
Technical Overview of the Common Language Runtime

Erik Meijer
Microsoft

Redmond WA
emeijer@microsoft.com

John Gough
QUT

Brisbane, Australia
j.gough@qut.edu.au

Abstract

The functionality of the recently announced Microsoft .NET system is founded on the capabilities of the Common Language
Infrastructure (CLI). Unlike some other recent systems based on virtual machines, the CLI was designed from the start to
support a wide range of programming languages. It is also expected that ECMA standardization will make the CLI available
on a wide range of computing platforms. This combination of multi-language capability and multiplatform implementation
make the CLI an important target for future language compilers.

In this paper, the technical details of the CLI are briefly described. To motivate some of the discussion a comparison is made
with the JavaTM virtual machine (JVM). The JVM was designed under rather different constraints, making it a much more
difficult target for languages other than JavaTM . We also briefly discuss the issues involved in mapping various language
constructs to the primitives of the CLI.

1 Introduction

The ideas of virtual machines, intermediate languages and language independent execution platforms have fascinated lan-
guage researchers for a long time. Well known examples include UNCOL [6], UCSD P-code [23], ANDF [20], AS-400 [25],
hardware emulators such as VMWare, Transmeta CrusoeTM [30], binary translation [26], the JVM [19], and most recently
Microsoft’sCommon Language Infrastructure(CLI) [2].

There are several reasons why people are looking at alternative implementation paths for native compilers:

Portability By using an intermediate language, you need onlyn + m translators instead ofn ∗m translators, to implement
n languages onm platforms.

CompactnessIntermediate code is often much more compact than the original source. This was an important property back
in the days when memory was a limited resource, and has recently regained importance in the context of dynamically
downloaded code.

Efficiency By delaying the commitment to a specific native platform as much as possible, the execution platform can make
optimal use of the knowledge of the underlying machine, or even adapt to the dynamic behavior of the program.

Security High-level intermediate code is more amenable to deployment and runtime enforcement of security and typing
constraints than low level binaries.

Interoperability By sharing a common type system and high-level execution environment (that provides services such
as a common garbage collected heap, threading, security, etc), interoperability between different languages becomes
easier than binary interoperability. Easy interoperability is a prerequisite for multi-language library design and software
component reuse.

Flexibility Combining high level intermediate code with metadata enables the construction of (typesafe) metaprogramming
concepts such as reflection, dynamic code generation, serialization, type browsing etc.

Attracted by the high-level runtime support and the wide availability of the JVM, and the rich set of libraries on the JavaTM

platform, quite a number of language implementers have recently turned to the JVM as the execution environment for their
language [29, 7].

The JVM is a great target for JavaTM , but even though the JVM designers hope to attract implementers of other languages
[19, Chapter 1.2], we will argue that the JVM is essentially a suboptimal multi-language platform.

For a start, the JVM provides no way of encoding type-unsafe features of typical programming languages, such as pointers,
immediate descriptors (tagged pointers), and unsafe type conversions. Furthermore, in many cases the JVM lacks the prim-
itives to implement language features that are not found in JavaTM , but are present in other languages. Examples of such
features include unboxed structures and unions (records and variant records), reference parameters, varargs, multiple return
values, function pointers, overflow sensitive arithmetic, lexical closures, tail calls, fully dynamic dispatch, generics, structural
type equivalence etc [17, 18, 14, 9, 12, 11, 24].

The CLI has been designed from the ground up as a target for multiple languages, and explicitly addresses many of the
issues mentioned above that are needed to efficiently compile a wide variety of languages. To ensure this, from early on
in the development process of the CLI, Microsoft has worked closely with a large number of language implementers (both
commercial and academic, for an up to date list seewww.gotdotnet.com). For instance, the tail call instruction was
added as a direct result of feedback from language researchers; tail calls are a necessary condition for efficiency in many
declarative languages that use recursion as their sole way of expressing repetition.

It would be unfair to state that the CLI as it is now, is already theperfectmulti-language platform. It currently has good support
for imperative (COBOL, C, Pascal, Fortran) and statically typed OO languages (such asC], Eiffel, Oberon, Component
Pascal). Microsoft continues to work with language implementers and researchers to improve support for languages in non-
standard paradigms [16].

In the remainder of this paper, we give a quick overview of the architecture, instruction set and type system of the CLI
and point out specific points where we think the CLI is a better multi-language execution environment than the JVM. The
treatment is necessarily brief. For a more detailed and tutorial overview of the CLI, see the recent book [10].

2 Architecture of the Common Language Infrastructure (CLI)

The CLI manages multiple concurrent threads of control (which are not necessarily native OS threads). A thread can be
viewed as a singly linked list ofactivation records[13, 3], where a activation record is created and linked back to the current
record by a method call instruction, and removed when the method call completes (either by a normal return, a tailcall, or
by an exception). It is usual, but not necessary, that the activation records of a single thread are allocated on aruntime stack.
However, since the management of activation records is abstracted away in the CLI, and to avoid confusion, we shall use the
term “stack” here exclusively to refer to theevaluation stackof the virtual machine.

An instruction pointer (IP) which points to the next CLI instruction to be executed by the CLI in the present method.
An evaluation stack which contains intermediate values of the computation performed by the executing method (the

operand stackin JVM terminology).
A (zero-based) array of local variablesA local variable may hold any data type. However, a particular variable must be

used in a type-consistent way (in the JVM, a local variable can contain an integer at one point in time and a float at
another).

A (zero-based) array of incoming argumentsUnlike the JVM the argument array and the local variable array are not the
same.

A methodInfohandle which contains information about the method, such as its signature, the types of its local variables,
and data about its exception handlers.

A local memory pool The CLI includes instructions for dynamic allocation of objects from the local memory pool (e.g. [3,
Chapter 7.3, page 408].

A return state handle which is used to restore the method state on return from the current method. This corresponds to what
in conventional compiler terminology would be thedynamic link.

A security descriptor which is used by the CLI security system to record security overrides (assert, permit-only, and deny).
This descriptor is not directly accessible to managed code. Although extremely important and interesting, the security
mechanism of the CLI is outside the scope of this paper.

In contrast to the JVM where all storage locations (local variables, stack slots, arguments) are 4 bytes wide, storage locations
in the CLI are polymorphic, in the sense that they might be 4 bytes (such as a 32 bit integer) or hundreds of bytes (such as a
user-defined value type), but their type is fixed for lifetime of the frame.

3 Assemblies

Every execution environment has a notion of “software component” [28]. Anassemblyis a set of files (modules) containing
Common Intermediate Language (CIL) code and metadata, that serves as the primary unit of a software component in the
CLI. Security, versioning, type resolution, processes (application domains) all work on a per assembly basis. In JVM terms
an assembly could roughly be compared to a JAR file.

An assemblymanifestdescribes information about the assembly itself, such as its version, which files make up the assembly,
which types are exported from this assembly, and optionally a digital signature and public key of the manifest itself. Here is
an example manifest for an assembly using ILASM syntax [2]:

.assembly HelloWorld {}

.assembly extern mscorlib {
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 1:0:2411:0

}

Inside an assembly or module we can definereferencetypes such as classes, interfaces, arrays, delegates) (see section 7) and
value typessuch as structs, enums (see section 6), and nested types. In contrast to the JVM, the CLI allows top-level methods
and fields. All these declarations are included in the assembly’smetadata. A unique feature of the CLI is that it’s metadata is
user extensible via the notion of custom attributes.

For a more detailed and tutorial overview of the role of assemblies as software components, see [21].

4 Type System

In this section we give an informal overview of the CLI type system, a more formal introduction is given by Gordon and
Syme [8].

In addition to user defined types (section 6 and section 7), the CLI supports the following set ofprimitive types:

– object , shorthand forSystem.Object , string , shorthand forSystem.String , void , void return type.
– bool , 8-bit 2’s complement signed value,char , 16-bit Unicode character.
– int8 , unsigned int8 , int16 , unsigned int16 , int32 , unsigned int32 , int64 , unsigned int64 ,

unsigned and 2’s complement signed integers of respective width;native int , unsigned native int , machine
dependent unsigned and 2’s complement signed value.

– float32 , float64 , IEEE-754 floating point value of respective width;native float , machine dependent floating
point number (not user visible).

– typed reference , an opaque descriptor of a pair of a pointer and a type, used for type safe varargs.

Primitive types can be combined into composite types using the following set oftype constructors:

– valuetype typeref , class typeref , reference to value or reference type.
– type pinned , prevents the object at which local variable points from being moved by GC. This is outside the scope

of this paper.
– type [bounds] , (multi-dimensional) array. This is outside the scope of this paper, suffice to note that in constrast to

the JVM, the CLIdoessupport true multi-dimensional arrays.
– method callConv type *(parameters) , function pointer. This is outside the scope of this paper.

– type &, managed pointer totype .
– type * , unmanaged pointer totype .

The natural-size, orgeneric, types (primitive typesnative int , unsigned native int , object , and the two type
constructors&, *) are a mechanism in the CLI for deferring the choice of a value’s size. The CLI maps each to the natural
size for a specific processor at JIT- or run-time. For example, a native int would map toint32 on a Pentium processor, but
to int64 on an IA64 processor.

Theobject type represents an object reference that is managed by the CLI. Amanaged pointer& is similar to theobject
type, but points to the interior of an object. Managed pointers are not interchangeable with object references.Unmanaged
pointers* or native int are the traditional pointers of other runtime systems, that is, the addresses of data. Unmanaged
pointers are an essential element for the interoperation of CLI programs with native code components. Such pointers may
not point into the managed heap since such heap values are under the control of a garbage collector that is free to move and
compact objects. Conversely, values of managed pointer type may safely point outside the managed heap, since the garbage
collector knows the heap limits.

Natural sized types offer a significant advantage over the JVM which prematurely commits all storage locations to be 32 bits
wide. This implies for example that values of typelong or double occupy two locations, which makes things unnecessarily
hard for compiler writers.

A more important weakness of the JVM as a target for multiple language is the fact that its type system lumps together all
pointers into onereference type, closing the door for languages or compilers that do need a more fine-grained level of
detail. We will expand on the usefulness of the CLI pointer types in more detail in section 9.

5 Base Instruction set

The CLI has about 220 instructions, so obviously we do not have space to cover all of them in this paper, instead we will
highlight a few representative instructions from each group below1.

When comparing to JVM instructions, you will notice that unlike the JVM where most instructions have the types of their
arguments hard-coded in the instruction (which makes it easier tointerpret JVM byte code, but puts a burden on every
compiler that generates JVM byte codes), the CLI instruction set is much more polymorphic and usually only requires explicit
type information for the result of an instruction (which makes it easier for compilers to generate CIL code, but requires more
work from the JIT).

5.1 Constants, arguments, local variables, and pointers

The CLI provides a number of instructions for transferring values to and from the evaluation stack. Instructions that push
values on the evaluation stack are called “loads”, and instructions that pop elements from the stack into local variables are
called “stores”.

The simplest load instruction isldc. t v , that pushes the valuev of typeT2 on the evaluation stack. Theldnull pushes
a null reference (of typeobject) on the stack.

The ldarg n instruction pushes the contents of then-th argument on the evaluation stack. Theldarga n instruction
pushes theaddress(as a managed pointer of typeT&) of then argument on the evaluation stack. Thestarg n instruction
pops a value from the stack and stores it in then-th argument. In each case, the JIT knows the type of the value from the
signature of the method.

The ldloc n instruction pushes the contents of then-th local variable onto the evaluation stack, andldloca n pushes
theaddressof then-th local variable on the evaluation stack as a managed pointer. Thestloc n instruction pops a value
from the stack and stores it in then-th argument. Again, the JIT can figure out the types of these values from the context.

1 Many of the CLI instruction also have short forms, that allow more compact representation in certain special cases. We will not discuss
these variants here

2 HereT ∈ {int32 , int64 , float32 , float64 } andt is the short form ofT. The short form of types is used in all instructions that
have a type index.

The ldind. t instruction expects an address (which can be a native int, or a unmanaged or managed pointer) on the stack,
dereferences that pointer and puts the value on the stack. Thestind. t v instruction stores a valuev of typeT at address
found at the top of the stack. In both cases, the typet is needed because the JIT cannot always infer what the type of the
resulting value is.

The other load and store instructions includeldfld , ldsfld , stfld , stsfld , andldflda andldsflda to manipulate
instance and static fields, and a similar family of instructions for arrays.

Example: reference argumentsThe ability to load the address of local variables, and to dereference pointers to indirectly
get the value they point at allows compiler writers to efficiently implement languages that support passing arguments by
reference. For example, here is the CIL version of theSwap function that swaps the values of two variables:

.method static void Swap(int32& xa, int32& ya) {
.maxstack 2
.locals (int32 z)

ldarg xa; ldind.i4; stloc z
ldarg xa; ldarg ya; ldind.i4
stind.i4; ldarg ya; ldloc z
stind.i4; ret // return

}

To call this function (see section 8), we just pass the addresses of the local variables as arguments to functionSwap:

.locals (int32 x, int32 y)
// initialize x and y

ldloca x
ldloca y
call void Swap(int32&, int32&)

In the JVM there is a separate load (and store) instruction for each type, i.e.iload n pushes the integer content of then-th
local variable on the stack, and similarly foraload n (reference),dload n (double, so it will moved as two 32 bit values),
fload n (float), andlload n (long, again, moves two items will be moved).

The JVM does not allow compilers to take the address of local variables, hence it is impossible to implement byref arguments
directly. Instead compiler writers have to resort to tricks such as passing one-element arrays, or by introducing explicit box
classes (the JVM does not support boxing and unboxing either). Gough [12] gives a detailed overview of the intricate design
space of implementing reference arguments on the JVM.

5.2 Arithmetic

The add instruction adds the two topmost values on the stack together (and similarly for other arithmetic instructions).
Overflow is not normally detected for integral operations unless you specify.ovf (signed) orovf.un (unsigned); floating-
point overflow returns+∞ or−∞.

The JVM never indicates overflow during operations on integer data types, which means that the time penalty may be
significant for procedures which perform intensive arithmetic in languages (such as Ada95 [1] or SML [22]) that require
overflow detection. A minor issue in this context, is that there is a separateadd instruction for each type (and similar for
other arithmetic instructions), just as is the case for load and store.

5.3 Simple control flow

The CLI supports the usual variety of (conditional) branch instructions (such asbr , beq , bge etc.). There is no analog of
the JVM “jump subroutine” instruction. Also the CLI does not limit the length of branches to 64K as the JVM does (which
might not be a big deal for humans programming in Java, but it is a real problem for compilers generating JVM byte code).

6 Value Types

A value typeis similar to a struct in C or record in Pascal, i.e. a sequence of named fields of various types. In contrast to
reference types, which are always allocated on the GC heap, value types are allocated “in place”. In the CLI, value types can
also contain (static, virtual, or instance) methods [2], the details of which are outside the scope of this paper.

6.1 Structures

Here is the definition of a simplePoint structure that contains two fieldsx andy (which the CLI may store in any order):

.class value Point {
.field public int x
.field public int y

}

6.2 Unions

The CLI also supports sequential and explicit layout control of fields. The latter is needed to implement C-styleunion types
(or variant records in Pascal), a structure where the fields may overlap. For example the following value class defines a union
that may hold either a float or an int:

.class value explicit FloatOrInt {
.field [0] public float32 f
.field [0] public int32 n

}

6.3 Enums

Besides structures, there is another kind of value type,enumerations, which correspond to C-style enums. Enumerations
provide a type safe way to associate names with integer values. For example the following enum defines a new value type
Shape with two constantsRECTANGLEandCIRCLE:

.class enum Shape {
.field public static valuetype Shape RECTANGLE = int32(0)
.field public static valuetype Shape CIRCLE = int32(1)

}

The CLI also allows you to specify enum details such as the internal storage type or indicating that the enumeration is a
collection of bits, for more details see [2].

6.4 Initializing valuetypes

Except for boxing and the.locals directive, the CLI does not have special mechanisms or instructions to explicitly allocate
memory for a valuetype. Theinitobj T instruction expects the address of a valuetypeT on the stack, and initializes all
the fields of the valuetype to eithernull or a 0 of the appropriate primitive type (this is a nice example of apolytypic
instruction). For example to initialize the examplePoint struct that we introduced in section 6.1, we would load the address
of the local variablep of typePoint on the stack and callinitobj Point :

.locals (valuetype Point p)
ldloca p
initobj Point

It should be obvious that having value types is essential for compiling Pascal or C-like languages that have enums, record
and union types. Compiling such languages to the JVM is inefficient to start with, as you need to represent enums and structs
by classes and unions by class hierarchies [4, Chapter5]. A much more serious consequence is that it is impossible to support
the full semantics of such languages, as it is impossible to implement the common (type unsafe) trick where you store a a
float in anFloatOrInt union type, and read it as an int:

.locals (valuetype FloatOrInt fi, int32 n)
// fi.f = 3.14
ldloca fi
ldc.r4 3.14
stfld float32 FloatOrInt::f
// n = fi.n
ldloca fi
ldfld int32 FloatOrInt::n

7 Reference types

The CLI supports types such as classes, interfaces, arrays, delegates. Because of lack of space, we will restrict our attention
to classes. Classes can contain methods and fields; but yet again, to support as many languages as possible, besides virtual
and static methods (as in Eiffel, and JavaTM), the CLI also support instance methods (as in C++).

For example, here are two classesFoo andBar that both define an instance methodf , and a virtual methodg:

.class public Foo {
.method public virtual void f() {...}
.method public instance void g() {...}
.method public static void h() {...}
.method public specialname void .ctor() {...}
}

.class public Bar extends Foo {
.method public virtual void f() {...}
.method public instance void g() {...}
.method public static void h() {...}
.method public specialname void .ctor() {...}

}

Constructors always are names.ctor and have to be marked asspecialname .

7.1 Instantiating Reference types

Thenewobj c instruction allocates a new instance of the class associated with constructorc and initializes all the fields in
the new instance. It then calls the constructor with the given arguments along with the newly created instance.

For example, we can create an instancef with static typeFoo of our classFoo, and an instanceb with static typeFoo of
our classBar using the following instruction sequence:

.locals (class Foo f, class Foo b)
newobj void Foo::.ctor(); stloc f
newobj void Bar::.ctor(); stloc b

To create an instance of a classc in the JVM, you always have to use the sequencenew c ; dup; invokespecial
c .<init>()V (and similarly for using a constructor that takes arguments) and the JavaTM verifier must do a complex

dataflow analysis to ensure that no object is used before it is properly initialized or that it is initialized more than once [19,
Chapter 4.9.4]. It seems much simpler to avoid all the complexity to start with and just do allocation and initialization in a
single instruction.

8 Invoking methods

The CLI has two call instructions for directly invoking methods and interfaces. A third call instructioncalli allows indirect
calls on a function pointer, but this is outside the scope of this paper.

Thecall minstruction is normally used to call a static methodm(i.e. it is comparable to thecallstatic instruction in
the JVM). For example, to call methodFoo::h() , we just write:

call void Foo::h()

It is legal to call a virtual or instance method usingcall instance (rather thancallvirt); in which case method lookup
is done statically, in other words, you will get an early bound call (i.e. the effect is comparable to ainvokespecial on
the JVM). Assuming thatbar is a local variable that contains an instance of classBar , the following call would actually
execute methodFoo::f() :

ldloc bar;
call instance void Foo::f()

The instance calling convention indicates thatFoo::f() expects an additional “this” parameter.

The callvirt m instruction makes a late bound call to a virtual methodm, in other words, the actual method that is
invoked depends on the dynamic type of the “this” parameter (the JVM has two separate instructions,invokevirtual
and invokeinterface for this purpose, which once again makes life harder for compiler writers). So in the example
below, the method that will be invoked isBar::f() since the this parameter passed to the call has static typeclass Foo ,
but dynamic typeclass Bar :

ldloc bar;
callvirt void Foo::f()

For instance methods,callvirt will still result in an early bound call.

8.1 Tailcalls

Some people find it hard to believe, but there are programming languages where recursion is the only way of expressing
repetition (examples include Haskell, Scheme, Mercury). For these languages, it is essential that the underlying execution
environment supports tailcalls. Thetail. prefix instructs the JIT compiler to discard the caller’s stack frame prior to making
the call, which means that the following method will indeed loop forever instead of throwing a stack overflow exception:

.method public static void Bottom() {
.maxstack 8
tail. call void Bottom(); ret

}

If the call is from untrusted code to trusted code the frame cannot be fully discarded for security reasons.

Since the JVM does not support tailcalls, compiler writers are forced to use tricks like trampolines to artificially force the
JVM to discard stack frames [5, 27, 15, 18].

9 Interaction between value and reference types

If you have both valuetypes and reference types, programmers will want to use valuetypes in contexts where reference types
are required (for instance to store aPoint in a collection). The same problem occurs in dynamic languages like Scheme
and statically typed polymorphic functional languages like Haskell and SML where polymorphic functions expect a uniform
argument representation.

To support these scenarios, it is essential to have efficient support from the execution environment to move between the
worlds of value- and reference types. Having to create an instance of a class every time you want to pass a valuetype as
a reference type has too much performance overhead. Moreover, this would also force you to define a new class for every
valuetype, or introduce many unnecessary casts.

The CLR provides built-in support for boxing and unboxing. A valuetypeT can be turned into reference typeobject using
thebox T instruction, and back into a valuetype using theunbox T instruction.

10 Various exotica

As a consequence of its multi-language focus, the CLR provides a number of special facilities that are otherwise difficult to
synthesize. The case of tail calls has already been mentioned, but there are others as well.

The manipulation of function pointers as values is critical to the implementation of OO languages with arbitrary mechanisms
of method dispatch. Support for virtual dispatch in the case of single implementation inheritance with multiple interface
implementation is built in. All other cases must rely on explicitly constructed dispatch tables. Theldftn instruction loads a
function pointer on the stack, and thecalli instruction invokes the function pointer on the top of the evaluation stack. An-
other handy instruction for the implementation of multiple inheritance is thejmp instruction. This takes a method reference
as an argument, and transfers control to the entry point of the nominated method. The instruction provides the functional-
ity required for constructing “trampoline” stubs that are often the preferred way of performing the “this adjustment” in the
dispatch of virtual methods with multiple inheritance.

Languages that pass conformant arrays by value must allocate space for the array copy as part of the procedure call. In this
case the use of thelocalloc instruction expands the current activation record. The use of this instruction is much preferable
to the dynamic allocation of space for the copy on the heap, as in necessary on the JVM. This instruction thus provides the
semantics of theC alloca function.

The final example that will be mentioned here is theldtoken instruction. This instruction loads the runtime type handle
of the type reference in the instruction argument. This operation is a basic building block in the reflection mechanisms. It is
used when the type reference is known, but no instance of the type is conveniently available. The same functionality may be
gained on the JVM by use of theClass.forName() function, but in that case the name is bound at runtime.

11 Verified and unverified code

The CLR provides a rich set of primitives for the implementation of both typesafe and non-typesafe features. In cases where
memory safety is an important factor, the infrastructure allows for a rich subset of the primitives to be used in ways that
allow for verification of safety. As is the case with the JVM, the analysis is necessarily conservative, but provides strong
guarantees of freedom from certain classes of runtime errors. Verification may take place either at component deployment
time, or at load time. As might be expected, verification is based on analysis of the component, and does not rely on trust of
the component producer.

In general terms the guarantees that verification provides are similar to those given by the more strict of contemporary
statically typed languages. The verifier guarantees that locations holding object references can only reference objects of types
that fulfill the contracts of the statically declared type, and that field selection can only access fields valid for the known type.
There are some guarantees that cannot be statically verified. In such cases the verifier checks that all usages that cannot be
statically checked are protected by runtime tests. For example, it is seldom possible to check that all array indices are within

the known bounds of the array, so the verifier must check that all array accesses are protected by a bounds check. A similar
principle applies to field or method accesses that depend on the success of a narrowing type cast.

Apart from the obvious type guarantees that verification must provide, there are also a number of checks that depend on well-
formedness of the control flow. For example, the evaluation stack must have the same height and type-compatible content
along all paths which join at control flow merge points. Furthermore, in the case of object references the statically known
bound on the type of an evaluation stack element is the least common ancestor of the set of bounds on the types incident on
the merge point.

If a compiler wishes to generate intermediate code that can be verified, certain constraints must be met. Some instructions,
such as the block copy instruction, are inherently unverifiable while operations such as addition are unverifiable when used
for address arithmetic. Apart from avoiding certain instructions, it is also necessary to avoid type-unsafe assignments, and
some uses of undiscriminated unions3.

Languages that are statically type-safe should always be able to be compiled down to verifiable CIL, although the mapping
of data types may require some inventiveness. In unverified contexts, as an example, languages that have value arrays of
statically declared size would normally declare a value class of the required runtime size. In this case array elements would
be accessed by indexing into thememory blobthat represents the value object at runtime, using address arithmetic in the
usual way. If the compiler performs its own index bounds checks then such usage will be completely type safe. However,
since the verifier does not permit address arithmetic, and cannot recognize all possible explicit bounds checks, an alternative
mapping must be found to achieve verifiability. In this example, the solution is to tranparently allocate a reference array of
the required size, and use the built in array support of the CLI. This mechanism, using a reference type to represent a value
object, is a common idiom for verifiable code. We call such representation objectsreference surrogates. The mapping of the
value semantics to such surrogates is treated in detail in [10].

The important point to be emphasized is that most of the innovations of the CLR are preserved in a verified environment.
Thus the use of value classes, reference parameters and even type-safe unions are permitted.

For the compiler writer, verification provides an unexpected and welcome bonus. The offline verifier,peverify , detects
(and diagnoses) most of the common errors that are made when coding a CIL emitter. During the early stages of testing,
submitting output topeverify allows most such errors to be detected. In the case of one of the project 7 compilers, Gardent
Point Component Pascal, the compiler successfully bootstrapped itself on the first attempt, oncepeverify certified the CIL
as being verifiable.

12 Conclusions and future work

In the previous sections we have argued that the CLI is already strictly more powerful than the JVM as a multi-language
platform. Microsoft Research and the .NET product group continue to work with language inplementors to improve support
a wide variety of language paradigms.

We explictly solicit language implementors (including those who now target the JVM) to try to target the CLI and provide us
with feedback on how we can make the CLI even better than it is today.

Acknowledgements

We would like to thank allProject 7participants, and Jim Miller, Patrick Dussud, Jim Hogg, Clemens Szysperski, Don Syme,
Andrew Kennedy, and Nick Benton, for many discussions on the topics discussed in this paper. Nicks’s notes on his previous
experiences with compiling SMLj to the JVM were especially helpful.

References

1. Ada 95 Reference Manual, 1995. ANSI/ISO/IEC-8652:1995.

3 Strangely, some unions are tolerable to the verifier, provided that references are not overlapped with other types.

2. CLI Partition II: Metadata. http://msdn.microsoft.com/net/ecma/, 2001. ECMA TG3.
3. A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques and Tools. Addison-Wesley, Reading, Mass., 1986.
4. J. Bloch.Effective Java Programming Language Guide. Addison Wesley, 2001.
5. P. Bothner. Kawa —Compiling Dynamic Languages to the Java VM. InUSENIX’98 Technical Conference, 1998.
6. M. E. Conway. Proposal for an UNCOL.CACM, 1(10):5–8, 1958.
7. J. Engel.Programming for the Java Virtual Machine. Addison Wesley, 1999.
8. A. Gordon and D. Syme. Typing a Multi-Language Intermediate Code. InProceedings POPL’01, pages 248–260, 2001.
9. J. Gough. Parameter Passing for the Java Virtual Machine. InProceedings of the Australasian Computer Science Conference, 1998.

10. J. Gough.Compiling for the .NET Common Language Runtime. Prentice-Hall, Upper Saddle River, NJ, 2001.
11. J. Gough. Stacking them up: A Comparison of Virtual Machines. InProceedings ACSAC-2001, 2001.
12. J. Gough and D. Corney. Evaluating the Java Virtual Machine as a Target for Languages other than Java. InProceedings Joint Modula

Languages Conference, 2000.
13. D. Grune, H. Bal, C. Jacobs, and K. Langendoen.Modern Compiler Design. Wiley, 2001.
14. J. C. Hardwick and J. Sipelstein. Java as an Intermediate Language. Technical Report CMU-CS-96-161, Carnegie Mellon University,

August 1996.
15. S. P. Jones, N. Ramsey, and F. Reig. C–: a Portable Assembly Language that Supports Garbage Collection. InInternational Conference

on Principles and Practice of Declarative Programming, 1999.
16. A. Kennedy and D. Syme. Design and Implementation of Generics for the .NET Common Language Runtime. InProceedings

PLDI’01, 2001.
17. A. Krall and J. Vitek. On Extending Java. In H. Mössenb̈ock, editor,Joint Modular Languages Conference (JMLC’97), pages 321–335,

Linz, 1997. Springer.
18. C. League, Z. Shao, and V. Trifonov. Representing Java Classes in a Typed Intermediate Language. InInternational Conference on

Functional Programming, pages 183–196, 1999.
19. T. Lindholm and F. Yellin.The Java Virtual Machine Specification (2e). Addison Wesley, 1999.
20. S. Macrakis. From UNCOL to ANDF: Progress In standard Intermediate Languages. Technical report, Open Software Foundation

Research Institute, 1993.
21. E. Meijer and C. Szyperski. What’s in a name: .NEt as a Component Framework. In1st OOPSLA Workshop on Language Machanisms

for Programming Software Components, pages 22–28, 2001.
22. R. Milner, M. Tofte, and R. W. Harper.The Definition of Standard ML. MIT Press, 1990.
23. P. A. Nelson. A Comparison of PASCAL Intermediate Languages.ACM SIGPLAN Notices, 14(8):208–213, 1979.
24. M. Odersky and P. Wadler. Pizza into Java: Translating Theory into Practice. InProceedings of the 24th ACM Symposium on Principles

of Programming Languages (POPL’97), Paris, France, pages 146–159. ACM Press, New York (NY), USA, 1997.
25. D. L. Schleicher and R. L. Taylor. System Overview of the Application System/400.IBM Systems Journal, 38(2/3):398–413, 1999.
26. R. Sites, A. Chernoff, M. Kirk, and M. Marks. Binary Translation.CACM, 36(2):69–81, 1993.
27. G. L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report Technical Report AI-TR-474, MIT Artificial Intelligence Laboratory,

1978.
28. C. Szyperski.Component Software: Beyond Object-Oriented Programming. ACM Press and Addison-Wesley, New York, N.Y., 1998.
29. R. Tolksdorf. Programming Languages for the Java Virtual Machine. http://grunge.cs.tu-berlin.de/ tolk/vmlanguages.html.
30. TRANSMETA. The Technology behind Crusoe Processors. http://www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf, 2000.

