
selection precedes an address from an earlier stage.

The completion stage detects exception conditions and
generates an exception handler address. This stage also

I

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

updates the program counter (PC) with
the target address of a taken branch
instruction, or advances it by the number
of instructions being completed. The
branch execute stage may correct the
instruction fetch with the branch target
address if the branch is mispredicted as
not taken and with the sequential address
if the branch is mispredicted as taken.
The dispatch and decode stages may
change the fetch address with either the
target or sequential address of a branch
instruction being predicted. There are
two copies of the target and sequential
address registers in the decode, dispatch,
and execute stages, since there can be up
to two branch instructions in each stage.
The completion stage also has two target
registers to handle up to two finished
branch instructions.

If the fetch address hits in the branch
target address cache (BTAC), the target
address becomes the fetch address.
Otherwise, the instruction fetch contin-
ues sequentially. The bCentry, fully asso-
ciative BTAC holds the target addresses
of the branches that are predicted to be
taken. If a branch is predicted as not
taken for its next encounter, the branch
execute stage removes it from the BTAC.
The BTAC is accessed with the fetch
address, and not with a branch instruc-
tion address, providing a zero-cycle fetch
penalty for taken branches. Although
there may be multiple branch instruc-
tions in the four instructions being
fetched, the BTAC provides the target
address of the first-predicted taken
branch instruction.

- + + + a
Instruction $ 4

BHT cache -
1 +

Fetch
1 I

I I I I I

I'
I

Decode I
I I * * v

Prediction logic
(4 instructions) b

b

I Target hl SEQ

Dispatch
I v I

I Branch execute

Instructions
completed

Completion

BHT Branch history table

FAR Fetch address register

PC Program counter
SEQ Sequential address BTAC Branch target address cache

Figure 3. Instruction fetch address generation logic.

Instruction decode and dispatch. The pipeline decodes
four instructions every cycle to determine exception condi-
tions, as well as the resources needed by the instructions.
The resources include the execution unit, source operands,
and destination registers. DecodiQg the instructions before
the dispatch stage simplifies the dispatch logic without using
predecoded bits in the instruction cache. Predicting branch
instructions in the first two entries of the decode buffer min-
imizes the performance penalty of adding the decode stage.

When the decode stage detects an unconditional branch
that was not in the BTAC, it corrects the instruction fetch to the
target address of the branch. It also predicts conditional
branches with the execution history found in the branch his-
tory table (BHT).'O Each entry of the 512-entry BHT denotes

one of the four history states: strong not taken, weak not taken,
weak taken, and strong taken. The table updates the history
state with the actual outcome of the branch that is mapped to
the entry. To simpllfy the design, each entry in the BHT maps
to every 512th instruction address. This allows the BHT to be
accessed with the fetch address and to retum the four entries
mapped to the four instructions starting with the fetch address.

Not all conditional branch instructions use the BHT. The
architecture provides a count register (CTR) value as a branch
condition to support loops in programs. Only the conditional
branch instructions that do not depend on the CTR value
use, as well as update, the BHT. Those that do depend on
the CTR are predicted, based on the value of the shadow
CTR. The shadow CTR has a future state of the CTR that is

October1994 11

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

updated by speculatively executed move-to-CTR or branch-
and-decrement instructions. This prediction scheme is very
effective on branches that control loop iteration.

The dispatch buffer sends up to four instructions to four of
the six execution units each cycle. As space allows, more
instructions advance from the decode stage into the four-
entry dispatch buffer. The 604 places only a few restrictions
on dispatch to enable a high-speed implementation. They are

1) One instruction per execution unit. Since each execu-
tion unit can start only one instruction per cycle and an
instruction can bypass the reservation station if the exe-
cution unit is available, dispatching one instruction per
unit simplifies the logic without imposing an undue per-
formance penalty. Two identical single-cycle integer
units handle the more frequent instructions.

2) Resources available. Each instruction needs a reorder
buffer entry, a reservation station entry in the appro-
priate execution unit, and rename buffer entries to hold
its results. Available resources depend on the state of
the instructions previously dispatched as well as those
currently being dispatched.

3) Stop dispatch a fer branch. Instructions following a
branch instruction are not dispatched in the same cycle
as the branch is dispatched. This restriction simplifies
saving the processor state, which allows immediate can-
celing of speculatively executed instructions that follow
predicted branches.

4) Zn-order dispatch. Dispatching instructions in order
results in only a small cost in performance and greatly
simplifies resource allocation and dispatch logic. Out-of-
order execution is introduced with six independent exe-
cution pipelines and out-of-order issue reservation
stations to achieve performance comparable to an out-
of-order dispatch design.

Reservation stations and result forwarding. A two-
entry reservation station on every execution unit allows
instructions to be dispatched before obtaining all of their
operands. Without a reservation station, an instruction can-
not be dispatched until all of its source operands become
available, either in the register file or in its rename buffer.
Without reservation stations, the 604’s in-order dispatch
design would be more complex, since it would have to detect
data dependencies and would frequently stall. The reserva-
tion stations in the three integer units can issue instructions
out of order to allow a later instruction to bypass an earlier
stalled instruction. The branch, load/store, and floating-point
unit reservation stations may only issue instructions in order.

Each execution unit provides one result bus for each type
of result it produces. For instance, the multicycle integer unit
has one result bus for the GPR and another for the CR data
types. Figure 4 shows the four GPR result buses and the reser-

vation stations and GPR rename buffer that are connected to
them. Each GPR reservation station entry monitors all four
GPR result buses for any missing A or B operands, denoted
as A op and B op in the figure. When an execution unit
returns a result and the associated GPR rename buffer entry
identifier, the reservation station compares the identifier
against those in its entries. When a match is found, it forwards
the result to the waiting instruction. For returning the update
address of a load-with-update instruction while executing
one load instruction per cycle, the load/store unit shares the
result bus of the less frequently used multicycle integer unit.

It is interesting to note why the 604 uses a reorder buffer,
rename buffers, and reservation stations to provide the same
functions that a DRIS (deferred-scheduling, register-renaming
instruction shelf) in the Metaflow architecture provides.” A
DRIS entry consists of instruction status fields that a reorder
buffer entry would have, source operand fields that a reser-
vation station entry would have, and destination fields that a
rename buffer entry would have. (The 604’s reservation sta-
tion entry uses a separate source operand to store either an
immediate or a copy of the source operand. Although the
DRIS figure in the Metaflow article shows only the ID field to
indicate the DRIS entry with the source operand, it is likely
that another field is needed to store an immediate operand.)

Two disadvantages of the DFUS had we used it in the 604
design are

Scheduling overhead. The DRIS instruction scheduling
is more complicated than the 604’s dedicated reservation
stations since the next instruction for an execution unit
must be the first “ready” instruction of the “right” type
in all DRIS entries.
Single result type. DRIS supports renaming of only one
register type, whereas the 604 needs three. Say that more
than one DRIS is used, as described in Popescu et al.,”
to support separate integer and floating-point registers.
One of them would have to house all instructions to prc-
vide precise interrupts while not being able to provide
register renaming. An alternative is to design one DRIS
to accommodate the largest register type.

Execution units. The branch execution unit can hold two
branch instructions in its reservation station and two more fin-
ished branch instructions. It serves to validate branch predic-
tions made in earlier stages, and also verifies that the predicted
target matches the actual target address. If a misprediction is
detected, the branch execution unit redirects the fetch to the
correct address and starts the branch misprediction recovery.

The 604 has a three-stage complex integer unit (CFX) to
execute integer multiply, divide, and all move to and from
special-purpose register instructions. The CFX can sustain
one multiply instruction per cycle for 32~16-bit and those
32~32-bit multiplies whose B operand is representable as a

12 IEEEMicro

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

17-bit signed integer. It can sustain one
multiply per two cycles for larger 32x32-
bit operands. The CFX also uses the
multiply pipeline stages to execute a
divide instruction in 20 cycles. The 604's
two simple integer units execute all
other integer instructions in one cycle.

The three-stage floating-point unit can
sustain one double-precision multiply-
add per cycle, one single-precision
divide every 18 cycles, or one double-
precision divide every 31 cycles. It com-
plies fully with the IEEE-Std 754
floating-point arithmetic standard. The
604 provides hardware support for

- ~~~~

GPR General-purpose register
Op Operand

Figure 4. GPR result buses, reservation stations, and rename buffer.
denormalization, exceptions, and three
graphics instructions. It also provides a
non-IEEE mode for graphics support. The non-IEEE mode
converts a denormalized result to zero to avoid prenormal-
ization in subsequent operations.

Instruction completion and write back. After an
instruction executes, the execution unit copies results to its
rename buffer entries and the execution status to its reorder
buffer entry. Among other things, the execution status indi-
cates whether the instruction finished execution without an
exception. Of the four reorder buffer entries examined every
cycle, up to four instructions that finished without an excep-
tion complete in program order.

Other than the in-order completion necessary to support
precise exceptions, the 604 imposes only a few additional
restrictions on instruction completion. They are

1) Stop before a store instruction. Since a store data
operand is read from the register file in the completion
stage, a store instruction cannot complete if its store
operand is still in the rename buffer. Stopping comple-
tion before a store instruction allows the store operand
to be written to the register file, even if it is produced
by an instruction currently being completed.

2) Stop after a taken branch instruction. Since a taken
branch instruction sets the program counter to its tar-
get address, it is speed critical to advance the program
counter from the new target address by the number of
instructions completed after the taken branch in one
cycle. Stopping completion aft& a taken branch instruc-
tion avoids this logic altogether.

To minimize effects of long execution latency on in-order
completion, the completion stage overlaps with the last exe-
cution cycle for those instructions with multicycle execution
stage. These include the multiply, divide, store, load miss, and
execution serialized instructions. A store instruction completes
as soon as it is translated without an exception. Similarly, a

load instruction that misses in the data cache completes upon
translation without an exception. Since the reservation stations
can forward the load data when it is available to the dependent
instructions, the load miss can safely be completed.

Most superscalar designs impose additional restrictions
due to a limited number of ports to register files. For instance,
four write ports would be required to complete up to four
instructions if each one can update one register. The 604
GPR file would require eight write ports to complete four
load-with-update instructions per cycle. The 604 avoids this
problem by decoupling instruction completion from regis-
ter file updates using the write-back stage. Instructions com-
plete without regard to the type or number of registers they
update. The completion stage updates their results if ports are
available; if not, the write-back stage updates them. The
rename buffer entries function as temporary buffers for those
instructions that are not completed and as write-back buffers
for those that are. All three GPR, FPR, and CR rename buffers
contain two read ports for write back. Correspondingly, the
three register files have two write ports for write back.

Memory operations
High-speed superscalar processors require a greater mem-

ory bandwidth to sustain their performance. The 604 meets
the increased demand with large on-chip caches, non-
blocking memory operations, and a high-bandwidth system
interface. The 604 takes advantage of the weakly ordered
memory model, to which the PowerPC architecture sub-
scribes, to offer efficient memory operations. Although loads
and stores that hit in the data cache can bypass earlier loads
and stores, program order memory access can be enforced
with instructions provided for this purpose.

Load/store unit. Figure 5 (next page) shows a block dia-
gram of the loadstore unit and the memory queues. This
unit has a two-cycle execution stage. It calculates the mem-
ory address and translates that address with a 12&entry, two-

October1994 13

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

Reservation station e+ EA (20:31)

& I Data TLB (64 x 2) * RA(0:19)

I Data cache

Figure 5. Loadhtore unit and memory queues.

way set-associative translation lookaside buffer (TLB) in the
first cycle. The second cycle processes loads making a spec-
ulative cache access and aligns bytes when the access hits in
the cache. The pipelined execution stage executes one load
or store instruction per cycle.

In the first half cycle, the load/store unit calculates a load
instruction’s memory address, denoted as EA in the figure.
It translates the real address, denoted as RA in the figure,
and the data cache access begins in the second half cycle. If
the access hits in the cache, the unit aligns the data and for-
wards it to the rename buffer and the execution units in the
second cycle. If the access misses, the unit places the instruc-
tion and its real address in the four-entry load queue. When
a load miss completes, it accesses the cache a second time.
If the load is still a miss, the unit moves it to the load miss
register while reloading the missing cache line. This permits
a second load miss to access the cache and to initiate the
second cache line reload before the first is brought in.

The unit calculates the memory address of a store and trans-
lates it in the first cycle. It does not write the data to the cache,
however, until after the store instruction completes. The unit
places the instruction and its real adbess in the six-entry store
queue. Since the data cache is not accessed in the second
cycle, it is available for an earlier store from the store queue
(if necessary) or load miss from the load queue (if necessary).

When a store instruction completes, the load/store unit
marks it completed in the store queue so that instruction com-
pletion can continue without waiting for storage to the cache
or memory. If the store hits in the cache, the unit writes it to
the cache and removes it from the store queue. If the store

14 IEEEMicro

is a miss, the unit will bypass it in the store queue to allow
later stores to take place while cache reloading proceeds.
Multiple store misses can be bypassed in the store queue.

Figure 6 shows the store queue structure. Four pointers
identlfy the state of the store instructions in the circular store
queue. When a store has finished execution (or successful
translation), the load/store unit places it in the finished state.
When it completes, the finish pointer advances to place it in
the completed state. When it is committed to cache or mem-
ory, the completion pointer advances to place it in the com-
mitted state. If the store hits in the cache, advancing the
commit pointer removes it from the queue. If the store is a
miss, the commit pointer does not advance until the missing
cache line is reloaded and the store is written to the cache.
While the cache line is being reloaded, the next store indi-
cated by the completion pointer can access the cache. If this
store hits in the cache, the unit removes it from the queue.
If it misses, another cache line reload begins.

Caches. The 604 provides separate instruction and data
caches to allow simultaneous instruction and data accesses
every cycle. Both 16-Kbyte caches provide byte parity pro-
tection and a four-way set-associative organization with 32-
byte lines. They are indexed with physical addresses, have
physical tags, and make use of the least recently used
replacement algorithm.

The instruction cache provides a 16-byte interface to the
fetch unit to support the four-instruction dispatch design.
This nonblocking cache allows subsequent instructions to
be fetched while a prior cache line is being reloaded. This
design is particularly beneficial if the missing cache line
belongs in a mispredicted path, since it allows the correct
instructions to be accessed immediately after a branch mis-
prediction recovery. The instruction cache also provides
streaming, a mechanism to forward instructions as they are
received from off-chip cache or memory.

The instruction cache does not maintain coherency;
instead, the architecture provides a set of instructions for
software to manage coherency. In particular, the instruction
cache block invalidate (ICBI) instruction causes all copies of
the addressed cache line to be invalidated in the system. The
ICBI generates an invalidation request, to which all coherent
caches must comply.

The data cache contains a &-bit data interface to the
loadstore unit for data access, MMU for tablewalking, and
bus interface unit (BIU) for cache line reloading and snoop-
ing. (The architecture specifies an algorithm to traverse page
table entries that define the virtual-to-physical memory map-
pings. “Tablewalk refers to a hardware implementation of
the algorithm.) The data cache’s two copy-back buffers sup-
port nonblocking cache operations. A copy-back buffer holds
a duty (modified) cache line that is being replaced or that hits
on a snoop request. The data cache moves an entire cache
line into a copy-back buffer in one cycle to minimize the

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

Allocation pointer

Finish pointer i’ Completed

Finished

Completion pointer

Commit pointer

Figure 6. Store queue structure.

cycles the cache is unavailable.
The MESI (modified, exclusive, shared, invalid) coheren-

cy protocol defined in the PowerPC 60x Pmcessor Inteq$ace
Specification keeps the data cache coherent.’* A duplicated
data tag array supports two-cycle snoop response with min-
imum performance impact to the normal cache operations.

To further support nonblocking cache operations, we’ve
extended the MESI coherency protocol with one more state.
As illustrated in a simplified state diagram in Figure 7 , the
protocol assigns the new state, Allocated, to the block select-
ed to hold the missing cache line. All necessary information
for this particular miss, including the address and set num-
ber, remains in the memory queue and later completes the
cache line reload. The cache line becomes either shared or
exclusive, based on the coherency response.

The software can individually disable, invalidate, or lock
both instruction and data caches. While a cache is disabled,
all accesses bypass it and directly access the off-chip cache
or memory. While a cache is locked, it is accessible but its
contents cannot be replaced. All cache misses, in this case,
are accessed from off chip as cache-inhibited accesses.
Coherency is, however, maintained even when a cache is
locked. The data cache supports the cache touch instruc-
tions, which initiate reloading of the specified cache line if
it is not in the cache. These instructions can effectively short-
en cache miss rates and latency.

Bus interface unit and memory queues. The 604’s BIU
implements the PowerPC 60X Processor Znt&ace Specijica-
tion to ensure bus compatibillgr with the 601 and 603 micro-
processors. A split transaction mode allows the address bus
to operate independently of the dab bus, freeing the data
bus during memory wait states. To support the split trans-
action mode, the BIU uses the address and data buses only
during what are known as address tenure and data tenure
cycles. The BIU also provides a pipelined mode, in which up
to three address tenures can be outstanding before data for
the first address is received. If permitted, the BIU will com-
plete one or more write transactions between the address
and data tenures of a read transaction. Byte parity protects

Y /

(cast out) Snoop-read
(cast out)

Cache-line clean
(Modified]

Store-hit

Figure 7. Simplified data cache state diagram.

its 32-bit address and 64-bit data buses.
Figure 8 (next page) shows the address and data queues

that implement split and pipelined transaction modes. Four
types of memory queues support the four types of opera-
tions: line fill, write, copy back, and cache control. For a line-
fill operation, the line-fill address from either the instruction
or data cache remains in the memory address queue until
the address can be sent out in an address tenure. After the
address tenure, the address transfers to the line-fill address
queue. This releases the address bus for other transactions
in the split transaction mode. As each double word for the
cache line retums, it moves to the line-fill buffer and also
forwards to the loadstore unit.

During a write operation the address stays in the memory
address queue, and the data in the write buffer, until both
the address and data can move out in a write transaction. The
size of a write transaction can vary from 1 to 8 bytes to han-
dle nondouble-word aligned writes. Similarly during a copy-
back operation, the address remains in the copy-back address
queue, and the data in the copy-back buffer, until both the
address and data transfer in a 32-byte burst write transaction.
For a cache control instruction or a store to a shared cache
line, the address stays in the cache control address queue
until an address-only transaction broadcasts the cache con-
trol command. Since all address queues in the 604 are con-
sidered part of the coherent memory system, the BIU checks
them against data cache and snoop addresses to ensure data
consistency and maintain MESI coherency protocol.

System support features
The 604 provides several features to support robust system

design such as instruction and data address breakpoints and
single-step and branch instruction tracing facilities for soft-
ware debugging. It also provides performance-monitoring
functions for the system to profile software performance

October1994 15

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

Data address Data address Data 4
Instruction include setting instruction or data

Data address breakpoints, single stepping,
running Ncycles, and reading and writ-
ing system memory locations as well as
any storage element within the proces-
sor. The COP functions are imple-
mented as an extension to the
IEEE-1149.1 specification, and are con-
trolled entirely through that interface.

System designers can configure the
604 processor operating frequency as
one, one-and-a-half, two, or three
times the system bus frequency. The
on-chip phase-locked loop generates
the necessary processor clocks from
the bus clock. The 604 also Drovides
a nap mode, which clocks only exter-
nal interrupt detection logic and the
phase-locked loop. It enters nap
mode under software control and
exits from the mode upon detecting
an interrupt. The 604 can still service

Data bus Address bus

Figure 8. Address and data queue organization.

I Table 2. The 604 physical characteristics. I
Characteristics I

Technology
Die size
Transistor count
Cache size
Voltage
Power dissipation
Signal I/Os
Package

0.5-km CMOS, 4 metal layers
196 mm2, 12.4x15.8 mm
3.6 million
16-Kbyte I-cache and D-cache
3.3V, 5V I/O tolerant
Less than 1 OW at 100 MHz
171; CMOS/TTL compatible
304-pin CQFP

without additional hardware. These functions can determine
many key performance parameters, such as instruction exe-
cution rate, branch prediction rate, cache hit rates, and aver-
age cache miss latency.

The 604 design follows the level-sensitive scan design
methodology to provide high test coverage. As required by
LSSD rules, every storage element, except in arrays, connects
to a scan chain that starts with a chip input pin and ends on a
chip output pin. During test mode, storage elements in a scan
chain behave as a shift register that can also capture inputs to
exercise a sequential digital network in a combinational man-
ner. The 604’s common on-chip processor (COP) provides
many functions to control and observe the storage elements.
Some of the functions useful for chip and system debugging

16 IEEE Micro

snoop requests if the system asserts
the RUN pin to run the clocks while
in the nap mode. We estimate nap

Table 2 lists some of key physical characteristics of the
mode power consumption at less than 0.4 watts.

604. Figure 9 shows the 604 die photo.

DESIGNED TO MEET LOW-COST needs of the personal
computer market, the 604 performs well with inexpensive,
as well as expensive, memory systems. The 604’s large on-
chip caches help to maintain performance of well-behaved
applications that exhibit localities. For those with erratic
behaviors and access pattems, speculative execution guided
by dynamic branch prediction helps to reduce on-chip cache
miss latency. The nonblocking execution pipelines and the
memory queues that decouple the pipelines from memory
access further help to reduce the effects of cache misses. The
split and pipelined modes use the system bus to provide
greater bandwidth while maintaining compatibility with the
601 and 603 microprocessors. -@

References
1. E. Silha, “The PowerPC Architecture,” IBM R/5C5ystem/6000

Technology: Volume /I, IBM Corporation, Austin, Tex., 1993.
2 . C. Moore, ”The PowerPC 601 Microprocessor,“ IBM RISC

System/6000 Technology: Volume /I, IBM Corporation, 1993.
3. B. Burgess et al., ”The PowerPC 603 Microprocessor: A High

Performance, Low Power, Superscalar RISC Microprocessor,”

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore. Restrictions apply.

Proc. Compcon, IEEE Computer Society Press, Los Alamitos,
Calif., 1994, pp. 300-306.

4. S. White et al., "How Does Processor MHz Relate to End-User
Performance? Part 1 of 2," /€E€ Micro, Aug. 1993, pp. 8-16.

5. S. White et al., "How Does Processor MHz Relate to End-User
Performance? Part 2 of 2," /E€€ Micro, Oct. 1993, pp. 79-89.

6. R. Tomasulo, "An Efficient Algorithm for Exploiting Multiple
Arithmetic Units," /BM/., Vol. 1 1 , Jan. 1967, pp. 25-33.

7. G. Sohi. "Instruction Issue Logic for High-Performance,
Interruptible, Multiple Function Unit, Pipelined Computers,"
/€E€ Trans. Computers, Mar. 1990, pp. 349-359.

8. 1. Smith and A. Pleszkun, "Implementation of Precise Interrupts
in Pipelined Processors," Proc. 72th Ann. lnfl Symp. Computer
Architecture, IEEE, Piscataway, N.J., 1985, pp. 36-44.

9. M. Johnson, Superscalar Microprocessor Design, Prentice Hall,
Englewood Cliffs, N.J., 1991.

10. J. Lee and A. Smith, "Branch Prediction Strategies and Branch
Target Buffer Design," Computer, Jan. 1984, pp. 6-22.

1 1 . V. Popescu et al., "The Metaflow Architecture," /€E€ Micro,
June 1991, pp. IO-13,63-73.

12. M.S. Allen, et al., Overviewofthe PowerPCBus Interface, /E€€
Micro, this issue, pp. 42-51.

S. Peter Song is a senior engineer in the
Systems Technology and Architecture
Division of IBM. He led the definition of
the 604 microarchitecture and later
designed the speculative execution, com-
pletion, and exception control logic. Song
holds BS, MS, and PhD degrees in elec-

trical and computer engineering from the University of Texas
at Austin. He is a member of the IEEE Computer Society, Eta
Kappa Nu, and Tau Beta Pi.

Marvin Denman is a principal staff engi-
neer in the RISC Microprocessor Division
of Motorola, Inc. He has contributed to
the definition of the 604 microarchitec-
ture and later designed the fetch and
branch-processing logic. Denman holds
a BS degree in computer science from

Texas A&M University and an MS in electrical engineering
from the University of Texas at Austin. He is a member of the
IEEE Computer Society.

~~~ ~~ ~~ 

Figure 9. Die photo of the PowerPC 604. 

Joe Chang's biography, photograph, and address appear on 
p. 51 of this issue. 

Direct questions conceming this article to S. Peter Song, 
Somerset Design Center, 11400 Burnet Road, M/S  973, Austin, 
TX 78758; spsong@ibmoto.com. 

Reader Interest Survey 
Indicate your interest in this article by circling the appropriate 
number on the Reader Service Card. 

Low 154 Medium 155 High 156 

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 12,2020 at 15:55:02 UTC from IEEE Xplore.  Restrictions apply. 

mailto:spsong@ibmoto.com

