J. LOGIC PROGRAMMING 1994:19, 20:1-679 1

THE VIENNA ABSTRACT MACHINE

ANDREAS KRALL

The goal of Prolog implementations is to achieve high overall efficiency.
Many high-speed implementations sacrifice the performance of the compi-
lation built-in predicates for expensive optimizations. The Vienna Abstract
Machine (VAM) aims at both, fast compilation and fast execution. Dif-
ferent versions of the VAM are used for different purposes: the VAMsp is
well suited for interpretation; the VAM;p has been designed for native code
compilation. The VAMyp has been modified to the VAMap, an abstract
machine for fast abstract interpretation. This article presents all three ver-
sions, explains their implementations and compares them with state of the
art Prolog systems.

1. INTRODUCTION

The implementation of Prolog has a long history. Early systems were implemented
by the group around Colmerauer [10] in Marseille. The first system was an inter-
preter written in Algol by Phillip Roussel in 1972. With this experience a more
efficient and usable system was developed by Gérard Battani, Henry Meloni and
René Bazzoli [2]. It was a structure sharing interpreter and had essentially the same
built-in predicates as modern Prolog systems. This system was reasonably efficient
and convinced others of the usefulness of Prolog. Together with Fernando and Luis
Pereira, David Warren developed the DEC-10 Prolog, the first Prolog compiler [33].
This compiler and the portable interpreter C-Prolog spread around the world and
contributed to the success of Prolog.

Address correspondence to Institut fiir Computersprachen, Technische Universitdt Wien,
Argentinierstrafle 8, A-1040 Wien, Austria, andi@complang.tuwien.ac.at.

THE JOURNAL OF LOGIC PROGRAMMING

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

In 1983 David Warren presented the Warren Abstract Machine (WAM) [34]
which has been the basis of nearly all later Prolog implementations. The WAM
divides the unification process into two steps. In the first step the arguments of the
calling goal are created in or copied into argument registers. In the second step the
values in the argument registers are unified with the arguments of the head of the
called predicate. This concept is as well-suited for intermediate code interpreters
as for compilers.

1.1. The Vienna Abstract Machine

The development of the Vienna Abstract Machine (VAM) started in 1985 as an
alternative to the WAM. The aim was to eliminate the parameter passing bottleneck
of the WAM. The first result of the development was an interpreter [17] which
led to the VAMyp [23]. Partial evaluation of predicate calls led to the VAM;p
which is well-suited for machine code compilation [20]. This compiler was enhanced
by global analysis and modified to support incremental compilation [21]. Short
analysis times were achieved through the VAM 41, an abstract machine for abstract
interpretation [22].

The VAMop (VAM with two instruction pointers) is well-suited for an inter-
mediate code interpreter implemented in C or in assembly language using direct
threaded code [4]. The VAM eliminates the WAM register interface by performing
the unification of each pair of a goal and a head argument in a single step. The goal
instruction pointer refers to the instructions of the calling goal, the head instruction
pointer to the instructions of the head of the called clause. An inference step of the
VAMosp fetches one instruction from the goal and one instruction from the head,
combines them and executes the combined instruction. Because information about
both, the calling goal and the called head, is available simultaneously, more opti-
mizations than in the WAM are possible. The VAM features cheap backtracking
and cut, needs less dereferencing and trailing and has smaller stack sizes.

The VAM;p (VAM with one instruction pointer) uses only one instruction pointer
and is well-suited for native code compilation. It combines goal and head instruc-
tions at compile time and supports additional optimizations like instruction elimina-
tion, resolving temporary variables during compile time, extended clause indexing,
fast last-call optimization, and loop optimization.

A common solution for solving data flow analysis problems is abstract interpre-
tation. To collect information about a program abstract interpretation executes
the program over an abstract domain. Current abstract interpretation systems for
Prolog were too slow for use in an optimizing Prolog compiler. So the VAMa;
(VAM for abstract interpretation) has been designed. It is an order of magnitude
faster than older abstract interpretation systems.

The article is structured as follows. Section 2 gives the details of the VAMsp.
Section 3 explains the principles of the VAM;p. Section 4 describes the VAMay,
a modified version of the VAMsp developed for abstract interpretation. Section 5
raises some implementation issues. Section 6 presents an evaluation of the perfor-

mance of the VAM.

2. THE VAM3p

The VAMsp execution model is very similar to the execution model of the classical
Prolog interpreter described by Bruynooghe [5]. The main difference is that the
unification has been broken up into a larger number of atomic parts, which leads
to the definition of an instruction set and gives room for additional optimizations.

2.1. The VAMgp memory model

The VAMop uses three stacks and one heap (see fig. 2.1): stack frames and choice
points are allocated on the environment stack; structures and unbound variables
are stored on the copy stack (also called global stack or heap in the VAM); bindings
of variables are marked on the trail; the intermediate code of clauses is held in the
code area (organized as heap). Machine registers (see fig. 2.2) are the goalptr and
headptr (pointer to the code of the calling goal and the called clause, respectively),
the goalframeptr and the headframeptr (pointer to the stack frame of the clause
containing the calling goal and the called clause, respectively), the top of the en-
vironment stack (stackptr), the top of the copy stack (copyptr), the top of the
trail (trailptr), and the pointer to the last choice point (choicepntptr).

copy stack
L l«— copyptr
T trailptr
trail

l«— choicepntptr

. l«— goalframeptr
environment stack

l«— headframeptr

L stackptr
l«— goalptr
code area . headptr

FIGURE 2.1. VAM;p data areas

Values are stored together with a tag in one machine word. The VAM dis-
tinguishes between integers, atoms, nil, lists, structures, unbound variables and
references. Atoms contain a pointer to a character string. The technique of struc-
ture copying as described by Mellish [26] is used for the representation of structures.
Lists and structures are represented as tagged pointers to a group of machine words.
A list element uses two machine words, one for each argument. Structures use one

| register | usage

stackptr top of environment stack

copyptr top of copy stack

trailptr top of trail

goalptr pointer to instructions of calling goal
headptr pointer to instructions of called clause

goalframeptr | frame pointer of calling goal
headframeptr | frame pointer of called clause
choicepntptr | previous choice point

FIGURE 2.2. machine registers

machine word for the functor and one for each argument. The functor is a pointer to
a location containing the arity and the atom. Long integers and floating point val-
ues are special structures. Unbound variables are represented as self references and
are allocated on the copy stack in order to avoid dangling references and the unsafe
variables of the WAM. Additionally the test for trailing of variables is simplified.

Variables are classified into void, temporary and local variables. Void variables
occur only once in a clause and need neither storage nor unification instructions.
Different to the WAM, which treats the first subgoal as belonging to the head, in
the VAM temporary variables occur only in the head or in one subgoal, counting a
group of built-in predicates as a single goal. The built-in predicates following the
head are treated as if they belong to the head. Temporary variables need storage
only during one inference and can be held in registers. All other variables are local
and are allocated on the environment stack. During an inference the variables of
the head are held in registers. These registers are stored in the stack frame prior
to the call of the first subgoal. To avoid the initialization of variables, the first and
further occurrences are distinguished.

2.2. The VAMoyp instruction set

Prolog source code is translated to the VAMsp abstract machine code (see fig. 2.3).
This translation is simple due to the direct mapping between source code and
VAMosp code. The head arguments of a clause are translated to unification instruc-
tions. A fact is terminated by the instruction nogoal. Each subgoal is translated
to the goal instruction, unification instructions for each argument and is termi-
nated by the call instructions or the lastcall instruction if it is the last subgoal.
The first subgoal of a clause has an additional operand, that specifies the number
of local variables in the head. This number is needed for last-call optimization.
Example 2.1 shows the VAMsp code for the append procedure.

Ezample 2.1.

append([], nil

unification instructions

const C integer or atom

nil empty list

list list (followed by its arguments)

struct F structure (followed by its arguments)

void void variable

fsttmp Xn first occurrence of temporary variable
nxttmp Xn | subsequent occurrence of temporary variable
fxtvar Vn | first occurrence of local variable

nxtvar Vn

subsequent occurrence of local variable

resolution instructions

append ([

goal [N,]P | subgoal (followed by arguments and call/lastcall)
nogoal termination of a fact
cut cut
builtin I | built-in predicate (followed by its arguments)
termination instructions
call termination of a goal
lastcall termination of last goal
FIGURE 2.3. VAMyp instruction set
L, fsttmp L
L nxttmp L
). nogoal
list
HI fsttmp H
L1], fstvar L1
L2, fstvar L2
[list
H| nxttmp H
L3]) :- fstvar L3
goal 3,append
L1, nxtvar L1
L2, nxtvar L2
L3 nxtvar L3
). lastcall

The translation of terms into intermediate code is done in two passes using
three steps (see fig. 2.4). The first pass scans the terms for variables and collects
information about the variables in the var table. The second pass again scans the
terms and generates the VAMyp instructions. Between these two passes the variable
classes and offsets are determined.

co}lect . cla-ssify . generate VAM,p
variables variables code

var table

FIGURE 2.4. translator structure

2.3. The VAMasp execution model

A stack frame (see fig. 2.5) is allocated on the environment stack for each called
procedure. For each non-deterministic procedure a choice point (see fig. 2.6) is
pushed on the environment stack, too. The stack frame contains the variables and
the continuation. The continuation is saved in the stack frame prior to the call
of the first subgoal. The continuation contains the frame pointer of the calling
clause (goalframeptr’) and the address of the instruction following the calling
goal (goalptr’). If the calling goal was the last subgoal, the continuation of the
caller is copied to the new stack frame.

goalptr’ continuation code pointer
goalframeptr’ | continuation frame pointer
variableg

local variables
variable,,

FIGURE 2.5. stack frame
trailptr’ copy of top of trail
copyptr’ copy of top of copy stack
headptr’ alternative clauses
goalptr’ restart code pointer
goalframeptr’ | restart frame pointer
choicepntptr’ | previous choice point

FIGURE 2.6. choice point

During unification of a goal with the head of a called clause the next goal and
head instructions are fetched, the two instructions are combined, and the com-
bined instruction is executed. Goal unification instructions are combined with
head unification instructions and resolution instructions with termination instruc-
tions. To enable fast decoding, goal and head unification instructions are encoded
differently and the instruction combination is performed by adding the instruction
codes. Therefore, the sum of each two instruction codes must be unique. The C
statement

switch(xheadptr++ + xgoalptr++)

implements this instruction fetch and decoding. An assembly language implemen-
tation can use direct threaded code for faster execution [4]. Direct threaded code
uses the address of the interpretation routine of an instruction as intermediate code.
Portability of an assembly language implementation is achieved by macro expansion
of a low level virtual machine code into assembly language.

As in the WAM, unification of structures is solved by executing the interpreter
in read mode or write mode. In these modes, instructions are fetched using only
one of the two instruction pointers. The proper interpreter for the mode is called
recursively for each recursive structure. Unification of void variables with structures
leads to skipping the argument of the structure. Thus the VAMyp interpreter is
executed either in combine, read (unify), write (create) or skip mode. Example
2.2 shows a code fragment of the interpreter with the parts for the four different
modes (there exist three additional parts for skipping, writing and reading goal
structures). A one page interpreter for ground Prolog is contained in [23].

Ezample 2.2.

combine: switch(*headptr++ + *goalptr++) {
case (h_const+g_const): ... goto combine;
case (h_list+g_void): ... 1 =2; goto head_skip;
case (h_list+g_fstvar): ... i = 2; goto head_write;

case (h_struct+g_nxtvar):
i = arity(headptr); goto head_read;

}

goto combine;
head_skip: while (--i >= 0)
switch (*headptr++) {

case h_const:

}

goto combine;
head_write:

head_read:

2.4. Built-in predicate interface

The simple built-in predicate interface is identical to that of the WAM. The in-
structions are scanned and the corresponding values are put in the argument array
for the call of the built-in predicate. This model simplifies the meta-call of built-in
predicates but is not very efficient. To avoid this bottleneck, the arithmetic and
some type checking built-in predicates scan the instructions on their own.

2.5. Meta-call

For a meta-call a special metacall Vn instruction is generated instead of the goal
instruction. The operand Vn contains the offset of the meta-call variable in the
stack frame. A meta-call is terminated by a call or lastcall instruction. At
run time the variable contains an atom or a structure. The functor of a structure
refers to code of the corresponding procedure. The headptr is set to the code of
the first clause and the interpreter continues executing instructions in read mode.
For backtracking of meta-calls it is necessary that the instruction combination of
metacall with head unification and control instructions is unique.

2.6. Last-call optimization

The WAM implements last-call optimzation by copying the variables of the caller’s
stack frame into argument registers. Then the new stack frame is allocated in the
place of the old one. The VAM first allocates the new stack frame and performs the
unification between the caller and the callee. Afterwards, if the call of a procedure
is deterministic, prior to the call of the first subgoal the stack frame of the called
procedure is copied over the stack frame of the calling goal. For this purpose the
optional operand N of the first goal instruction contains the number of variables
to be copied. In an assembly language implementation some head variables can be
held in registers. Prior to the call of the first subgoal these registers can be stored
in the place of the caller’s stack frame. A more efficient version can be implemented
with the VAM;p (see chapter 3.1).

2.7. Clause indexing

In contrast to the WAM the VAMsp does not translate indexing information into in-
structions but stores this information in indexing data structures. Since the VAMsp
unifies the goal arguments from left to right, only first argument indexing can be
supported. The current implementation uses a balanced binary tree for clause se-
lection. The index values are either integers, atoms or the functors of structures.
Each clause gets an additional header (see fig. 2.7) which contains a pointer to the

’ qil ‘ li§t ‘ roiot ‘ —’— procedure
T T ‘ T ‘ T ‘ 4’: const 1
ﬁ:F< ‘ > ‘ N ‘ 4’: const 2
L |
\T T ‘ T ‘ T ‘ 4’: const 3
W _ \ - \ roiot \ 4.; fstvar X
| 1 _ ‘ = ‘ - ‘ 4’; const 4
’—I
1 B ‘ ~ ‘ B ‘ - r const 5

FIGURE 2.7. clause indexing

clauses with smaller indices, a pointer to the clauses with larger indices, a pointer to
the clauses with the same index and a pointer for linear connection of the clauses.

For each procedure there exists a header which contains a pointer to the clauses
with nil as first argument, a pointer to the clauses with a list as first argument, a
pointer to the root of the binary search tree and a pointer to the first clause. If
there exists a clause with a variable as first argument, the leaf clauses of the binary
search tree point to this clause and the header contains pointers to the nil clauses,
the list clauses, the root of the next search tree and the linear connection.

To simplify the implementation of the indexing part of the interpreter a special
case of the goal instruction is used. The instruction xgoal [N,]P,Vn is generated
if the first argument of a subgoal is a variable. The operand Vn contains the offset
of this variable in the stack frame. The choice point contains a flag which indicates
if indexing was used for the call of this procedure.

The previously presented indexing scheme does not belong to the definition of the
VAM3p, but is an implementation model well-suited for this abstract machine. The
balanced binary search tree could be replaced by a hash table. Since the number of
clauses in a procedure is in general very small, the search tree is faster and better
suited for incremental compilation. An indexing scheme as used by Carlson [7] or
Demoen [13] for the WAM would be suitable, too.

2.8. Design alternatives

An important design decision is the allocation of unbound variables on the copy
stack. This is a prerequisite for a fast last-call optimization and simplifies the check

for the trailing of variables. An alternative solution would be to prohibit temporary
variables in a subgoal (which eliminates references to the callee’s stack frame) and
use unsafe variables as the WAM does. The stack usage of both versions is very
similar (the VAM only creates 36 Therefore, the method to store unbound variables
on the copy stack is simpler and faster. Updating the references in the moved stack
frame as proposed by Bruynooghe in [5] is too costly.

It is difficult to decide if the choice point should be allocated before or after
the variables in the stack frame. If it is allocated before the variables, fast shallow
backtracking can be implemented by updating only the pointer to the alternative
clauses. If the choice point is allocated after the variables, the space consumed by
the choice point can be reclaimed easily when executing a cut. Since cuts occur more
frequently than choice point updates [18], the current implementation allocates the
choice point after the variables and goes for space instead of speed. Furthermore,
the cut does stack trimming and removes the variables in the stack frame which
are not used in later subgoals.

The size of the choice point could be reduced further by eliminating the restart
code pointer and restart frame pointer by using the continuation instead. This
would require an additional argument to the goal instruction which contains an
offset to the next goal and a nogoal instruction after each lastcall. The disadvan-
tage of this solution is that the continuations must be dereferenced if no last-call
optimization is applicable.

3. THE VAM;p

The VAM;p has been designed for native code compilation. A complete description
can be found in [20]. The main difference to the VAMop is that instruction com-
bination is done during compile time instead of run time. The VAM;p generates
specialized code for each call of a procedure. For example

a([l).
a([_IL]) :- a(L).

- a(l3D).
is translated into VAM;p instructions (represented as unifications in pseudo-code)
a2: :- (a(Lg)=a([l)) ; (a(Lg)=a([_ILh]), goto(a2).
:- (a(l3D=a(l1)) ; (a(l3])=a(l_IL]), goto(a2).

The representation of data, the stacks and the stack frames (see fig. 2.5) are
identical to the VAMyp. The two instruction pointers goalptr and headptr are
replaced by one instruction pointer called codeptr. The choice point (see fig. 3.1)

is smaller by one element. The pointer to the alternative clauses points directly to
the code of the remaining matching clauses.

10

trailptr’ copy of top of trail
copyptr’ copy of top of copy stack
headptr’ alternative clauses
goalframeptr’ | restart frame pointer
choicepntptr’ | previous choice point

FIGURE 3.1. choice point

3.1. Basic optimizations

Due to instruction combination at compile time it is possible to eliminate unnec-
essary instructions and all temporary variables, and to use an extended clause in-
dexing scheme, a fast last-call optimization and loop optimization. In WAM based
compilers, abstract interpretation is used in deriving information about mode, type
and reference chain length. Some of this information is locally available in the
VAM;p due to the availability of the information of the calling goal.

All constants and functors are combined and evaluated to true or false at compile
time. No code is emitted for a true result. Clauses which contain an argument
evaluated to false are removed from the list of alternatives. In general, no code is
emitted for a combination with a void variable. In a combination of a void variable
with the first occurrence of a local variable, the next occurrence of this variable is
treated as the first occurrence.

Temporary variables are eliminated completely. The unification partner of the
first occurrence of a temporary variable is unified directly with the unification
partners of the further occurrences of the temporary variable. If the unification
partners are constants, no code is emitted at all. Flattened code is generated for
structures. The paths for unifying and creating structures is split and different
code is generated for each path. This makes it possible to refer to each argument
of a structure through an offset from the top of the copy stack or from the base
pointer of the structure. If a temporary variable is contained in more than one
structure, combined unification or copying instructions are generated. The two
stream method as described by e.g. Meier [24] would have been slower than the
generation of flattened code but would reduce the code size.

All necessary information for clause indexing is computed at compile time. Some
alternatives may be eliminated because of failing constant combinations. The re-
maining alternatives are indexed on the argument that contains the most constants
or structures. For compatibility reasons with the VAMsp a balanced binary tree
is used for clause selection. A version of the VAM;p [19] which uses a complete
indexing as described by Hickey and Mudambi [16] has been implemented too.

The VAM;p implements two versions of last-call optimization. The first variant
(called post-optimization) is identical to that of the VAMsp. If a goal is deter-
ministic at run time, the registers containing the head variables are stored in the
caller’s stack frame. Head variables which reside in the stack frame due to the lack
of registers are copied from the head (callee’s) stack frame to the goal (caller’s)
stack frame.

11

If the determinism of a clause can be detected at compile time, the space used by
the caller’s stack frame is used immediately by the callee. Therefore, all unifications
between variables with the same offset can be eliminated. If not all head variables
are held in registers, they have to be read and written in the right order. This
optimization, called pre-optimization, can be seen as a generalization of recursion
replacement by iteration to every last-call [25].

Loop optimization is done for a determinate recursive call of the last and only
subgoal. The restriction to a single subgoal is due to the use of registers for value
passing and possible aliasing of variables. Unification of two structures is performed
by unifying the arguments directly. The code for the unification of a variable and
a structure is split into unification code and copy code.

3.2. The VAM,p instructions set

The instruction set for the VAM;p is divided into general unification instructions,
structure unification instructions, structure creation instructions, control instruc-
tions, indexing instructions and optimization instructions. In the following descrip-
tions variables used as arguments are either registers or frame pointers with offset.

The unification instructions (see fig. 3.2) handle the unification of an argument
of the calling goal and the related head argument of the called clause. If a struc-
ture is combined with the first occurrence of a variable (fstvar_struct structure
creation is started. The operand Size gives the size of the structure including all
substructures. The operand Reg of the nxtvar_struct instruction is the register
which holds the base pointer of the structure. The structure unification instruc-
tions follow immediately, the operand CAddr is the label of the structure creation
instructions. Fig. 3.3 gives an example for the code generation of structures.

general unification
fstvar_const Var,Const
nxtvar_const Var,Const
fstvar nil Var

nxtvar nil Var

fstvar_list Var,Size

nxtvar_list Var,Reg,Size,CAddr
fstvar_struct Var,Functor,Size
nxtvar_struct Var,Functor,Reg,Size,CAddr
fstvar_fstvar Var,Var

nxtvar_fstvar Var,Var

nxtvar_nxtvar Var,Var

fstvar_void Var

FIGURE 3.2. VAM;p general unification instructions

Structure unification (see fig. 3.4) and structure creation instructions (see fig. 3.5)
are equivalent to the unify instructions of the WAM in read and write mode. Due

12

nxtvar_struct X,s/2,r0,5,label_2
unify_const 1,1(x0)
unify_struct t/1,r1,2,label_3
unify_const 2,1(r1)

label_1: ..

label_2: create_functor s/2,-5(copyptr)
create_const 1,-4(copyptr)
create_struct -3(copyptr),-2(copyptr)

label_3: create_functor t/1,-2(copyptr)
create_const 2,-1(copyptr)
goto label_1

FIGURE 3.3. flattened structure unification code for X=s(1,t(2))

to the splitting of the paths for unification and creation, the variable’s offset from
the top of the copy stack or the start of the structure is known at compile time.

structure unification
unify_const Const,Offset
unify nil Offset
unify_list Reg,Size,0ffset,CAddr
unify_struct Functor,Reg,Size,0ffset,CAddr
unify_fstvar Var,Offset
unify nxtvar Var,Offset

FIGURE 3.4. VAM;p structure unification instructions

The control instructions (see fig. 3.6) implement stack handling and the transfer
of control: alloc_stackframe allocates the space for variables in a stack frame;
adjust performs stack trimming; store_cont_goto saves the continuation in the
stack frame and jumps to the procedure ProcAddr. For the last subgoal the instruc-
tion copy-cont_goto is used instead. read_cont_goto reads the continuation and
executes the next subgoal. store_var saves the head variables residing in registers
in the stackframe. If not all head variables can be held in registers, the instruc-
tion copy_var copies the variables from the callee’s stack frame to the caller’s stack
frame during last-call optimization. push_choice_point creates a choice point with
AltAddr used as the pointer to the code of the remaining clauses. cut deletes the
choice points and performs stack trimming.

Depending on the type of the value contained in the variable Var, the indexing
instruction index_var (see fig. 3.7) branches to one of the labels for lists, nil,
constants and structures. The compare instruction cmp_const implements a binary
search tree.

The optimization instructions (see fig. 3.8) support the unification of structures
optimized by temporary variable elimination or loop optimization. create_undef

13

structure creation
create_const Const,0ffset
create nil Offset
create_list Offset,0ffset
create_struct Offset,0ffset
create_functor FunctorOffset
create_fstvar Var,Offset
create nxtvar Var,Offset

FIGURE 3.5. VAM;p structure creation instructions

control
alloc_stackframe VarCount
adjust VarCount
store_cont_goto ContAddr,ProcAddr
read_cont_goto
copy-cont_goto ProcAddr
goto Addr
store_var Reg,0Offset
copy-var Offset
push_choice_point AltAddr
cut VarCount
call_bip BipId
inline bip BipId

FIGURE 3.6. VAM;p control instructions

initializes a cell on the copy stack to unbound. unify_create copies a value
from the source structure to the destination structure. unify unify implements
full unification between two arguments of structures. create_ref lets one argu-
ment of a structure reference the other. If the cell at SAddr contains a structure,
extract_struct stores the address of the start of the structure in register Reg. Oth-
erwise it continues execution at ContAddr. construct_struct creates a structure.
construct_extract_struct is the combination of these two instructions.

3.3. Code size

The size of the generated code can become quite large since for each call of a
procedure specialized code is generated especially if there exist many calls of a
procedure consisting of many clauses. But since many of these calls have the same
calling pattern, the calls can share the same generated code. If this is not sufficient,
a dummy call must be introduced between the call and the procedure, leading to
an interface which resembles that of the WAM.

14

indexing
index_var Var,LAddr,NAddr,CAddr,SAddr
cmp_const Const,LessAddr,GreaterAddr

FIGURE 3.7. VAM;p indexing instructions

optimization

create_undef Offset

unify_create Offset,0ffset

unify unify Offset,Offset

create_ref Offset,Offset

extract_list Reg,Laddr,ContAddr

construct_list Offset

construct_extract_list Reg,LAddr,UAddr

extract_struct Functor,Reg,Size,Saddr,ContAddr
construct_struct Functor,Size,0ffset
construct_extract_struct Functor,Reg,Size,SAddr,UAddr

FIGURE 3.8. VAM;p optimization instructions

4. THE VAMag

During the execution of a Prolog program a great amount of time is spent in useless
type tests and dereferencing. This code can be eliminated if more information about
variables is available to the compiler. Information about types, modes, trailing,
reference chain lengths and aliasing of the variables of a program can be inferred
using abstract interpretation.

4.1. Abstract Interpretation

Abstract interpretation is a technique for global data flow analysis of programs. It
was introduced by the Cousots [11] for data flow analysis of imperative languages.
This work was the basis of much of the recent work in the field of declarative and
logic programming [1] [6] [9] [12] [15] [27] [29] [31]. Abstract interpretation executes
programs over an abstract domain. Recursion is handled by computing fixpoints.
To guarantee the termination and completeness of the execution a suitable choice
of the abstract domain is necessary. Completeness is achieved by iterating the
interpretation until the computed information reaches a fixpoint. Termination is
assured by limiting the size of the domain. Most of the previously cited systems
are meta-interpreters written in Prolog which are very slow.

A practical implementation of abstract interpretation has been done by Tan and
Lin [30]. They modified a WAM emulator implemented in C to execute the abstract
operations on the abstract domain. They used this abstract emulator to infer mode,

15

type and alias information, and analysed a set of small benchmark programs in a
few milliseconds. This is about 150 times faster than the previous systems.

4.2. A basic execution model of the VAMa;

The VAMag, an abstract machine for abstract interpretation, has been designed
following the way of Tan and Lin. It has been developed on the basis of the VAMop
and benefits from the fast decoding mechanism of this machine. The inferred data
flow information is stored directly in the intermediate code of the VAM 1. The VAM
was chosen as the basis of an abstract machine for abstract interpretation because
it is much better suited than the WAM: The parameter passing of the WAM via
registers and storing registers in backtrack points slow down the interpretation.
Furthermore, in the WAM some instructions are eliminated so that the relation
between argument registers and variables is sometimes difficult to determine. The
translation to a VAMsp-like intermediate code is much simpler and faster than
WAM code generation. A VAMyp-like interpreter enables the modeling of low level
features of the VAM. Furthermore, the VAMsp intermediate code is needed for the
generation of the VAM;p instructions.

A top-down approach is used for the analysis of the desired information. Different
(static) calls to the same clause are handled separately to get more exact types.
This is achieved by duplicating the clauses for each call of a procedure. So for
each call of a goal there exists an own copy of the intermediate code of the called
procedure. To save code size, only the heads of the clauses are copied. The bodies
are shared. This duplication of the code gives a more precise analysis for the use
in the VAM;p which generates specialized code for each call and simplifies many
parts of the VAMa .

Recursive calls of a clause are computed until a fixpoint for the gathered infor-
mation is reached. If there already exists information about a call and the new
gathered information is more special than the previously derived one, i.e. the union
of the old type and the new type is equal to the old type, a fixpoint has been
reached and the interpretation of this call to the clause is terminated.

Abstract interpretation with the VAM a1 is demonstrated by a short example.
Fig. 4.1 shows a simple Prolog program part and a simplified view of its code
duplication for the representation in the VAM; intermediate code.

The procedure B has two clauses, the alternatives By and Bs. The code for
the procedures B and C' is duplicated because both procedures are called twice in
this program. Abstract interpretation starts at the beginning of the program with
the clause Al. The information of the variables in the subgoal B! are determined
by the inferable data flow information from the two clauses B} and Bi. After the
information for both clauses has been computed, abstract interpretation is finished
because there is no further subgoal for the first clause A;.

In the conservative scheme it has to be supposed that both B and B3 could be
reached during program execution. Therefore, the union of the derived data flow
information sets for the alternative clauses of procedure B has to be formed. For B{
only information from C} has to be derived because it is the only subgoal for B}. For

16

Prolog program:

A1 — 31

Bl — Cl

BQ = Bz, 02
C1 — true

Code representation:

Al — B!

Bl .— !

Bl :— B2% (C?
B? - C!

B3 :— B? (C?
Ci — true
C? — true

FIGURE 4.1. Prolog program part and its representation in VAMa;

B} there exists a recursive call of B, named B2. Recursion in abstract interpretation
is handled by computing a fixpoint, i.e. the recursive call is interpreted as long as the
derived data information changes. After the fixpoint has been reached, computation
stops for the recursive call. The data flow information for the recursion is assigned
to the clauses B? and B2. After all inferable information has been computed for
a clause, it is stored directly into the intermediate code. The entry pattern and
success patterns are stored in the head variables information fields, the variables of
a subgoal contain the the success patterns of the calls of subgoals at the left to the
current subgoal. The same intermediate code is used efficiently in the next pass of
the compiler that generates code.

4.8. The abstract domain

The goal of the VAM g is to gather information about mode, type, reference chain
length and aliasing of variables. Reference chain lengths of 0, 1 and greater 1 are
distinguished. The type of a variable is represented by a set comprised of following
simple types:

free is an unbound variable and contains a reference to all aliased variables
list is a non empty list (it contains the types of its arguments)

struct is a term

nil represents the empty list

atom is the set of all atoms
integer is the set of all integer numbers

Possible infinite nesting of compound terms makes the handling of the types list
and struct difficult. To gather useful information about recursive data structures

17

a recursive list type is introduced which contains also the information about the
termination type.

To represent the alias information, variables are collected in alias sets. Variables
which could possibly be aliased are in the same set. The alias sets are represented
as double linked sorted lists. In the intermediate code each set is identified by an
unique number. Variables which are always aliased, can be represented by references
like in ordinary Prolog interpreters. The intersection of this sets has to be stored
in the intermediate code.

Efficient interpretation is achieved by using fixed-sized variable cells, which en-
ables static stack frame size determination and the saving of the domains in in-
termediate code fields. The set of the domain values is represented as a bit field.
Set operations like union or difference can be implemented using logical operations.
The computation of the least upper bound of two domains is implemented by a
bitwise or operation, the abstract unification by a bitwise and.

4.4. The VAMar instruction set

The representation of the arguments of a Prolog term is the same as that in the
VAMyp (see fig. 4.2) with the following exceptions:

e Local variables have four additional information fields in their intermediate
code: the actual domain of the variable, the reference chain length and two
fields for alias information. These information fields replace the extension
table of conventional abstract interpretation algorithms. Local variables of
the head have split information fields because they store the information at
both the entry of the clause and after a successful computation of this clause.
This information is used for the handling of recursive calls.

e The argument of a temporary variable contains an offset which references
this variable in a global table. The global table contains entries for the
domain and reference chain length information or a pointer to a variable.

e The intermediate code lastcall has been removed because last-call opti-
mization makes no sense in abstract interpretation. Instead, the intermediate
code nogoal indicates the end of a clause. When this instruction is executed,
the computation continues with the next alternative clause (artificial fail).

e The intermediate code goal got an additional argument: a pointer to the
end of this goal. This eliminates the distinction between the continuation
and the restart code pointer (see fig. 2.6).

e The instruction const has been split into integer and atom.

4.5. The VAMy; execution model

Another significant difference to the VAMop concerns the data areas: While the
VAMosp needs three stacks, in VAM 1 a modified environment stack and a trail are

18

unification instructions

int I integer

atom A atom

nil empty list

list list (followed by its two arguments)

struct F structure (functor)(followed by its arguments)
void void variable

fsttmp Xn first occurrence of temporary var (offset)
nxttmp Xn further occurrence of temporary var (offset)

fstvar Vn,D,R,Ai,Ac | first occurrence of local var (offset, domain,
ref. chain length, is aliased, can be aliased)
nxtvar Vn,D,R,Ai,Ac | further occurrence of local var (offset, domain,
ref. chain length, is aliased, can be aliased)

resolution instructions

goal P,0 subgoal (procedure pointer, end of goal)
nogoal termination of a clause

cut cut

builtin I built-in predicate (built-in number)

termination instructions
call | termination of a goal

FIGURE 4.2. VAM1 instruction set

sufficient. Fig. 4.3 shows a stack frame for the environment stack of the VAMaj.
Note that every stack frame is a choice point because all alternatives for a call are
considered to be the result of the computation. Similar to CLP systems the trail is
implemented as a value trail. It contains both, the address of the variable and its
content.

domain for variable n

domain for variable 1
goalptr
clauseptr
goalframeptr
trailptr

FIGURE 4.3. structure of the stack frame

The stack frame contains the actual information for all local variables of a clause.
The register goalptr points to the intermediate code of a goal. It allows to find
the continuation after a goal has been computed. Register clauseptr points to
the head of the next alternative clause for the called procedure, and goalframeptr

19

points to the stack frame of the calling procedure.

reference
domain ref-len
alias-prev alias-next
union-domain | union-ref-len
union-prev union-next

FIGURE 4.4. a local variable on the stack

Fig. 4.4 is a detailed description of the stack entry for a local variable. The fields
reference, domain, ref-len, alias-prev and alias-next hold the information derived
for a variable by analysing a single alternative of the current goal. The union fields
get the union of all previously analysed alternatives.

The reference field connects the caller’s variables with the callee’s variables.
Aliased variables are stored in a sorted list. The fields alias-prev and alias-next
connect the variables of this list. The domain field contains all actual type infor-
mation at each state of computation. Its contents may change at each occurrence
of the variable in the intermediate code. The ref-len field contains the length of the
reference chain. After analysing an alternative of a goal, the union fields contain
the least upper bound of the information of all alternatives analysed so far.

4.6. Handling of recursion

The information in the fields of local variables of a clause head is used for fixpoint
computation. These fields hold information for these local variables at both, the
entry of the clause and at the successful computation of the clause, i.e. the success
pattern. When the interpreter reaches the last instruction of a clause (nogoal), the
success pattern has to be updated. The success pattern fields of the clause’s head
variables are replaced with the least upper bound of their actual entries (the old
success pattern) and the new variable domains. These new domains can be found
on the stack after the computation of the clause.

During abstract unification of goal and head arguments the entry pattern for
head variables is stored in the intermediate code of the head if this call is computed
the first time. If the intermediate code information already contains entry pattern
information, the old information is replaced with the least upper bound of the new
and the old information. If the information in the head’s intermediate code fields
do not change, i.e. the new entry pattern contains more special or equal information
than patterns applied previously, there is no sense in a further recomputation of
the clause. Instead, information about the clause’s actual success pattern is gained
from the actual intermediate code fields of the head. This information is then used
in the variables occurring in the calling goal, and the interpreter computes the next
alternative or the next subgoal of the calling clause if there are no more alternatives
to compute. Whenever the success pattern of a clause changes, a flag is set in this

20

clause and all of its calling clauses. The flag marks these clauses for recomputation.
Interpretation is iterated until no success pattern changes any more.

4.7. Incremental abstract interpretation

The VAM 4 is well suited also for incremental abstract interpretation. Incremental
abstract interpretation is similar to recomputation if a success pattern has changed.
Incremental abstract interpretation starts local analysis with all callers of the mod-
ified procedures and interprets the intermediate code of all dependent procedures.
Interpretation is stopped when the derived domains are equal to the original do-
mains (those derived by the previous analysis).

To make incremental abstract interpretation possible, pointers to the callers of
each procedure are stored in the VAMu; code. They help in finding the top goal
of the whole program. The pointer chain for a procedure is used in reconstructing
the contents of the stack prior to the call of this procedure. Now, abstract inter-
pretation can be executed as usual. In general, only a small part of the program
is reinterpreted. In the worst case, incremental interpretation has to walk through
the whole program.

5. IMPLEMENTATION ISSUES

5.1. A mized interpreter system

The advantage of the VAMyp is its compact intermediate code size. The advantage
of the VAM;p is its fast execution. It is possible to build an interpreter using a
combination of these two abstract machines. The idea is to use the VAM;p only at
self recursive calls of the last subgoal and the VAMyp otherwise. The VAM;p code
can be either translated to machine code or executed by an intermediate code in-
terpreter. This speeds up the often used loops and uses the compact representation
for the other parts of a program.

5.2. The incremental compiler

The compilation of a Prolog program is carried out in five passes (see fig. 5.1). In
the first pass a clause is read in by the built-in predicate read and transformed
to term representation. The built-in predicate assert comprises the remaining
passes. The compiler first translates the term representation into VAM 1 interme-
diate code. Incremental abstract interpretation is executed on this intermediate
code and the code is annotated with type, mode, alias and dereferencing informa-
tion. The VAM,1 intermediate code is traversed again, compiled to VAM;p code
and expanded on the fly to machine code. The last step is instruction scheduling
of the machine code and patching of branch offsets and address constants.

21

VAMqp abstract VAM,;p
read —> —>. —> . —> scheduler
translator interpreter compiler
(source | terms VAM 1
— control flow — data flow

FIGURE 5.1. compiler passes

6. RESULTS

To evaluate the performance of the Vienna Abstract Machine we executed the well-
known benchmarks described by Beer in [3]. These benchmarks were executed on
a DECStation 5000/200 (25 MHz R3000) with 40 MB Memory. Following systems
were benchmarked: a VAMop intermediate code interpreter written in C; SICStus
Prolog [8], a WAM based intermediate code interpreter implemented in C; the
VAM;p compiler with global data flow analysis; the Aquarius compiler of Peter
Van Roy [29] and the Parma system of Andrew Taylor [32]. The Parma system
was not available to us, so the benchmark data reported in Van Roys article [28]
are used. Data about the native code compiler of SICStus Prolog is extracted from
Haygoods article [14]. Table 6.1 shows that the VAM;p compiler produces faster
code than the Aquarius system. Global analysis improved the execution time of
the VAM;p) by about 250ther built-in predicates are compiled to machine code the
compiler should achieve similar speedups on larger programs. The SICStus native
code compiler produces code which is two to three times faster than the SICStus
emulator for small benchmarks and 1.5 to two times faster for large programs.

interpreters compilers

VAMsp | VAMyp | SICStus | VAM;p | Aquarius | Parma
test ms scaled scaled scaled scaled scaled
det. append 0.25 1 1.1 26.1 19.3 -
naive reverse 4.17 1 1.06 20.0 14.5 25.6
quicksort 6.00 1 1.1 18.1 14.9 28.0
8-queens 65.4 1 1.1 13.5 15.4 -
serialize 3.90 1 0.83 6.84 4.26 16.4
differentiate 1.14 1 0.99 8.14 7.13 14.6
query 41.7 1 0.89 9.70 8.25 13.2
bucket 247 1 0.88 5.24 3.71 -
permutation 2660 1 0.70 6.48 6.96 -

TABLE 6.1. execution time, factor of improvement compared to the VAMap

22

In table 6.2 the compile time of the VAM;p compiler is compared to that of the
VAMop and SICStus intermediate code translators. It shows that the optimizing
VAM;p compiler is about ten times slower than the VAMsp intermediate code
translator but about two times faster than the simple SICStus intermediate code
translator. The SICStus native code compiler is a factor of two slower than the
SICStus intermediate code translator. The Aquarius compiler is by a factor of
about 2000 slower than the VAMsp translator. However, a direct comparison is not
objective since the Aquarius compiler has three passes which communicate with
the assembler and linker via files.

VAM2P VAMgp VAMlP SICStus
test ms scaled scaled scaled
det. append 5.78 1 11.43 21.5
naive reverse 7.31 1 10.5 19.3
quicksort 9.30 1 9.9 23.1
8-queens 9.18 1 11.6 19.7
serialize 11.36 1 11.22 19.2
differentiate 13.71 1 11.41 30.3
query 21.05 1 7.5 13.4
bucket 15.59 1 7.25 12.7
permutation 4.88 1 8.88 18.1

TABLE 6.2. compile time, compared to the VAMsp

The comparison of the VAMsp interpreter with the VAM p shows that the size
of the generated machine code is about a factor of ten larger than the internal
representation of the VAMop (see table 6.3). The annotated VAM,; intermediate
code is about three times larger than the simple VAMyp intermediate code. VAMsp
intermediate code has about the same size as SICStus intermediate code. SICStus
native code is about twice as large as SICStus intermediate code [14].

7. CONCLUSION

We presented the Vienna Abstract Machine, an abstract machine for Prolog. Dif-
ferent versions are used as an interpreter, a compiler and a base for abstract inter-
pretation. All three versions combine short translation times with fast execution.

ACKNOWLEDGEMENT

I thank all the people who contributed to the success of the Vienna Abstract Ma-
chine: Professor Manfred Brockhaus initiated this project and made this work
possible. Eva Kiithn implemented the first VAMgp translator, a memory manager
and some of the built-in predicates and had to cope with the frequent changes of

23

VAMap | VAMop | VAMar | VAM;p
test bytes scaled scaled scaled
det. append 288 1 3.63 9.96
naive reverse 380 1 3.59 11.3
quicksort 764 1 2.65 9.95
8-queens 536 1 2.95 8.25
serialize 1044 1 3.33 15.7
differentiate 1064 1 8.37 28.4
query 2084 1 0.89 3.13
bucket 996 1 1.96 9.75
permutation 296 1 2.77 6.21

TABLE 6.3. code size of intermediate representations

the instruction set in the beginning. Martin Wais developed an Intel x86 emulator
and Herbert Pohlai the portable Motorola 86k emulator. Franz Puntigam imple-
mented a memory management system. Ulrich Neumerkel developed the concept of
meta-structures and designed a garbage collector. Thomas Berger implemented the
prototype VAM;p compiler and abstract interpretation. Dongyang Cheng helped
implementing the VAMa; and the incremental compiler. I express my thanks to
Thomas Berger, Anton Ertl, Franz Puntigam and the anonymous referees for their
comments on earlier drafts of this paper.

REFERENCES

1. Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declara-
tive Languages. Ellis Horwood, 1987.

2. Gérard Battani and Henry Meloni. Interpréteur du language PROLOG. Dea
report, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université
de Aix-Marseille 11, 1973.

3. Joachim Beer. Concepts, Design, and Performance Analysis of a Parallel Prolog
Machine. Springer, 1989.

4. James R. Bell. Threaded code. CACM, 16(6), June 1973.

Maurice Bruynooghe. The memory management of PROLOG implementations.
In Keith L. Clark and Sten-Ake Tarnlund, editors, Logic Programming. Academic
Press, 1982.

6. Maurice Bruynooghe. A practical framework for the abstract interpretation of logic
programs. Journal of Logic programming, 10(1), 1991.

7. Mats Carlsson. Freeze, indexing and other implementation issues in the WAM. In
Fourth International Conference on Logic Programming. MIT Press, 1987.

8. Mats Carlsson and J. Widen. SICStus Prolog user’s manual. Research Report
R88007C, SICS, 1990.

9. Baudouin Le Charlier and Pascal Van Hentenryck. Experimental evaluation of a
generic abstract interpretation algorithm for Prolog. ACM TOPLAS, 16(1), 1994.

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Alain Colmerauer. The birth of Prolog. In The Second ACM-SIGPLAN History
of Programming Languages Conference, SIGPLAN Notices, pages 37-52. ACM,
March 1993.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Fourth Symp. Priciples of Programming Languages. ACM, 1977.

Saumya Debray. A simple code improvement scheme for Prolog. Journal of Logic
Programming, 13(1), 1992.

Bart Demoen, Andre Marien, and Alain Callebaut. Indexing prolog clauses. In
North American Conference on Logic Programming. MIT Press, 1989.

Ralph Clarke Haygood. Native code compilation in SICStus Prolog. In Eleventh
International Conference on Logic Programming. MIT Press, 1994.

Manuel Hermenegildo, Richard Warren, and Saumya K. Debray. Global flow anal-
ysis as a practical compilation tool. Journal of Logic Programming, 13(2), 1992.

Timothy Hickey and Shyam Mudambi. Global compilation of Prolog. Journal of
Logic Programming, 7(3), 1989.

Andreas Krall. Implementation of a high-speed Prolog interpreter. In Conf. on
Interpreters and Interpretative Techniques, volume 22(7) of SIGPLAN. ACM, 1987.

Andreas Krall. An empirical study of the Vienna Abstract Machine. Bericht TR
1851/90/1, Institut fiir Computersprachen, TU Wien, 1990.

Andreas Krall. Clause indexing in VAM and WAM based compilers. In Second
International Workshop on Functional/Logic Programming, Bericht 9311. Ludwig-
Maximilians-Universitat Miinchen, 1993.

Andreas Krall and Thomas Berger. Fast Prolog with a VAM;p based Prolog
compiler. In PLILP’92, LNCS. Springer 631, 1992.

Andreas Krall and Thomas Berger. Incremental global compilation of Prolog with
the Vienna Abstract Machine. In Twelfth International Conference on Logic Pro-
gramming, Tokyo, 1995. MIT Press.

Andreas Krall and Thomas Berger. The VAMa1 - an abstract machine for incre-
mental global dataflow analysis of Prolog. In ICLP’95 Post-Conference Workshop
on Abstract Interpretation of Logic Languages. Science University of Tokyo, 1995.

Andreas Krall and Ulrich Neumerkel. The Vienna abstract machine. In PLILP’90,
LNCS. Springer, 1990.

Micha Meier. Compilation of compound terms in Prolog. In North American
Conference on Logic Programming, 1990.

Micha Meier. Recursion vs. iteration in Prolog. In Eighth International Conference
on Logic Programming, Paris, 1991. MIT Press.

Christopher S. Mellish. An alternative to structure sharing in the implementation
of a Prolog interpreter. In Keith L. Clark and Sten-Ake Tarnlund, editors, Logic
Programming. Academic Press, 1982.

Christopher S. Mellish. Some global optimizations for a Prolog compiler. Journal
of Logic Programming, 2(1), 1985.

Peter Van Roy. 1983-1993: The wonder years of sequential Prolog implementation.
Journal of Logic programming, 19/20, 1994.

Peter Van Roy and Alvin M. Despain. High-performance logic programming with
the Aquarius Prolog compiler. IEEE Computer, 25(1), 1992.

25

30.

31.

32.

33.

34.

Jichang Tan and I-Peng Lin. Compiling dataflow analysis of logic programs. In
Conference on Programming Language Design and Implementation, volume 27(7)
of SIGPLAN. ACM, 1992.

Andrew Taylor. Removal of dereferencing and trailing in Prolog compilation. In
Sizth International Conference on Logic Programming, Lisbon, 1989. MIT Press.

Andrew Taylor. LIPS on a MIPS. In Seventh International Conference on Logic
Programming, Jerusalem, 1990. MIT Press.

David H.D. Warren. Applied Logic—Its Use and Implementation as a Programming
Tool. DAT Research Reports 39 & 40, University of Edingburgh, 1977.

David H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI
International, 1983.

26

