
Evaluation and Implementation of
an optional, pluggable Type

System for Forth

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Gregor Riegler BSc.
Matrikelnummer 0703762

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam

Wien, 18. August 2015
Gregor Riegler Franz Puntigam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Evaluation and Implementation of
an optional, pluggable Type

System for Forth

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Gregor Riegler BSc.
Registration Number 0703762

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam

Vienna, 18th August, 2015
Gregor Riegler Franz Puntigam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Gregor Riegler BSc.
Ameisgasse 15/9, 1140 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. August 2015
Gregor Riegler

v

Kurzfassung

Normalerweise hat eine Programmiersprache genau ein Typsystem, das den Ausdrücken
eines Programms Typen zuweist und deren korrekte Verwendung überprüft. Dabei beein-
flusst das Typsystem die Semantik der Sprache, sodass die Typüberprüfung als Phase der
Programmübersetzung nicht wegzudenken ist. Optionale Typsierung stellt eine Alternati-
ve zu dieser Kopplung von Programmiersprache und Typsystem dar und erlaubt damit
optionale, verschiedenartige semantische Analysen eines Programms. Diese Arbeit konzen-
triert sich auf die Analyse statischer Typkonsistenz. Es wird dazu in Haskell ein optionales
Typsystem für die stack-orientierte Programmiersprache Forth implementiert. Zusätzlich
zu einer Literaturrecherche zu verschiedenen Ansätzen, sowohl statische als auch dynami-
sche Typüberprüfung zu nutzen, dient die Implementierung speziell dazu, die Vorteile
wie auch unvermeidbare Kompromisse und Limitierungen eines derartigen Typsystems
aufzuzeigen. Im Besonderen wird die Frage behandelt, inwiefern die optionale Typisierung
bei der inkrementellen Entwicklung eines Forth-Programms zu gesteigerter statischer Ty-
pkonsistenz führt, welche Sprachfeatures dabei unterstützt werden bzw. ein welches Maß
an Typannotationen trotz Typinferenz notwendig ist. Dazu wird zuerst bestehende Lite-
ratur zur statischen Analyse von Forth-Programmen herangezogen, um eine theoretische
Grundlage für die Implementierung der statischen Typüberprüfung zu gewinnen. Danach
werden nach und nach Sprachfeatures wie Subtyping, Kontrollstrukturen, Referenztypen,
Assertions und Casts eingebaut. In dieser Arbeit wird weiters als Neuheit sowohl die
Integration von statisch typkonsistenten indeterministischen Stack-Effekten, als auch die
Einbindung von objektorientierter Programmierung, Higher-Order-Programmierung und
Compile-Time-Programmierung in den bestehenden Algorithmus zur Typüberprüfung
demonstriert.

Zur praktischen Evaluation wird ein funktional korrektes Forth-Programm unter Kon-
figurationen steigender statischen Typkonsistenz überprüft und dabei werden Verstöße
statischer Typkonsistenz ausgewiesen. Dabei zeigt sich, dass das optionale Typsystem
bei der inkrementellen Weiterentwicklung des Programms zu gesteigerter statischen Typ-
konsistenz hilfreich ist und aufgrund der implementierten Stack-Effekt-Inferenz dazu nur
wenig Hilfe in Form von Typannotationen benötigt. Typannotationen für im Programm
definierte Wörter können oft weglassen werden, sind aber immer bei Gebrauch von
Higher-Order-Programmierung notwendig.

vii

Abstract

Typically, programming languages provide one type system which associates types to
a program’s expressions and checks their consistent use either at compile-time or at
run-time. In any case, the type system influences the semantics of the language such
that type checking is a mandatory process. In contrast, optional, pluggable typing
introduces the possibility of running different checkers for diverse semantic analyses and
can be considered as an alternative to today’s prevalent mandatory typing and the tight
coupling of a programming language and its type system. This thesis aims at exploring
the design of a Haskell prototype implementation of optional, pluggable typing that
provides checkers enforcing increasing static type safety for the stack-based language
Forth. Alongside a literature research on various approaches bridging between static
and dynamic typing, the prototype design and implementation serve to shed light on
the benefits as well as the inevitable trade-offs and practical limitations of such a type
system.
In particular, this thesis addresses the question of how optional checkers, supporting
varying degrees of static type consistency, can be designed and implemented for practical
use in Forth considering the trade-offs of a potential loss of expressiveness and the need
of necessary type annotations. To this end, a stack effect calculus is derived from a liter-
ature review on static analysis of Forth programs as a theoretical basis for type checking
and subsequently, language features as subtyping, control structures, reference types,
assertions and casts are added to the implementation. It is the added value of this thesis
to incorporate the above features together with a statically type consistent treatment
of multiple stack effects, compile-time programming, object-oriented programming and
higher-order programming into the same core type checking algorithm.

The resulting prototype can deal with the vast majority of the words of Forth’s Core
wordset and features a type checking algorithm of configurable static rigorousness, ranging
from bare stack underflow and overflow checking to full-fledged static type consistency.
The checkers are practically evaluated using the example of a small, functionally correct
Forth program. The evaluation shows that those checkers of varying static type safety aid
the gradual evolution of the input program towards a static stack discipline. This benefit
comes at the expense of only minimal type annotations. Type annotations of words
defined in the program can often be omitted but they are always needed in supporting
higher-order programming.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 1
1.3 Methodological Approach . 2
1.4 Aim of the Work . 3
1.5 Structure of the Work . 4

2 Comparing Static and Dynamic Typing 5
2.1 The Nature of Static and Dynamic Typing 5
2.2 The Trade-offs of Static and Dynamic Typing 6
2.3 Discussion . 8

3 Combining Static and Dynamic Typing 13
3.1 Soft typing . 13
3.2 Gradual Typing . 15
3.3 Optional typing . 17
3.4 Discussion . 21

4 Forth Language Characteristics 23

5 Designing Optional, Pluggable Types for Forth 27
5.1 Integrating CORE Forth words . 28
5.2 Parsing . 30
5.3 Forth Static Analysis . 31
5.4 Implementing Stack Effect Inference . 33
5.5 Handling of Multiple Stack Effects . 36
5.6 Type Checking Colon Definitions . 38
5.7 Assertions . 40

xi

5.8 Casts . 41
5.9 Subtyping . 41
5.10 Introducing Polymorphism . 42
5.11 Reference Types . 43
5.12 The Dynamic Type . 47
5.13 Compile-time Programming . 48
5.14 Object-Oriented Programming . 49
5.15 Higher-Order Programming . 52
5.16 Configuration Options . 53

6 Evaluation 55
6.1 Using pluggable Forth types . 55
6.2 Comparing related work . 60

7 Conclusion 63

Bibliography 65

CHAPTER 1
Introduction

1.1 Motivation

One of the most distinctive features of a programming language is its type system which
associates types to a program’s expressions. A type system gives rise to type checking,
i.e. checking the consistent use of operations on values of given types. Consequently,
many languages use type checking to detect faulty programs either at compile-time or at
runtime, hence the categorization of statically and dynamically typed languages. Both
kinds have their pros and cons as static typing provides static type consistency but
impairs the language’s expressiveness at the same time. However, soft typing, gradual
typing and optional typing count among several approaches of mixing static and dynamic
type checking in order to combine the advantages of both worlds.

Optional, pluggable type systems have been proposed by [Bra04] as a default in
language design. Optional, pluggable typing introduces the possibility of running different
checkers for diverse semantic analyses. It dissolves the coupling of a language and its
type system and can be considered to be an alternative to today’s prevalent mandatory
typing.

Accordingly, using optional checkers for the problem of type consistency, thus enforcing
varying degrees of static type consistency, looks like a trade-off between a program’s
expressiveness and type consistency which is worth investigating in this thesis.

1.2 Problem Definition

Since the challenges of type checking naturally depend on the features of the given
language, optional typing needs to be analyzed in the context of a specific language.
Optional typing being feasible only if a language meets characteristics as given in [Bra04],
this thesis focuses on optional, pluggable typing for Forth.

1

There are several good reasons to choose Forth for an elaboration on the possibilities
of such a type system.
Being a stack-based language, Forth features a pretty simple computational model, the
stack, which is susceptible to static analysis ([Pö90, Poi91, SK93, Kna93, Pö02, Pö03,
Pö06, Pö08]). Concepts such as subtyping and object-oriented programming are not at
the core of Forth programming, thus the optionality of a type system can be analyzed in
absence of those concepts (which are vital in many other languages) as well as including
them. In particular, the retention of the untyped runtime semantics as required by
[Bra04] is satisfied trivially as the untyped context of standard Forth goes well with that
constraint.
In general, Forth does not have any type checks at all. Forth has a rich history of being
used in performance critical, embedded programming contexts where the limitation of
expressiveness forced by type checking is said to interfere with low-level programming.
Hence, an optional type system makes sense for Forth: it introduces the possible benefits of
static type checking whenever the programmer does not need that low-level expressiveness
while it does not force it to be mandatory per se.

Analyzing optional, pluggable typing in the context of Forth, this thesis answers the
following research question:

• How can optional, pluggable typing, supporting checkers of varying static type
consistency, be implemented for Forth and what benefits and language restrictions
or necessary type annotations does it involve practically?

1.3 Methodological Approach

1. Comparison of static and dynamic typing. Primarily, this step serves to clarify
the pros and cons of those typing schemes. Secondly, it addresses the pragramatic
trade-offs between type inference and type annotations given language features
such as subtyping. In addition, the motivation for a combined typing approach is
given.

2. Literature study on combining static and dynamic typing. The idiosyncrasies of soft
typing, gradual typing and optional typing are analyzed. Implementation ideas for
the prototype are gathered in that process.

3. Literature review of the static analysis of Forth programs. A stack effect calculus is
derived from related works in order to find a theoretical basis for type checking
and type inference for Forth programs.

4. Haskell prototype design and implementation. The stack effect calculus gets imple-
mented and it is demonstrated how to integrate Forth language constructs providing
static type safety.

2

5. Varying the degree of static type safety. The ability to vary the degree of enforced
static type consistency is built into the prototype. As a result, different checkers
can be created based on an according configuration.

6. Evaluation of the use of the checkers. Finally, sample checkers of increasing static
type consistency are created for practical evaluation. An analysis of their application
in the context of a small Forth program leads to answering the research question.

1.4 Aim of the Work

As an integral part of this thesis, a prototype for optional, pluggable typing in the
context of Forth is implemented in the functional programming language Haskell. This
implementation is crucial in the process of evaluating the practical use of the type system
since limiting the language’s expressiveness is inevitable in light of the undecidable nature
of static type checking. Such restrictions, including the trade-offs of type inference and
type annotations, can be best assessed with a working prototype in order to derive
pragmatic solutions useful for a Forth programmer.

The targeted Forth subset to reason about in the prototype includes the single-cell
types of the 1994 Forth ANSI standard and the according words of the CORE wordset.
The following checks and language features are integrated into the static analysis:

• Type consistency of the composition of stack effects

• Type consistency of colon definitions

• Compliance of a colon definition with an optional type annotation

• Loops and control structures

• Multiple stack effects

• Reference types

• Subtyping

• Compile-Time Programming

• Object-Oriented Programming

• Higher-Order Programming

Orthogonally, the trade-offs between type inference and type annotations (and stack
effect comments, respectively) must be analyzed in the above contexts in order to derive
a pragmatic solution.

3

In addition, the prototype is designed to support the creation of checkers of varying
static type safety which should offer a customizable trade-off between static type safety
and expressiveness to the user. An evaluation of their use given a small Forth program
will lead to fully answering the research question.

1.5 Structure of the Work
This thesis starts with a survey on the dichotomy of static and dynamic typing in
Chapter 2. Their defining properties are specified and terms related to type systems are
clarified for later use.

Chapter 3 puts the focus on state-of-the-art attempts which aim to blur the strict
divisioning of exclusively static, respectively dynamic, type systems in favour of more
integrated type system – in the process, terms as gradual typing, soft typing, optional
and pluggable types will be clarified. Those findings motivate the use and choices made
for the design of the prototype later on.

Chapter 4 will introduce the characteristics and idiosyncrasies of the Forth program-
ming language focusing on its computational model, the stack, its susceptibility to static
analysis and type checking.

Existing work to build a static type system for Forth will be revised in order to find
a theoretic underpinning for an implementation of an optional, pluggable type system.
The design and implementation of the Haskell prototype are discussed in Chapter 5.

In Chapter 6 the resulting type system’s capabilities, limitations and restrictions
must be evaluated. It will be compared to the examples of Chapter 3 and analyzed in
the context of optional, pluggable typing. In order to demonstrate its practical use, the
checker will be applied to a small Forth program under different typing configurations.

4

CHAPTER 2
Comparing Static and Dynamic

Typing

2.1 The Nature of Static and Dynamic Typing
From a programmer’s perspective, there is hardly any concept as self-evident as the notion
of types. Across the majority of programming languages, it feels natural to associate a
type like Integer to a value designating a number and thus tagging it with that type,
transferring the human ability to classify the nature of a thing from the real world to the
world of programs. Thus, a type denotes a set of values.

As common as types are in programming languages, they are not to be taken for
granted, though. Apart from assembly languages or formal languages like the λ-calculus,
even some high-level languages are untyped, e.g. Forth, where any function only expects
its argument to be a sequence of bits without any further restriction. A program written
in a typed language, however, can be type checked, i.e. for all operations it is checked
whether a function is applied only to arguments of a compatible type such that the
whole program is type consistent (also called type safe and type correct) or not. Type
checking can be done at compile-time (also called static type checking) as well as at
runtime. A program is type consistent if and only if the types of all expressions are com-
patible with the types expected by their context as implied by the rules of the type system.

Following the nomenclature of [CW85], strongly typed languages can guarantee type
consistency at compile-time while weakly typed languages cannot. Those terms are often
confused with the popular dichotomy of statically and dynamically typed languages;
however, that distinction is about the point of time where a type can be assigned to
a value: In contrast to dynamic typing, static typing allows for assigning a compile-
time unique type to every expression. Thanks to those compile-time type assignments,
statically typed languages are also strongly typed in practice. Conversely, there are still
dynamically typed languages which are strongly typed, namely object-oriented languages,

5

which can guarantee compile-time type consistency by static type checking (see [JG97],
p. 326).
While the concept of static type consistency is crucial in the context of the optional
type system created in this thesis, the notion of unique compile-time type assignments is
also relevant regarding type inference and type annotations (see Section 2.3). Therefore,
it’s the differences of the qualities of programming of statically and dynamically typed
languages that are compared in the following section.

2.2 The Trade-offs of Static and Dynamic Typing

2.2.1 Benefits of Static Typing

Program verification. As type consistency can be decided at compile-time given
static typing, a broad range of errors can be identified earlier than in weakly-typed
dynamically-typed language: Whereas a type error would only be discovered at
run-time using the latter, the same error would have stopped the compiler to
translate the program in a statically-typed language in the first place. [KJS10]
concludes that "static type checking is by far the most widely used verification
technology today", thus increasing the trust in a program’s functional correctness.

Early error detection. It is widely acknowledged that the cost of recovering from
errors increases the later they are detected in the software engineering process (see
[Bo81], [Wes02] and [SDD+04]) Eliminating type errors at compile-time, static type
checking fails cheaper than dynamic type checking and has an economic advantage
in that respect.

Optimization. In addition, statically-typed languages can perform better with respect
to performance – as dynamic type checks are not necessary at runtime the compiled
program can run faster (see [WC97]).

Documentation. Static types and type annotations respectively, provide some kind
of documentation on the actual program code. Being less informative than natural
language documentation from a semantic point of view, static types are checked
formally, though, and are thereby much more authentic.

Refactoring and Evolution. In general, nowadays, programs need to be adapted
and maintained for a long time after the initial writing. Any change in a program,
however, runs the risk of introducing errors in a seemingly remote part of the code
base. Static types reduce that risk as introduced type inconsistencies are noted
immediately across the whole program code. Likewise, an integrated development
editor can execute more sophisticated non-local refactorings in the context of static
typing as feasible in the scope of dynamic typing. Actually, in [Unt12] a static type
system is applied to programs of the dynamically typed language Smalltalk just for
that sake of refactoring!

6

2.2.2 Drawbacks of Static Typing

Rejection of some safe programs. The benefits of static typing don’t come without
this serious caveat, often referred to as a lack of expressiveness. Its distinctive
demand of asserting a compile-time unique type to every expression excludes a
whole range of programs which are not well-typed in that specific sense but would
still run without any type errors in every execution path.

In the below listing we see the pseudo-code of a function which either returns a string
or a number by means of an if-statement. Is it possible to assign a compile-time return
type to stringOrInteger1 although its then-clause and else-clause are differently
typed? Given a compiler sophisticated enough to erase the if-clause altogether this is
certainly possible - the determined unique type is a string. It is not difficult to come
up with a scenario where static analysis fails in that respect, though, no matter how
sophisticated it is. In stringOrInteger2 the truthiness of the condition depends on
applying the function < on its arguments 5 and 7; obviously, without explicit knowledge
about the semantics of < the condition cannot be decided statically. Anyway, there is no
sense in educating the type checker about < as it still wouldn’t know how to deal with
other unknown functions assigned to myFunction.

1: procedure stringOrInteger1
2: if false then . Type checker could prove statically that false is not true

return ”hello”
3: else

return 5
4: procedure stringOrInteger2
5: myFunction← (<) . Type checker cannot prove statically anything about (<)
6: if myFunction 5 7 then . Static analysis cannot derive that the condition

return ”hello” . evaluates to true
7: else

return 5

As a consequence, sound and complete static type checking is undecidable in the
general case. A sound, static type system always rejects some safe programs and is
often referred to be conservative – in contrast to optimistic type checking which accepts
programs that are not compile-time provable type consistent.

Verbosity. In order to check the consistency of a program’s operations, information
on the operations’ types must be gained in the first place. Even in presence of a
static type system which features some sort of type reconstruction, the programmer
would need to state some types in certain cases by means of type annotations.

7

type correct "slack"

statically type correct

Figure 2.1: Static typing always excludes some type correct programs

2.3 Discussion
While the above mentioned benefits and drawbacks of static typing are partly based on
formal reasoning (undecidability of sound and complete static type checking), measurable
metrics (performance bonus given static optimization) or widely acknowledged software
engineering experience (e.g. the benefits of early error detection and better refactoring
support), some of them are disputable and considering them an advantage or a disadvan-
tage is a matter of interpretation.

Program Verification

Critics of static typing claim that its ’program verification’ aspect of static, and thus
earlier, type error detection is not that significant in practice. In that line of thought,
static typing provides a false sense of safety as the detection of static type errors does not
rule out all unwanted runtime errors – for example, array bound checks still need to be
done at runtime. Other practically useful guarantees as the non-emptiness of lists usually
cannot be checked by a typical static type system, either. In fact, it is not uncommon
that even the property of type consistency is deliberately violated in some constructs of
static type systems and thereby the soundness of the system is spoiled altogether – see
covariant arrays in Java as a popular example. As a consequence, one might argue that
a drawback as static verbosity outweighs the minor benefit of more or less static type
consistency, more so given an even known to be unsound type system. Anyway, even type
systems claimed to be sound might not be applied correctly by the compiler. Cardelli
[Car96] critisizes the common absence of precise type system specifications which would
make possible the unambiguous translation and verification of type checking algorithms.

8

Expressiveness

Figure 2.1 graphically shows the relation of type consistent and statically provably
type consistent programs. Static type checking always goes with that so-called ’slack’,
denoting the type correct programs of which their type consistency can not be shown at
compile-time due to the aforementioned undecidability of general, static type checking.
Referred to as a lack of expressivity by dynamic typing advocates, it’s at the same time
claimable that the slack mostly refers to language constructs and idioms which are not a
good idea to use anyway.

Subtyping and Type Annotations

The discussion gets even more controversial if it extends to programming languages with
support for subtyping and object-oriented programming, respectively. Gaining a lot of
promotion with the rise of object-oriented programming, subtyping more generally refers
to a rule of substitutivity: "If A is a subtype of B, then elements of type A can be used
anywhere that an element of type B is required" ([Mit95], p. 1).

As to the verbosity induced by type annotations, statically typed languages with-
out subtype polymorphism as the early ML and Haskell have done fairly well, given
their type systems with Hindley-Milner type inference. Type inference, often called type
reconstruction, originally refers to the ability of a type system to automically deduce
the most general, so-called principal type (see [Jim96]) of an expression at compile-time.
Hindley-Milner type inference and a respective implementation like Algorithm W [Gra06]
provide automatic type reconstruction for all expressions given an unannotated program
in the context of a type system with universal quantification over types. It has proved
useful in minimizing type annotations although known to be undecidable in the light of
polymorphic recursion. Generally, Hindley-Milner type inference gathers global equality
constraints on related expressions such that their unification results in type assignments.
This scheme does not work as effectively any more in the light of subtyping as the subtype
relation introduces inequations, such that the problem gives rise to the undecidable
semi-unification problem [KTU90].

Alternatively, local type inference infers "missing type information only from the types
of adjacent syntax nodes" ([HP99], p. 1) so that global unification variables are avoided.
However, some type annotations are needed as a consequence so that this approach is
called partial type inference in contrast to full type inference.

Object-Oriented Programming

The introduction of subtyping has made type inference in its original sense even more
unattainable, as the principal type property is impossible to fulfill [FM90]. Ignoring that
property, types inferred in the presence of subtyping can get impractically big as they

9

c l a s s A
in t foo (x : i n t) = . . .

c l a s s B
in t foo (x : i n t) = . . .

bar obj = 1 + obj . foo (3)

Listing 2.2: What type should be inferred for ’bar’?

need to include type constraint sets as in [Mit91] or in [EST95] for an object-oriented
setting.
Consequently, object-oriented languages cannot provide the same level of practical type
reconstruction as languages with Hindley-Milner type inference in the general case; extra
verbosity in form of type annotations is imperative for compile-time type checking.

It needs to be mentioned that the topics of object-oriented programming, type infer-
ence, subtyping, static and dynamic type checking are further intertwined as to notions
such as dynamic dispatch, static type based overloading, class-based or prototype-based
object-orientation, single inheritance or multiple inheritance, encapsulation, structural
and nominal subtyping, bounded quantification etc. As an example, Listing 2.2 shows
the difficulty of type inference when there are multiple classes having a method of the
same signature. What type should be inferred for bar and its argument, respectively?
No most general type can be inferred if the respective language only permits nominal
subtyping. Supporting duck typing or union types (see Listing 3.2) would be imperative
to express the most general constraint that obj has to provide a method foo with an
according signature.

A full analysis on the interplay of the above concepts is highly language specific and
beyond the scope of this thesis. However, related design decisions are mentioned in the
integration of object-oriented programming in Section 5.14.

Program Evolution and Agility

There is a clash of arguments to the question whether static typing or dynamic typing
does better in the field of program evolution and agility in particular. As mentioned
before, static types make sure that a small change in a large code base does not introduce
type inconsistencies in a far-off part of the program, however, this forces the programmer
to actually update all affected remote code and the corresponding type declarations in
order to compile the program. In the context of Web software engineering such expectedly
longer cycles induced by that latter inconvenience tend to outweigh the benefits of global
type consistency; obviously, the dynamically-typed scripting language Ruby has enjoyed
great popularity as a server-side scripting language in web applications as conciseness

10

and agility have proved more important than type safety in the web engineering context.
Similarly, in the contexts of rapid prototyping or interactive programming with a demand
of high dynamicity, dynamically-typed languages like Python are prevalent.

The Versatility of Types

In general, we conclude that the question whether static or dynamic typing is better to
use can only be answered in the context of specific scenarios and languages since external
criteria as safety criticality, performance constraints, the given software engineering
context and process, the expected size of a code base or the cost of errors can cast a
different light on their characteristics.
Above all, however, typed languages themselves already differ significantly from each
other as to how much can actually be expressed by types in the respective language.
Apart from canonical type checking, a simple classification of values into sets and the veri-
fication of the correct use of operations on them, types influence optimizations, automatic
documentation, program structuring or can even entail computations on the type-level
[KJS10]. Consequently, it is deceptive to draw conclusions about the practicality of
static typing judging from a specific statically-typed language with its type-specific
feature set. In [MD04] Meijer et al. address the underlying problem what language
features programmers associate with static or dynamic typing and what typing-related
language features they actually expect to use, respectively, e.g. subtype polymorphism
which, historically, has become popular in the context of object-oriented programming in
statically-typed languages. Furthermore, there are mentioned generics, (unsafe) array
covariance, lazy evaluation, prototype inheritance, higher-order functions and, above all,
contracts and type inference. By contracts Meijer et al. on the one hand refer to the
promise of static type consistency which they consider a contract too weak to be useful in
practice, on the other hand, more useful contracts typically express invariants which need
to be monitored at run-time, conversely. Type inference is claimed to be indispensable by
Meijer et al. as it’s a nuisance to force programmers to write type declarations although
the compiler could easily infer the types.

Given the analysis above that static and dynamic typing each work best in specific
contexts and Meijer et al.’s analysis on what programmers actually want when they long
for static or dynamic typing, the benefit of a combined typing approach becomes obvious.
Integrating static and dynamic typing should provide the best of two worlds. Meijer et
al. express the motto "Static typing where possible, dynamic typing where needed!" and
Chapter 3 deals with implementations of this approach.

11

CHAPTER 3
Combining Static and Dynamic

Typing

The idea of combining static and dynamic typing dates back to the 1990s and has
been omnipresent ever since. In recent years, it has found its way into mainstream
programming as last but not least the JVM and the .NET platform, originally hosting
statically-typed languages, have opened their doors for dynamic features and dynamic
languages, respectively; from C# 4.0 on there is the keyword dynamic for declaring
references which are not statically type checked by the compiler but at run-time only. In
addition, Dart and TypeScript, referred to as either optionally or gradually typed, have
been established by the tech leaders Google and Microsoft.
In the following an overview of different approaches of blurring the line between statically
and dynamically typed languages will be given. Exemplarily, some implementation details
will be briefly sketched to demonstrate the difficulties of incorporating languages features
as subtyping into the specific approach.

3.1 Soft typing

Chronologically, soft typing is one of the earliest approaches, introduced by [CF91] in
1991. Cartwright and Fagan layer a static type system on top of the core of the ML
language without subtyping. It’s main idea reads as follows: given a program in a
dynamically-typed language, a static type checker does not need to reject operations
which can’t be shown to be statically type consistent but it suffices to insert run-time
checks in those places instead. Conversely, run-time checks can be eliminated if they
can be proved to be unnecessary at compile-time. As a result, soft typing claims to
retain the advantage of early error detection of static typing while allowing for increased
expressiveness. However, in order to be a practical, useful solution it is necessary to find a
way to satisfy the two conflicting goals that Cartwright et al. postulate: the type system

13

i n c lude ? : (Fixnum) −> Boolean
inc lude ? : (S t r ing) −> Boolean

Listing 3.1: List each conjunct of an intersection on its own line in [FAFH09]

"must be rich enough to type ’most’ program components written in a dynamic typing
style without insertig any run-time checks, yet simple enough to accomodate automatic
type assignment" (often called type inference or type reconstruction). In particular, the
need to accept unannotated programs is essential to retain a program’s dynamic character.
Cartwright et al. provide an implementation building on union types, recursive types
and circular unification in such a way that they can reuse the same Hindley-Milner
polymorphic type inference algorithm as standard ML. Thus, they intend to satisfy the
above criteria and create a practical soft type system.
Cartwright and Wright have refined that work in [WC97] where they build a soft type
system for a Scheme dialect. They build a soft type system which eliminates 90% of the
run-time checks necessary without soft typing. Moreover, due to static optimization their
programs run 10-15% faster than their dynamically typed equivalents according to their
benchmarks.

In addition, soft typing has been applied to languages as diverse as PHP [CHH09],
Erlang [Nys03] and Ruby [FAFH09]. Obviously, the problems faced in soft typing the
diverse constructs of those languages differ immensely. For instance, [FAFH09] uses so-
called intersection types to model the prevalent feature of ad-hoc overloading of functions
in dynamic languages like Ruby.

Consequently, include? of Listing 3.1 has both the types (Fixnum) -> Boolean
and (String) -> Boolean such that static type checking of include? succeeds
if its argument is of type Fixnum or String and the result has the type Boolean.
Conversely, [FAFH09] uses union types as in Listing 3.2 to give a static type to a variable
upon which a method is called which exists in two classes. Anyway, the concept of inferring
union types and intersection types has been popular throughout diverse approaches for
inferring static types.

Generally, it is worth mentioning that in favor of practical usefulness annotations have
been introduced in one way or another: [FAFH09] features type annotations of which

c l a s s A; de f f () end end
c l a s s B; de f f () end end
x = (i f . . . then A. new e l s e B. new)
x . f

Listing 3.2: [FAFH09] infers that the static type of x is ’A or B’

14

the correctness is taken for granted at compile-time and only checked at run-time. In
addition, those soft type systems partly exclude whole language constructs as classes and
prototypes in [CHH09] or can not guarantee inferring a static type for a method although
it might have one [FAFH09]; basically, those type systems are not even close to being
sound and generally need some kind of annotations for typing certain language constructs.

All in all, soft typing does well at improving the performance of the originally purely
dynamically-typed code ([WC97]). However, in general, it does not fully live up to its
original claim of integrating all the advantages of the dynamic and static typing worlds.
Soft typing does not allow to take a crucial part of a program and make it reliably safe
by enforcing a static typing constraint on that piece. This is where gradual typing can
provide better support.

3.2 Gradual Typing

The underlying idea of gradual typing is being able to add static type information
incrementally in such a way that compile-time typed and untyped values play together
nicely. In [ST07] Siek and Taha aim for that smooth interaction "by allowing the
programmer to control whether a portion of the program is type checked at compile-time
or run-time by adding or removing type annotations on variables". Obviously, type
annotations are thereby crucial in gradual typing in order to tag portions of the code
which should be type checked at compile-time. In addition, gradual typing guarantees
static type consistency for code pieces which are fully annotated.
It has been in the area of gradual typing where there has been done profitable work on
how to make subtyping work together with type consistency in the light of combining
static and dynamic types.

Subtyping

Subtyping has been problematic to handle in the context of mixing static and dynamic
typing from the beginning. To this end, it’s generally necessary to put a "dynamic type"
in relation to the known static types. It is in the early work of [ACPP89] that Abadi
et al. introduce that canonical Dynamic type in order to integrate dynamic typing in a
statically typed language; the seamless conversion of static and dynamic types is however
not the case in that approach as explicit injection and projection operations are required.
Thatte advances that approach of managing a Dynamic type together with static types
in his so-called "Quasi-Static Typing" approach in [Tha90] . In the light of subtyping,
Thatte puts Dynamic at the top of the subtype hierarchy (allowing up-casts) and at the
bottom (allowing down-casts) at the same time in order to check the type consistency of
operations on dynamic and static values. The transitive nature of the subtype relation,
however, then implies that every single type is related to every other type.

Listing 3.3 would not result in a type error as bool ≤ Dynamic and Dynamic ≤ int
imply that bool ≤ int. As a consequence, wrongly used subtyping would not cause

15

de f add1 (x : i n t) −> in t :
r e turn x + 1

add1 (t rue)

Listing 3.3: Type checks under Thatte’s subtype relation

any static type errors any more. In [ST06] Siek and Taha show that even in presence
of Thatte’s plausiblity checking, which should have excluded that inconsistency, the
type system fails to catch many thereby induced errors. As a consequence, Siek and
Thaha dodge that problem altogether in [ST07] as in their gradual typing approach
the dynamic type is not at the top of the subtype hierarchy but rather neutral with
regard to subtyping. In fact, gradual typing defines a consistency relation on types
which is succintly summarized in [SV08], essentially giving up the transitivity of Thatte’s
subtyping relation. As a result, a type error as in Listing 3.4 is at least reported at
runtime, in spite of the dynamic type.
Gradual typing inserts wrappers or proxies when untyped values are cast or coerced to
typed values. These references make sure that at run-time all interactions with these
values abide by the guarantees, claimed at compile-time.

x : Dyn = true
y : Int = x
// Gradual Typing adds a ca s t and a runtime check as f o l l ow s
x : Dyn = true
y : Int = <Int> true // Runtime Error !

Listing 3.4: A runtime check protects the subtype consistency relation [HTF10]

Listing 3.4 shows how gradual typing inserts a runtime check where a static type
interfaces with the dynamic type Dyn. Those runtime proxies impose a certain runtime
penalty and can cause unpleasant surprises like space leaks or losing tail recursion.
Space-efficient solutions for those problems have been introduced by the work of [HTF10],
though.

Blame Control

Gradual typing can be adapted to provide blame control as outlined in [SGT09]. The
notion of blame actually stems from [FF02] where Findler and Felleisen introduce "blame"
for breaking contracts for higher-order functions. As far as gradual typing is concerned,
blame control is used to make sure that a fully annotated piece of code (of which the
type consistency can be shown at compile-time according to gradual typing) does not get
blamed for a run-time type error when it gets applied to an incompatible dynamic value;

16

instead, the place in the code where the incompatible value gets wrongly casted will be
blamed! This mechanism is particularly useful when you need to interface with untyped
third-party code. Although blame control induces further run-time effort to store and
manage all casts a reference goes through, it improves the debugging of gradually typed
programs anyway.

Gradual typing examples

There have been various publications on how to adopt the smooth migration of dynamic
and static types of gradual typing to specific languages or language features, e.g. [SG12]
illustrates the challenges to accept for creating efficient implementations. Supporting
generics is outlined in [II09] and elaborated on in [II11], the notion of mutable objects
in gradual typing is investigated in [SVB13] and type inference is probed in [SV08] as
well as in [RCH12] where the gradually typed ActionScript is enhanced with partial type
inference.

The most mentionable attempts to apply gradual typing to existing languages are
Gradualtalk in [ACF+13] for Smalltalk and Typed Scheme in [THF08] for Racket where
Typed Scheme makes the programmer take the decision between static or dynamic typing
on a per-module basis. In addition, Typed Scheme supports so-called occurrence typing
(see [THF10]) where the type systems takes predicate checks into account, i.e. the type
((Number∪Boolean)→ Boolean) is derived for the following expression using a runtime
type check. Thereby, (Number ∪Boolean) denotes a union type:

(λ (x : (Number ∪ Boolean)) (if (number?x) (= x 1) (not x)))

As to Gradualtalk, it is worth mentioning that it supports blame control and gives
rise to an optional type system (see Section 3.3) in case the runtime casts and checks are
switched off.

3.3 Optional typing

Bracha [Bra04] introduces the idea of optional, pluggable type systems. Building on
his work on the static type system Strongtalk for Smalltalk [BG93] Bracha dismisses
the idea of mandatory typing, no matter if static or dynamic. In fact, he claims that
"the dichotomy between statically typed and dynamically typed languages is false and
counterproductive. The real dichotomy is between mandatory and optional type systems."
In particular, it is the fact that so far mainstream programming languages have been
intrinsically tied to their single type system by means of the language’s syntax and
semantics which is considered unnecessary and even harmful. As a replacement, Bracha
proposes the use of optional, pluggable type systems such that multiple type systems can
be run for diverse semantic analyses. There are two criteria which characterize such a
type system:

17

1. An optional, pluggable type system "has no effect on the run-time semantics of the
programming language"

2. An optional, pluggable type system "does not mandate type annotations in the
syntax"

Obviously, the first criterium alone already has a strong impact on what language
features a compatible language can have. Thus, Bracha rules out public fields, class based
encapsulation and static type based overloading to appear in an accordingly designed
language, claiming that those features are not to be recommended in the first place,
anyway. In particular, the first requirement that embodies the concept of ’optionality’ is
regarded as more crucial than the second. The second requirement merely states that
type annotations should not be mandatory parts of the language syntax but should be
optional. In fact, Bracha does suggest using user-defined annotations, as they already
exist in Java or C# for example, for annotating nodes of the abstract syntax tree in order
to support multiple type systems; that discussion also touches upon the field of type
inference of which the importance Bracha considers exaggerated in "soft" type systems.
As a matter of fact, he proposes to make type inference just equally optional and to
provide type inference algorithms as a service of the IDE.

Benefits

In general, optional, pluggable types should improve the language modularity (as the
semantics do not depend on the type system any longer) and could prove beneficial in
terms of program and language evolution (programs that are not accepted by a type
checker now could be accepted by a different type checker later on while retaining the
same runtime semantics).
A whole range of static analysis can be expressed as a type checking problem (Bracha
mentions aliasing, ownership, information flow), however, it is hardly practical to add
those analyzers directly to the language. This is where the idea of optional, pluggable
types shines when they could be provided by means of a general framework. In that case
exotic research projects providing some sort of static analysis would not languish in the
unknown any longer but would have a place where they could be found and "plugged-in"
by the programmer.

Optional typing examples

Aside from Bracha’s original optional type system Strongtalk [BG93] for Smalltalk,
optional typing has been applied in recent years, too, e.g. ’Typed Lua’ [MMI14] and
’Typed Clojure’ [BS12] add optional, static type systems to Lua and Clojure. Listing 3.5
shows how [BS12] uses annotations to give static types to heterogeneous maps, an
inherently dynamic construct.. The type person is defined to only have the mandatory
keys :first-name and :last-name, an optional numeric key :age and no other
keys. As a result, the annotation in Line 8 fails as michael has an additional key
:middle-name which is not allowed to occur in the person type.

18

1 (d e f a l i a s person (HMap : mandatory { : f i r s t −name St r ing
2 : l a s t−name St r ing }
3 : op t i ona l { : age Num} : complete ? t rue))
4
5 (ann myse l f person)
6 (de f myse l f { : f i r s t −name " Gregor " : l a s t−name " R i eg l e r " : age 26})
7
8 (ann michael person)
9 (de f michael { : f i r s t −name " Michael " : middle−name "Max"

10 : l a s t−name "Mustermann "})

Listing 3.5: Checking the types of heterogeneous maps in Typed Clojure

[LG11] provides a static type system for a Python-like language and offers so far
unknown optional runtime monitoring of type errors. As throwing an exception in case
of a type error would affect the runtime semantics and would thus break the defining
constraint of optional typing, type errors are only logged in such a way that the program
itself can not respond to it. So the runtime semantics remain unaffected while the logged
type errors provide a good source for later debugging.

TypeScript is a language that compiles to JavaScript and it is generally referred to
as gradual. As a matter of fact, types are erased on compilation and type errors may
not be detected at compile-time nor at run-time. Consequently it differs noticeably from
the original approach of Siek and Taha and is rather optionally typed. In particular,
TypeScript is designed to be deliberately unsound in favor of pragmatic use; [RSF+14]
proposes an alternative type system for TypeScript which maintains soundness while
claiming to be practical at the same time.

Optional, pluggable typing examples

The above examples provide optional typing, however, they neglect the idea of "pluggable"
types insofar as they do not provide a "framework" for creating or plugging in those type
systems. In contrast, the TypePlug framework of [HDN09] for Smalltalk is designed with
that idea in mind.

TypePlug

Creating type systems. TypePlug provides an interface for creating optional type
systems for Smalltalk. Essentially, one needs to subclass the class TPTypeSystem
and override some of its methods in order to define the types and the rules of the
type system as well as its annotations. Concerning the types, it’s worth mentioning
that every thereby created type system explicitly contains a top type denoting the

19

unknown type; a value has that type if it is either unannotated or its type can
not be derived by TypePlug’s type inference. That top type is necessary to make
partially annotated source code type check.

TPTypeSystem. Concerning the methods to override, is:subtypeOf: and
unifyType:with: are essential as the former specifies the subtyping relation and
latter defines the unification operation. The TypePlug framework then calls those
methods as part of the general type checking routine. Generally, only (partially)
annotated code is type checked, thus making the integration of third-party code
easy.

Type annotations. TypePlug makes heavy use of annotations for specifying types.
Upon subclassing TPTypeSystem it is thus necessary to declare a method
systemKey which uniquely identifies annotations for that type system by prefixing
every annotation. As a consequence, every expression can have more than one
annotation, namely one per type system. Using Persephone [DDLM07] any node
of the abstract syntax tree of the Smalltalk program can be annotated and thus be
given a type. Those annotations can be either evaluated statically at compile time
or at runtime through Smalltalk’s reflection API.

Handling third-party code. The TypePlug framework provides a code browser
which makes the definition of external annotations possible, i.e. annotations which
are not part of the code. This is useful in case the source of standard library classes
would need to be annotated otherwise, which would pose a practical problem in the
context of packaging and distribution. Even more important, external annotations
provide a way to integrate third-party code in the type checking procedure.
Cast annotations are another feature useful in that respect. They can be used
to cast an expression to an arbitrary type and should be used at the interface
to third-party code; casts are not checked but their type assertions are taken for
granted in the type checking process.

Pluggable types for Java

In recent years, Java has seen the emergence of various approaches to make its type
system more expressive – in this respect, an optional type system has the advantage not
to interfere with the conventional Java toolchain, its compiler and runtime system as it
takes action before those are used. Among those, the Checker framework is the practically
most relevant approach. It makes heavy use of annotations for type specifications, which
has been facilitated by JSR 308 that permits annotations to appear on any use of a
type. Those additional type specifications are then checked for correctness by the various
checkers it provides, e.g. a nullness checker, a lock checker, a format string checker and
others. The Checker framework has been introduced and compared to other frameworks
in [PACJ+08] and [DDES11]. Figure 3.3 shows an application of its nullness checker
which recognizes a possible Nullpointer exception at line 5. Dereferencing bar, however,

20

is deduced to be safe thanks to the @EnsuresNonNullIf annotation and the checker’s
flow sensitive analysis.

1 pub l i c c l a s s Foo {
2 pub l i c void i n t e r a c t (@Nullable Foo bar , @Nullable Foo baz) {
3 // Safe d e r e f e r en c e as bar cannot be nu l l
4 i f (equa l s (bar)) bar . doNothing () ;
5 baz . doNothing () ; // Po s s i b l e nu l l d e r e f e r en c e
6 }
7 @EnsuresNonNullIf (exp r e s s i on ="#1" , r e s u l t=true)
8 @Override
9 pub l i c boolean equa l s (@Nullable Object obj) {

10 re turn obj != nu l l ;
11 }
12 p r i va t e void doNothing () {}
13 }

Listing 3.6: Flow-Sensitive Nullness checker

JavaCOP [MME+10] is a framework that provides checkers similar to those provided
by the Checker framework. In addition to annotations, however, it uses a domain-specific
language for a declarative specification of typing rules expressing rules as contraints of
the nodes of the abstract syntax tree. As a result, type system rules can be defined by
the user. The following example rule thus expresses a nullness checker’s important rule
that a possible null value may not be assigned to a reference which is annotated with a
@Nonnull annotation [jav10].

r u l e nonnul lAss ign (JCAssign a){
where (hasNonnullAnnot (a . l h s)){

r e qu i r e (defNonnul l (a . rhs)) : warning (a , " Po s s i b l e ass ignment
o f nu l l va lue to @Nonnull r e f e r e n c e ! ") ;

}
}

3.4 Discussion
This chapter has given both a broad theoretical overview as well as several examples of
diverse approaches of enhancing a programming language’s host type system: soft typing,
gradual typing and optional, pluggable typing. Now the question remains what mentioned
approach fits best this thesis’ task of adding types to the Forth programming language.

21

In addition, it is worth contemplating if the above examples provide any features which
are not tightly coupled to their particular typing task but could be adopted for a typed
Forth development process.

Typing Forth

Forth is an untyped language – there is no runtime type checking done such that the
soft typing and gradual typing approaches’ defining quality of adding static types to an
existing dynamic type system is not imperative. Optional, pluggable typing, however,
fits best the challenge of deriving compile-time guarantees on the one hand and retaining
runtime efficiency on the other hand.

The main verification task of this work’s Forth optional typing prototype will be the
correctness of the operations with regard to the types of values they take from the stack
and return to the stack – much more high-level checkers as provided by the JavaCOP or
the Checker framework are thus beyond the scope of this thesis. That’s why there will
not be developed a declarative typing rules language as used in JavaCOP; the pursued
approach rather resembles TypePlug having a rather fixed type checking algorithm and
providing various ’hooks’ which actually qualify the resulting type system.

Adoptions

Virtually every mentioned approach uses annotations for type specifications, leveraging
the existing annotation system in the case of Java or developing a new specification
language as in some soft typing examples. Thus, it will be imperative to adopt an
annotation language which integrates nicely into existing Forth code.

Support for the incremental adoption of more static type consistency besides compile-
time untyped code can be adopted from gradual typing. That idea is made more precise
in the scope of optional typing by the TypePlug system which only type checks partially
annotated code by configuration.

Another feature worth adopting is TypePlug’s support for casts. While the notion of
a cast typically undermines any claim of verified correctness it is a useful feature for the
incremental adoption of static types and could be activated optionally such that it does
not circumvent any typing rules if it is not meant to be used.

22

CHAPTER 4
Forth Language Characteristics

In the following, the idiosyncrasies of the Forth programming language are briefly outlined,
focusing on the importance of the stack and the notion of compile state and interpret state,
compilation semantics and interpretation semantics respectively, which are crucial for an
understanding of how Forth definitions are created and behave. Memory management and
similar issues are neglected altogether as they do not matter in the scope of static program
analysis. A more thorough language description is available as part of the ANSI Forth
standard [ans94]. All code has been tested with the ANSI compliant Gforth, version 0.7.0.

Stacks. Forth is first and foremost a stack-based programming language. In contrast
to other languages, a stack is not only used in contexts where first-in-first-out
semantics are needed algorithmically, but in Forth the data stack provides the
underlying computational context of execution, meaning that routines take their
arguments from the stack and push their results onto the data stack, e.g. Forth’s
arithmetic operations read exactly like reverse polish notation: "2 3 + 5 *". In
addition to the data stack, the standard defines the return stack, the floating point
stack and the control flow stack.

Words. There are no syntactic criteria limiting the juxtaposition of Forth operations;
as a matter of fact, parsing Forth is rather simple compared to parsing languages
of different paradigms. Obviously, given a line of Forth source code, the Forth
text interpreter parses operation after operation, which is made easy as they are
separated by whitespaces and thus called words, and in each case it executes the
word’s semantics, generally without the need for any look-ahead or look-back;
even words for manipulating the control flow are handled the same way, making
heavy use of the (control-flow) stack (see Figure 4.1). Due to that strict top-down
processing user-defined words need to be defined before their first application in
file order.

23

Creating words. The canonical way of creating a word is the so-called colon definition.
Upon executing ":" the well-known variable State is set where State can either be
compile state or interpret state denoted by 0 or 1. Essentially, the colon thus enters
compile state, meaning that the Forth text interpreter creates a definition myplus
in the so-called dictionary (this is the piece of memory where user definitions are
compiled to) and compiles (= appends the semantics to the current definition) the
words to come into the body. The ";", conversely, finishes the current definition
and enters interpret mode again.

: myplus (n1|u1 n2|u2 -- n3|u3) + ;
3 5 myplus (pushes 8 onto the data stack)

: con s t an t create , does> @ ;
3 con s t an t PI (defines an integer constant for PI)

: c i r c l e −a r ea (n1 -- n2) dup ∗ PI ∗ ;
3 c i r c l e −a r ea (pushes 27 onto the data stack)

: b a l l (n1 -- n2) dup dup ∗ ∗ [PI 3 /] ∗ ;

Apart from ":", the words create (parses the next word from the input stream and
creates an empty definition with that name) and does> (defines the interpretation
semantics of the last word that was defined by means of create) and others as
variable or constant are used for creating definitions.

Semantics. If State is in compile state, the compilation semantics of a word are
executed, otherwise the interpretation semantics of a word are executed. In general,
interpretation semantics denote the canonical effect of the operation, e.g. taking
the first two values of the stack and returning the addition in case of "+", while
compilation semantics denote appending the interpretation semantics to the defini-
tion which gets currently compiled.
This ambiguous nature of Forth words can be used to apply "compile-time" pro-
gramming, i.e. executing the interpretation semantics in compile state, by words
as "[" and "]" which manipulate the State variable directly. However, there are
words like "If" (see Figure 4.1) which do not have any interpretation semantics, i.e.
they can’t be used outside of a compiled definition, consequently, and the standard
calls their behavior run-time semantics when they are run in the context of the
containing compiled definition.

Stack effects. The stack effects of a word specify how it changes the stack, i.e. what
values it takes from the stack and pushes onto it. In idiomatic Forth code the stack
effect is supplied as part of a colon definition in the context of a Forth comment,
e.g. (before2 before1 -- after2 after1), where beforex specifies the values that
the word consumes and afterx specifies the values that get put on top of the
stack; we later refer to the consumption and production types of a stack effect as

24

Figure 4.1: Description of the word "IF" in the ANSI Forth standard [ans94]

stack image. The right-most type literal corresponds to the top of the stack, e.g.
before1 and after1 in the example above. It is a stack comment that is referred to
whenever a type annotation or a specification of a word or a definition is mentioned
in the following. Being mere comments, stack comments are considered optional
in the standard – they are not checked for consistency in any way – still there are
conventions to name the arguments in the ’before’ and ’after’ parts according to
their intended types. In particular, multiple stack effects or multiple argument
types are specified by separating the alternatives with "|".

Data types. In Section 3.1 of the ANSI standard [ans94] Forth’s intended, but
unchecked, data types are listed which are then used in the glossary to specify the
stack effects of Forth’s standard library’s words. That listing comprises above all
numerical types, flags, address types and system types for specifying the effects the
text interpreter executes on entering definitions and dissolving control structures,
respectively. Besides, those data types differ in the size they occupy on the stack –
one or two cells. Moreover, a simple, transitive subtype relation on numerical and
address types is outlined, e.g. a-addr (aligned address) is a subtype of c-addr
(character-address) is a subtype of addr (address).

Input stream types. When a word reads one space-delimited word from the input
stream, like create, this is expressed in a stack effect as ("<spaces>name" --).
Apart from <spaces> there are other delimiters as <paren> and <quote> to
express that the word read from input stream is delimited by parens or quotes.
Such an input stream type is thus put in between quotes and displayed in the
consuming stack image.

25

CHAPTER 5
Designing Optional, Pluggable

Types for Forth

In this chapter the design and an according prototype of optional, pluggable types for
Forth are outlined. The targeted Forth subset to reason about in the prototype includes
the single-cell types of the 1994 Forth ANSI standard [ans94] and the according words
of the CORE wordset. Starting with a Forth parser, integrating the CORE words and
modelling stack effects, literature on static Forth program analysis is reviewed in order
to find a theoretical basis for checking type consistency in the stack-based Forth context.
After deriving an implementation for a consistent composition of simple stack effects, the
following checks and language features are integrated into the static analysis:

• Type consistency of the composition of stack effects

• Type consistency of colon definitions

• Compliance of a colon definition with an optional type annotation

• Multiple stack effects

• Reference types

• Subtyping

• Compile-Time Programming

• Object-Oriented Programming

• Higher-Order Programming

27

The above language features are integrated in a way which allows for guaranteeing
the compile-time type consistency of a program. Orthogonally, there will be outlined
implementation details of the system’s configuration ability of giving rise to those optional
checkers of varying degrees of static type consistency that are presented in Chapter 6,
e.g. additional language features like casts, assertions and the use of the Dynamic type.
Those configuration options will then be summarized in Section 5.16.

Implementation Language

The implementation is done in the functional programming language Haskell. Why isn’t it
done in Forth, given its role of type checking Forth code? This is a deliberate choice – as
an optional type system (see Section 3.3) should have no effect on the runtime semantics
of the programming language, the elsewhere reasonable choice of keeping all options (e.g.
for using dynamic, runtime type checking) by integrating the type checking in the Forth
interpreter loop does not prove necessary. On the contrary, using a different language
for that static analysis emphasizes that stringent quality of an optional type system and
makes sure the compliance of that rule. In addition, Haskell’s algebraic data types, static
typing, pureness and thereby better adherence to formal specifications than common in
most languages are considered beneficial in the task of crafting a prototype of a type
system.

5.1 Integrating CORE Forth words

Before designing and implementing a stack effect calculus, a method of integrating the
words of the Forth CORE wordset and their associated stack effects needs to be defined.
More precisely, both the COMPILESTATE as well as the INTERPRETSTATE stack
effects must be derived as well as the information whether the word changes that state.
All that information is fetched from [ans94]. In order to simplify that process of defining
those words, a simple domain specific language is created with the help of the Free Monad
Pattern [CK14] to finally get at values of type Word as in Listing 5.1. The values of type
CompilationSemantics and InterpretationSemantics, if defined, contain the
respective stack effects.

Stack Notation

It is convenient to take the prevalent stack notation for defining the stack effects and the
type signatures of Forth words, respectively. As it is necessary to parse stack effects later
on when user-given type signatures need to be verified, we already use that parser for
processing the effect strings in Listing 5.1.

Data Types. Compared to the stack effect notation of [ans94] we restrict the accepted
type literals to those single-cell types which do not correspond to system types:

28

data Word = Word {
parsed : : String

, compi la t ion : : Compilat ionSemantics
, i n t e r p r e t a t i o n : : In t e rp r e ta t i onSemant i c s
}

co lon : : Word
co lon = do

pars ing " : "
en t e r i ng COMPILESTATE

plus : : Word
p lus = do

pars ing "+"
e f f e c t " (n n −− n & u u −− u) "

questionDup = do
pars ing " ?dup "
e f f e c t " (x −− x / x −− x x) "

Listing 5.1: Modelling the CORE forth words

flag = boolean flag, char = character, n = signed number, +n = non-negative
number, u = unsigned number, x = unspecified cell. Those data types will be
called primitive types below. Optionally, a numeric index can follow the type literal,
which is needed for supporting type variables in Section 5.10. A number literal, e.g.
5, has the type n. A type literal for reference types is introduced in Section 5.11.

Input Stream Types. We restrict the allowed delimiters of input stream types (see
Chapter 4) to white-space delimiters. An input stream type’s type literal consists
of a string surrounded by quotes. Furthermore, we make a more precise distinction
as to the meaning of input stream types than in the Forth standard, syntactically:
Either the word read from the input stream should name a newly created variable
or it does not. On the one hand, the stack effect of create, which creates a new
variable, reads (:"name" --) where name can be an arbitrary string. Thus,
the colon marks an input stream type which causes the creation of a variable. In
contrast, the effect of the word char, which reads a string from the input stream
and outputs its first character, reads ("name" -- char). Either way, an
input stream type can occur only in the consuming stack image.

Multiple Effects. We introduce different encodings for defining alternative stack
effects, which can be seen in the stack effects of plus and ?dup in Listing 5.1.

29

In the standard, the effect of plus reads (n1|u1 n2|u2 -- n3|u3) which
could be instantiated to (n1 n2 -- n3) or (u1 u2 -- u3), however,
that description could be interpreted as (n1 u2 -- n3) as well because the
symbol | designates a stack type alternative only locally. Anyway, addition (and
other words operating on numbers) should have both the types (n1 n2 -- n3)
and (u1 u2 -- u3). In contrast, the definition of ?dup sees its multiple stack
effects joined with the slash character (having either the first or the second effect)
which has implications on type checking (see Section 5.5).

5.2 Parsing
The Parsec parser generator library has been chosen for the job of parsing the above
mentioned stack effects as well as tokenizing and parsing the input programs. Parsec offers
a parser monad transformer interface in order to integrate other effectful operations as
logging, changing the parsing state, reading from a configuration and error management.

Lexical Analysis

First of all, the input program string is transformed to a list of tokens. A token is either
a Forth core word that was integrated as seen in Listing 5.1 or an unknown identifier. In
the next processing phase, that unknown identifier could turn out to signify an input
stream parameter or a user-defined word.

Building an Abstract Syntax Tree

In this parsing phase we build Parsec parsers which operate on the list of tokens stemming
from the lexical analysis. Those tokens are grouped into values of the type ForthWord
or Expr (see Listing 5.2), modelled as alternatives of the Either a b type alias Node.
We thus build an abstract syntax tree representation of the input program.
The CheckerState is used in that process to maintain information on the current
State value, the known core words and the gathered user-defined words. In addition,
two lists of stack effects for COMPILESTATE and INTERPRETSTATE stack effects are
maintained. Extensions in future sections will add other information to that global state,
e.g. Section 5.6.2 adds the stack effects of colon definitions and Section 5.11.3 adds the
names and types of created variables to that state.
The type checking process will be kicked off as soon as another Node has been parsed.

In Listing 5.3 the fundamental architecture of the input programm processing is
illustrated. parseNode delegates to the parsers expression and evalForthWord.
The parser expression succeeds if and only if one its alternatives separated by the
<|> operator succeeds. Using the example of parseIfElse, it is worth mentioning
that we gain the AST by treating tokens as if, else and then solely by their intended
syntactic meaning – in contrast to the Forth runtime interpreter which actually treats all
words equally and compiles such a control structure by pushing branch addresses onto
the control-flow stack and resolving them, respectively.

30

type Token = Either Unknown Word
type Node = Either ForthWord Expr

data Checke rS ta t e = Checke rS ta t e {
de f inedWords : : M. Map Str ing D e f i n i t i o n

, coreWords : : M. Map P a r s a b l e Word
, s t a t e V a r : : SemState
, i s C o m p i l i n g : : Bool
, c o m p i l e E f f e c t s : : [S t a c k E f f e c t]
, i n t e r p r e t E f f e c t s : : [S t a c k E f f e c t] }

data ForthWord = UnknownE Unknown
| UserWord (Compi ledOrExecuted (Name , [S t a c k E f f e c t]))
| CoreWord ParsedWord

data Expr = I f E x p r [Node]
| I f E l s e E x p r [Node] [Node]
| ColonExpr Str ing (Maybe Semant ic s) [Node]
| DoLoop [Node]
−−− . . . o t h e r e x p r e s s i o n s

Listing 5.2: Parsing the input program

On failure of all expression parsers, however, the evalForthWord parser is tried;
that parser only succeeds if the input token corresponds to a core word or corresponds to
a word defined before in the program. It returns an according value of type ForthWord
which contains the stack effects of that word, the information whether it changes the
State variable and in addition, input stream arguments are resolved. At last, check
(see Listing 5.6) is called with that parsed value.

5.3 Forth Static Analysis

Stack-based languages and Forth have experienced the increased interest of the static
analysis community in the early 1990s. The works of Pöial ([Pö90], [Poi91]) and Stoddart
[SK93] and Knaggs [Kna93] introduce rules for composing stack effects for the purpose
of calculating the accumulated effect from any number of input words. That act of stack
effect inference is used as a synonym for type inference in the following. Given a small
number of rules it is possible to infer a stack effect from the composition of two stack
effects which are already known. That general composition approach does not only work
for core library words (of which the effects are known anyway) but also scales to more
practical programs with colon definitions given by the user: The definition of the colon
definition must always precede its first application in Forth due to the workings of the
interpreter. As a result, Forth stack effect inference gets by with local type inference and

31

parseProgram : : CheckerM [Node]
parseProgram = many parseNode

parseNode : : CheckerM Node
parseNode = do

forthWordOrExpr <− l i f tM (new _Expr) e x p r e s s i o n
<|> l i f tM (new _ForthWord) eva lForthWord

check forthWordOrExpr
return forthWordOrExpr

e x p r e s s i o n : : CheckerM Expr
e x p r e s s i o n = t ry p a r s e I f E l s e <|> t ry p a r s e I f

<|> pa r s eCo lon −−− and o th e r e x p r e s s i o n s

−−− A sample e x p r e s s i o n p a r s e r
p a r s e I f E l s e : : CheckerM Expr
p a r s e I f E l s e = do

parseWord W. i f ’
i f E x p r s <− manyWordsTi l l W. e lse ’
e l s e E x p r s <− manyWordsTi l l W. then ’
return $ I f E l s e E x p r i f E x p r s e l s e E x p r s

Listing 5.3: The parsing phase at a glance

is thus less complex than general type inference (see Section 2.3) where the resolution of
global type constraints is the rule.

Notation. In Figure 5.4 the stack effect composition rules of a simple type system
without subtypes are given. s1, s2, t1 and t2 refer to a stack image, denoting zero, one
or more data types present on the stack. x and y refer to a single data type. The dot ·
concatenates stack images or single types where the right-hand side operand is on top of
the stack and the arrow → denotes the transition of one stack image to another. # is a
unary function expecting a stack image and gives the number of types contained in that
stack image. The empty set ∅ denotes a type clash.

1. #s2 = 0 =⇒ (s1 → s2) (t1 → t2) = (t1 · s1 → t2)

2. #t1 = 0 =⇒ (s1 → s2) (t1 → t2) = (s1 → s2 · t2)

3. x 6= y =⇒ (s1 → s2 · x) (t1 · y → t2) = ∅

4. (s1 → s2 · x) (t1 · x→ t2) = (s1 → s2) (t1 → t2)

Figure 5.4: Composition rules for simple stack effects in [SK93]

32

Those rules are also present in [Kna93] where Rules 1, 2 and 3 are referred to as
’composition rules’ and Rule 4 is named a ’reduction rule’ as the size of the stack images
decreases in that process.
More recently, Pöial has pursued an experimental Java implementation of static Forth type
checking in [Pö08], based on the above preliminary approaches and his own groundwork
in [Pö03] and [Pö06]. While the thereby introduced typing rules don’t differ from those
used by Knaggs and Stoddart, Pöial makes use of the concept of the greatest lower bound
of two stack effects to deal with type checking the effect of an IFELSE control structure.

In [Kna93] and [SK93] respectively, Knaggs and Stoddart additionally outline integrat-
ing control structures, subtyping, reference types and polymorphism in the type system.
Those changes can be done atop the simple composition rules of Figure 5.4 and allow
for tackling the typing challenges as defined in Section 1.4. This is why the stack effect
composition rules of [Kna93] and [SK93] will be taken as the theoretical underpinning of
the type inference and the type consistency checking in the implementation.

5.4 Implementing Stack Effect Inference
The rules of Figure 5.4 form the base of the hereby introduced simple type checking
approach. They support neither polymorphism nor subtyping. Those will be added in
the sections 5.10 and 5.9.

data TypeSymbol = F lag | Char | N | Plus_N | U −−− . . . o t h e r t yp e s
data DataType = Wi ldcard | P r i m i t i v e TypeSymbol
type IndexedStackType = (DataType , Int)

data S t a c k E f f e c t = S t a c k E f f e c t {
b e f o r e : : [IndexedStackType]

, s t reamArgs : : [De f in ingOrNot]
, a f t e r : : [IndexedStackType] }

instance H a s S t a c k E f f e c t s Expr where
g e t S t a c k E f f e c t s (I f E x p r fo r thWordsOrExprs) = do

withEmptyState $ do
e f f e c t s <− mapM check fo r thWordsOrExprs

l e t a l l E f f e c t s = (emptySt : e f f e c t s) &
t r a v e r s e . b e f o r e %~ (f l a g :)

f o r b i d M u l t i p l e E f f e c t s <− v i ews a l l o w M u l t i p l e E f f e c t s not
when (f o r b i d M u l t i p l e E f f e c t s && not (areTheSame a l l E f f e c t s))

(th row ing _ I f E x p r N o t S t a t i c ())
return a l l E f f e c t s

−− . . . o t h e r e x p r e s s i o n s

Listing 5.5: Type Class HasStackEffects

33

5.4.1 Modelling Stack Effects

The type StackEffect has three fields: before refers to the stack image before the
effect has been executed, after refers to the stack image after the execution of the effect
and the list streamArgs denotes the arguments that are read from the input stream.
As a Forth word can have multiple effects it is a crucial question whether that inde-
terminism is maintained in the checking process or if a single stack effect needs to be
guaranteed at all times. This also has implications on how an IFELSE expression has
to be dealt with: a unique stack effect can only result if the effects of the if-branch
and the else-branch coincide. That treatment of If expressions needs to be enforced
in a static typing approach. In favor of flexibility, the core algorithm can deal with
multiple stack effects, though. As a result, the general enforcement of a single stack effect
is a configuration option available in customizing the optional checker as described in
Chapter 6. In this case, the matching of alternative branches is enforced if the respective
configuration option allowMultipleEffects evaluates to True as can be seen in
getStackEffects in Listing 5.5.

1 check : : Node −> CheckerM ()
2 check node = do
3 newE f f e c t s <− e i t h e r g e t S t a c k E f f e c t s g e t S t a c k E f f e c t s node
4 c u r r e n t E f f s <− g e t C u r r e n t E f f e c t s
5 l e t e f f e c t s = [(e f f 1 , e f f 2) | e f f 1 <− c u r r e n t E f f s ,
6 e f f 2 <− newE f f e c t s]
7 r e d u c e d E f f e c t s <− mapM app l yRu l e4 e f f e c t s
8
9 l e t r e s u l t i n g E f f e c t s : : [MaybeT StackEf fec tM S t a c k E f f e c t]

10 r e s u l t i n g E f f e c t s = map app lyRu les1To3 r e d u c e d E f f e c t s
11
12 v a l i d E f f e c t s <− l i f t . fmap catMaybes . mapM runMaybeT $
13 r e s u l t i n g E f f e c t s
14
15 l e t typeChecks = not . n u l l $ v a l i d E f f e c t s
16
17 when (not typeChecks) $
18 th row ing _Clash ()
19 s e t C u r r e n t E f f e c t s v a l i d E f f e c t s
20
21 app lyRu les1To3 (stE1 , s tE2) = fmap fromJust . runMaybeT . msum .
22 map ($ (stE1 , s tE2)) $
23 [app lyRu le1 , app lyRu le2 , app l yRu l e3]

Listing 5.6: Simple Type Checking outline

A type class HasStackEffects is defined of which the instances support a func-
tion getStackEffects which returns a list of StackEffect values. Expr and
ForthWord are instances of that type class. Across the listings 5.6 and 5.5 the basic

34

type consistency check calling scheme looks like that: when check is called with an
IfExpr as an argument the getStackEffects instance for an IfExpr first calls
check on the Forth words of its body, couples those effects with the empty stack effect
and prepends the consumption of a Flag type in both alternative effects. Thus, the
stack effects of an expression are derived recursively from its constituents. In the case of
loop expressions it is checked that the loop body leaves the stack untouched or produces
a flag value in case of a BEGINUNTIL expression (see Section 6.1).

app l yRu l e1 (stE1 , stE2) = do
guard $ n u l l $ stE1 ^ . a f t e r
l e t b e f o r e 2 = stE2 ^ . b e f o r e

a f t e r 2 = stE2 ^ . a f t e r
s t reamArgs2 = stE2 ^ . s t reamArgs

return $ stE1 &~ b e f o r e %= (++ b e f o r e 2)
&~ a f t e r .= a f t e r 2 &~ st reamArgs %= (++ streamArgs2)

app l yRu l e2 (stE1 , stE2) = do
l e t b e f o r e 2 = stE2 ^ . b e f o r e

a f t e r 2 = stE2 ^ . a f t e r
s t reamArgs2 = stE2 ^ . s t reamArgs

guard $ n u l l b e f o r e 2
return $ stE1 &~ a f t e r %= (a f t e r 2 ++)

&~ st reamArgs %= (++ streamArgs2)

−− i s Sub typeOf r e p l a c e s matchesDataTypeExact ly i n S e c t i o n 5 .9
app l yRu l e3 (stE1 , stE2) = do

(topOfEf f1 ,_) <− hois tMaybe $ p r ev i ew (a f t e r . t r a v e r s e) stE1
(topOfEf f2 ,_) <− hois tMaybe $ p r ev i ew (b e f o r e . t r a v e r s e) stE2
l e t typesMatch = topOfE f f1 ‘ matchesDataTypeExact ly ‘ topOfE f f2
guard typesMatch
t ypeC l a sh

app l yRu l e4 stE1 stE2 = unpack $ app lyRu le4 ’ s tE1 stE2
where
unpack = fmap (^? ! _Lef t) . r unE i the rT
app lyRu le4 ’ s tE1 stE2 = do

(topOfEf f1 ,_) <− f i r s t O f (a f t e r . t r a v e r s e) stE1 ?? (stE1 , s tE2)
(topOfEf f2 ,_) <− f i r s t O f (b e f o r e . t r a v e r s e) stE2 ?? (stE1 , s tE2)
dataType <− h o i s t E i t h e r . note (stE1 , s tE2) $

topOfE f f1 ‘ matchesDataTypeExact ly ‘ topOfE f f2
app lyRu le4 ’ (s tE1 & a f t e r %~ t a i l) (stE2 & b e f o r e %~ t a i l)

Listing 5.7: Implementation of the composition rules of Figure 5.4

35

5.4.2 Implementing the Stack Effect Calculus

In Listing 5.6 it is illustrated how the rules of the theoretic stack effect calculus of
Figure 5.4 are called to derive a type checking result. The function check first computes
all pairs of the present stack effects and the effects of the next Forth expression. Those
pairs are then processed by Rule 4: A stack effect pair is shortened as long as the top
production stack type of the old stack effect coincides with the top consumption stack
type of the new stack effect. Just then it is checked which one of Rules 1 to 3 is applicable
and the stack effects pair is either reduced to one or a type clash is signaled. Rule 1 and
Rule 2 not only compose the data types on the stack but also input stream types (see
Listing 5.7).
If the resulting list of validEffects is not empty the current Node has been successfully
checked for type consistency.

5.5 Handling of Multiple Stack Effects
In the context of the current expression having multiple stack effects, the above algorithm
abides by the approach of [SK93] as it derives a type clash only if the list validEffects
is empty, i.e. if no combination of the present stack effects and the stack effects of the
current Node results in a type consistent composition.

\ key has effect (-- char), hold has effect (char --)
: word1 i f 4 e l s e key then ; \ => (flag -- n / flag -- char)
: word2 word1 ho ld ; \ => (flag --)
: word3 + > ; \ => (n n n -- flag)

Listing 5.8: Composition examples with expressions having multiple stack effects

Listing 5.8 shows some colon definition examples. Their stack effects inferred by the
presented algorithm, which implements the handling of multiple effects as designed in
[SK93], are listed next to it.
The IFELSE expression in word1 results in two stack effects inferred for that definition.
Therefore, in Figure 5.9, checking the type consistency of word2 results in checking two
pairs of stack effects of which one type clashes by Rule 3 of Figure 5.4.

(flag → n) (char →)⇒ ∅ by Rule 3
(flag → char) (char →)⇒ (flag →) by Rules 4 and 2

Figure 5.9: Checking compositions of "if 4 else key then hold" in word2

The fact that word2 type checks does not go with the claim to guarantee type
consistency, however. It rather means that word2 may have the effect (flag →). There
is an obvious solution for guaranteeing type consistency in all possible program runs:

36

Demand a valid composition of all stack effect pairs subject to the composition algorithm.
Consequently, word2 would not type check.

Using that approach, however, word3 of Listing 5.8 would not type check either
according to Figure 5.10, given that + has the effects (n · n→ n) and (u · u→ u) and >
has the single effect (n · n → flag). Such a composition should work, however, given
that the stack effect multiplicity of + has a different meaning.

(u · u→ u) (n · n→ flag)⇒ ∅ by Rule 3
(n · n→ n) (n · n→ flag)⇒ (n · n · n→ flag) by Rules 4 and 1

Figure 5.10: Checking compositions of "+ >" in word3

Obviously, there are two kinds of multiplicity which need to be handled differently:
On the one hand, indeterministic effects induced by a branching expression like IFELSE.
On the other hand, intersection types like in the case of addition (see Section 3.1 and
[Pie91], p.20). Stoddart and Knaggs themselves give an example of an intersection
type in [SK93], page 10, where they define the word and to be the intersection of
(flag · flag → flag) and (logical · logical → logical) which we write succinctly as
(flag · flag → flag & logical · logical→ logical). Thus, they express that and should
be applicable to flags as well as to bitwise logical entities, in general. Whereas their
approach leads to the loss of the above depicted guarantee of type consistency in all
program runs, this problem can be solved as follows.

Implementation. In addition to the list of stack effects of the stack effect
composition algorithm’s state (see Listing 5.2) the CheckerState gets a boolean field
intersection which indicates whether those stack effects denote an intersection type.
Furthermore, the function getStackEffects, which had been designed to return a list
of stack effects [StackEffect] of the next Node to compose in Listing 5.5, also returns
an according boolean value. Thus, an IFELSE expression always returns a False value
in addition to the respective stack effects because it can never denote an intersection
type. We call that boolean value hasNodeIntersectionType below. Given that
additional information it now remains to define when the composition should be invalid
as for word2 of Figure 5.9 and valid for word3 of Figure 5.10, i.e. when should any
clash cause the failure of the whole composition?

The whole composition should fail if and only if at least one stack effect composition
fails and both intersection and hasNodeIntersectionType are both False.
On the one hand, the composition in Figure 5.9 fails as neither word1 nor hold possess
an intersection type. On the other hand, the composition in Figure 5.10 succeeds as
+ has an intersection type (see Listing 5.1). After a successful composition, the field
intersection is set to False if the list of validEffects (see Line 12 of Listing 5.6)
only contains one stack effect.

37

Forbid Multiple Effects. The above approach ensures the statically type con-
sistent composition of operations having an indeterministic stack effect. Still, it can
be claimed that a program should have deterministic stack effects only, thus following
a best-practice leading to simpler, less complex programs. That’s why the prototype
supports the option allowMultipleEffects in the configuration of a respective
checker. Listing 5.5 shows the prompt detection of the violation of the property in
a branching expression. More generally, the property is checked when the computed,
possibly indeterministic, stack effect of a colon definition would be exported into the
CheckerState.

5.6 Type Checking Colon Definitions

5.6.1 Stack Effect Comments

In idiomatic Forth code it is common to add a stack effect comment at the beginning of
a colon definition. That optional stack effect comment needs to be placed right after the
name of the word that is defined. Using that idiom, the intended effect of a user-defined
word is documented. Whereas in other languages such a type annotation is generally
necessary to help type inference, this is not the case for Forth stack effect inference
(see sections 5.3 and 2.3). However, it is practically useful to implement a static check
whether the inferred stack effect of a word ’matches’ the intended stack effect specified by
the user. In addition, it is thus possible to restrict the use of a word in a type consistent
way. Given that it matches the inferred effect, the effect of the stack effect comment is
later used in the remaining type checking process whenever that word’s effect is needed.

: add3 (n -- n) 3 + ;
: maybeDouble (n flag -- n) i f 2 ∗ then ; \ CLASH
: f o r c e d D e f i n i t i o n (n flag -!- n) i f 2 ∗ then ;
: r i g h t 2 E f f s (flag -- n / flag -- char) i f 4 e l s e key then ;
: wrong2Ef f s (flag -- n & flag -- char) i f 4 e l s e key then ; \ CLASH
: nAdd i t i on (n -- n n) + ;
: a d d i t i o n (n -- n n & u u -- u) + ;

Listing 5.11: Checking Stack Effect comments

In case of the colon definition of add3 in Listing 5.11 it is trivial to decide whether
the stack effect matches the inferred type – they are simply equal. In general, this task
turns out to be harder, though, especially in the context of multiple stack effects. For
single stack effects only, the approach of [SK93] is extended to also cover input stream
types.

38

5.6.2 Matching Stack Effect Comments

Let infI , specI denote stack images and let infE and specE denote single stack effects in
the following.
Case 1. In case a single stack effect infE is inferred, it matches the stack effect comment
specE having the structure (specI1 → specI2) if and only if

(→ specI1) infE (specI2 →)⇒ (→)

Notably, in the above composition, input stream types, which can normally only occur in
the consuming stack image, can for once occur in the producing stack image of the stack
effect (→ specI1). In that case, they are treated the same way as normal data types in
the context of the composition rules of Figure 5.4.
Notably, infE is a subtype of specE in so far as, given the changes of Section 5.9 to
stack effect composition, this rule respects contravariance in the data types of the
consuming stack image and covariance in the data types of the producing stack image
(see Section 5.14.2 for an example).
The above rule suffices to show that the implementation of add3 matches with its stack
effect comment. The rules for multiple stack effects will refer to that single-effect rule
as a predicate Matches(inferred, specification) which is true when the single stack effect
inferred matches the specified single stack effect specification.
Case 2. In case an effect comprised of multiple effects

(infE1 & infE2 & ... & infEk)

denoting an intersection type is inferred, it matches the stack effect comment

(specE1 & specE2 & ... & specEn)

if and only if there exists an injection g : {specE1 , ..., specEn} −→ {infE1 , ..., infEk} such
that

∀x ∈ {specE1 , ..., specEn} Matches(g(x), x)

Due to that rule the implementations of the words nAddition and addition of
Listing 5.11 match their stack effect comments. It is because of that injective mapping
that the context where an intersection type can be used can be safely reduced, as stated
by the stack effect comment of nAddition of Listing 5.11.
Case 3. In case an effect comprised of multiple effects

(infE1 / infE2 / ... / infEk)

which do not denote an intersection type is inferred, it matches the stack effect comment

(specE1 / specE2 / ... / specEn)

if and only if there exists a bijection f : {specE1 , ..., specEn} −→ {infE1 , ..., infEk} such
that

∀x ∈ {specE1 , ..., specEn} Matches(f (x), x)

39

The stack effect specification of maybeDouble of Listing 5.11 reads less effects than
the number of its inferred stack effects, consequently, there cannot exist a bijection.
For right2Effs, however, there exists a bijection such that all mappings satisify the
Matches predicate. wrong2Effs shows that the inferred effects never match the specified
effects if either denotes an intersection type while the other does not.

Local Failure. In absence of a stack effect comment, the comprising words of a
colon definition are composed in order to yield an accumulated stack effect which is then
referred to when the colon definition’s word is needed in later in the type checking process.
When the composition algorithm yields a type clash in the body of a colon definition the
whole type checking process of the program halts with an error. However, practically,
it can be useful to tolerate a type clashing colon definition and continue type checking
the rest of the program which does not make use of that erroneous definition. That
configuration option will be called allowLocalFailure and will be used in Chapter 6.

Forced Effects. Listing 5.11 shows another feature supported by configuration in
the stack effect comment of forcedDefinition, where -!-, delimiting the consuming
and the producing stack image, denotes a forced stack effect. A forced stack effect
bypasses static type consistency in so far as it specifies the stack effect of the annotated
colon definition without matching it with the inferred stack effect. Thus, it’s possible
to use statically unsound or even unknown operations in an accordingly marked colon
definition if this option is enabled.

Third Party Words. A real-world program often needs to access the words of
a third-party library which cannot be accessed during type checking. That’s why the
checker supports the integration of third-party words by defining their stack effects as
part of the initial checker configuration.

5.7 Assertions
When the computed stack effect of a word does not correspond to the specified stack effect,
assertions can be helpful in the debugging process: an assertion is a comment of a certain
kind which can be inserted anywhere in the body of a colon definition. An assertion
specifies the expected stack image at that exact point of execution in the surrounding
word. Assertions are a tool for the developer to specify more exactly the intended effects
throughout the word’s execution and can thus provide better error messages as to why a
word does not correspond to its specification, respectively.

Syntactically, an assertion differs from an unprocessed comment by prefixing the list of
expected types with Assert as in (Assert n char); multiple stack effects are not
supported. Internally, such a parsed assertion is trivially transformed to a regular stack
effect such that it can be processed by the aforementioned basic stack effect composition
algorithm and reduction rules:

(Assert n char)⇒ (n char -- n char)

40

In Listing 5.12 another variant, a strict assertion is demonstrated, too; it is distinguished
from a simple assertion by preceding the stack image with "Assert!". While a simple
assertion also type checks asserting only the top part of the stack (Line 5) and supports
an assumption as to the stack image before calling dropNumber (Line 1) a strict
assertion forbids those cases; a strict assertion type checks only if the claimed stack image
corresponds to the complete stack image computed from the effects of the preceding
words of the surrounding colon definition!

1 : dropNumber (n --) (Assert n) drop ;
2 : dropNumber (n --) (Assert! n) drop ; \ CLASH
3 : dropNumber (--) 5 (Assert n) drop ;
4 : dropNumber (--) 5 (Assert! n) drop ;
5 : dropNumber (-- n) 5 4 (Assert n) drop ;
6 : dropNumber (-- n) 5 4 (Assert! n) drop ; \ CLASH

Listing 5.12: Assertions

In addition, assertions play a crucial role in supporting higher-order programming in
Section 5.15.

5.8 Casts
Similar to assertions, a cast can be specified by inserting a comment at the appropriate
place, e.g. (Cast n -- flag) could be frequently used to cast the top stack value
of type n to a boolean flag. Casts are thus a tool useful in the typically iterative process
of adding more static types to an existing untyped program as they allow for avoiding a
strict typing routine at selective spots – this obviously comes at the cost of breaking the
default static typing, that’s why casts must be allowed by configuration (see Section 6.1
for an example).

Concerning the implementation, casts are handled in a way similar to assertions: a
comment starting with Cast is parsed to be a cast such that a word with the intended
effect is generated and passed to the base stack effect composition algorithm. Effectively,
the generated cast stack effect can thus evoke a type clash if the algorithm does not
derive the cast’s consuming stack image at the spot of its occurrence.

5.9 Subtyping
[SK93] proposes modifying the last two composition rules of Figure 5.4 in order to support
subtyping. Figure 5.13 shows those simple modifications where x ≤ y means that x is a
subtype of y:

Those modifications imply that a successful composition of stack effects does not
require their top stack types to be equal but to be in a subtype relation. Conversely, a
type clash results whenever that subtype relation does not hold in Rule 3.

41

3. ¬(x ≤ y) =⇒ (s1 → s2 · x) (t1 · y → t2) = ∅

4. (x ≤ y) =⇒ (s1 → s2 · x) (t1 · y → t2) = (s1 → s2) (t1 → t2)

Figure 5.13: Subtyping support of composition rules of [SK93]

Implementation. Subtyping can be integrated into the stack effect calculus im-
plementation without a fundamental break of the design. In fact, only the calls of
matchesDataTypeExactly in Listing 5.7 are replaced by isSubtypeOf as defined
in Listing 5.15. There it is checked whether the first argument t1 is a subtype of t2
by checking their membership in a set specifying the subtype relation, a set of the
CheckerState. That set was precomputed before the start of type checking. Effec-
tively, the direct subtypes of primitive data types need to be specified as part of the
configuration of the checker (see checker4 in Listing 6.2) so that the transitive closure
of the unfolding relation gets stored in that global CheckerState.

5.10 Introducing Polymorphism

There are a number of Forth words which only manipulate the order of the values on
the stack, no matter what type those values hold. Using the example of swap with the
effect (x1 x2 -- x2 x1), there are the type variables x1 and x2 which should be
instantiable to any concrete type. Below, type variables are referred to as wildcards,
following the nomenclature of [Kna93]. In stack effect comments a wildcard is always
depicted by the type symbol x and the same optional index can make wildcard types
unify within that stack effect comment. In fact, every data type can have an optional type
index in the following. Whenever no optional index is given, a new index gets assigned.
That new index is unique in the scope of the stack effect, e.g. (n x1 -- x1 n) gives
rise to (n2 x1 -- x1 n3).

As a matter of fact, we need to extend the above stack calculus to support wildcard
types. In [Kna93] so-called ’wildcard rules’ are specified for this purpose. They need
to be applied before the implementation of the stack effect composition rules in order
to reduce the stack effects solely with respect to wildcard types. There are four such
wildcard rules and Figure 5.14 shows how each rule applies to an example stack effects
composition. [x/y] designates a substitution, i.e. type x replaces y in the scope of
the enclosing parentheses. The arrow W x==⇒ means that the respective derivation is made
according to wildcard rule x.

Wildcard Rules. Applications 1 and 2 of Figure 5.14 show the instantiation of the
wildcard type with a concrete type if exactly one of the two top stack types to unify is a
wildcard type. Example 3 demonstrates renaming a wildcard if the same wildcard index
appears in both effects. The rule corresponding to Example 4, however, is applicable if
the types to unify are both wildcards such that one wildcard type replaces the other.

42

1 (flag → n)(x1 · x2 → x2 · x1) W 1==⇒ (flag →)
(
(x1 → x2 · x1)[n/x2]

)
= (flag →)(x1 → n · x1)

2 (x1 · x2 → x2 · x1)(n→ flag) W 2==⇒
(
(x1 · x2 → x2)[n/x1]

)
(→ flag) = (n · x2 → x2)(→ flag)

3 (x2 → x2)(x2 · x2 → x2) W 3==⇒ (x2 → x2)
(
(x2 · x2 → x2)[x3/x2]

)
= (x2 → x2)(x3 · x3 → x3)

4 (x1 · x2 → x1)(x3 → x3) W 4==⇒ (x1 · x2 → x1)
(
(x3 → x3)[x1/x3]

)
= (x1 · x2 → x1)(x1 → x1)

Figure 5.14: Application of wildcard rules of [Kna93]

In the next section those rules will be adapted for being able to deal with reference types.

Implementation. Where do the wildcard rules fit into the original stack effect
composition algorithm? The wildcard rule for renaming common wildcards is done
just before the call of the stack effect reduction rule of applyRule4 in Line 7 of
Listing 5.6. In fact, the other wildcard rules and applyRule4 then need to be applied
in an alternating way to the resulting stack effects until a fixed point is reached. Just
then applyRules1To3 is applied.

5.11 Reference Types

As Forth is a stack-based language the concept of variables does not play a role as
significant as in many other programming languages. Still, there are words as create,
variable or constant in the Forth core wordset for creating named references to
a value, where the reference’s name is read from the input stream. Obviously, the
way a type system deals with references has strong implications on what it guarantees:
using static typing the type of a reference may never change and it must be inferred at
compile-time.
The canonical Forth words for working with references are !, named "store", having
the stack effect (x a-addr --) and @, named "fetch", having the stack effect
(a-addr -- x). Obviously, a Forth reference is just a value of type a-addr, a
memory address, which can be manipulated by arithmetic operations, such that direct,
low-level memory management is the Forth default. In order to make references suscepti-
ble to static analysis, though, the concept of pointers is needed. To this end, reference
types are introduced.

5.11.1 Notation

As [Kna93] proposes, we write *k in order to refer to a reference to a type k in stack
effect comments. More generally, the number of stars prefixing a type k denotes the
reference degree, the levels of indirections of the reference, while we refer to k as the base

43

type of the reference, e.g. **n has the reference degree 2, the base type n and can be
written more succinctly as *2n. Consequently, the stack effects of "store" and "fetch"
correspond to (x *x --) and (*x -- x). If the reference degree is 0, e.g. *0n,
we get the primitive type n.

5.11.2 Adjusting the Wildcard Rules

The wildcard rules of [Kna93] need to be extended to deal with references to concrete
values as well as with references to wildcards. Those amendments are detailled in [SK93].
Concerning the applications 1-4 in Figure 5.14, those changes with respect to the top
stack types to unify have the following consequences during type checking.
Let the arrow W x==⇒ refer to the application of the respective wildcard rule x, let the arrow
⇒ refer to an application of the stack effect composition of Figure 5.4 and let the type k
designate a non-wildcard type in those examples:

ad 1) If the reference degree m of k is smaller than the reference degree n of the
wildcard type, then there is a type clash.

m < n : (→ ∗mk) (∗nx→) W 1==⇒ ∅, e.g. : (→ n) (∗x→ x) W 1==⇒ ∅
Otherwise the wildcard type is substituted with ∗m−nk:

m ≮ n : (→ ∗mk)(∗nx→) W 1==⇒ (→ ∗mk)
(
(∗nx→)[∗m−nk/x]

)
⇒ (→)

e.g. : (→ ∗n) (∗x→ x) W 1==⇒ (→ ∗n) (∗n→ n)⇒ (→)

ad 2) If the reference degree m of k is smaller than the reference degree n of the
wildcard type, then there is a type clash.

m < n : (→ ∗nx)(∗mk →) W 2==⇒ ∅, e.g. : (→ ∗x) (k →) W 2==⇒ ∅
Otherwise the wildcard type is substituted with ∗m−nk:

m ≮ n : (→ ∗nx)(∗mk →) W 2==⇒
(
(→ ∗nx)[∗m−nk/x]

)
(∗mk →)⇒ (→)

e.g. : (→ ∗x) (∗ ∗ k →) W 2==⇒ (→ ∗ ∗ k) (∗ ∗ k →)⇒ (→)

ad 3) Wildcard renaming stays unchanged.

ad 4) Both top types are wildcard types.

n ≤ m : (→ ∗mx1) (∗nx2 →) W 4==⇒ (→ ∗mx1)
(
(∗nx2 →)[∗m−nx1/x2]

)
⇒ (→)

e.g. : (→ ∗ ∗ x1) (∗x2 →) W 4==⇒ (→ ∗ ∗ x1) (∗ ∗ x1 →)⇒ (→)

n > m : (→ ∗mx1) (∗nx2 →) W 4==⇒
(
(→ ∗mx1)[∗n−mx2/x1]

)
(∗nx2 →)⇒ (→)

e.g. : (→ ∗x1) (∗ ∗ x2 →) W 4==⇒ (→ ∗ ∗ x2) (∗ ∗ x2 →)⇒ (→)

44

Briefly, the above modifications provide two enhancements compared to the wildcard
rules of Figure 5.14: Firstly, they ensure the correct substitutions with respect to the
reference degree of the substitutor, secondly, they signal a type clash when a wildcard
type and a primitive type with incompatible reference degrees should be unified as in 1)
and 2). In the implementation, we have a clearer distinction of responsibilities concerning
the reporting of a type clash between the wildcard rules and the stack effect composition
rules. The wildcard rules only conduct the substitutions. A possible type clash resulting
from incompatible reference degrees is detected in the stack effect composition rules of
Figure 5.13 in the function isSubtypeOf anyway (see Listing 5.15).

i s Sub typeOf : : T . DataType −> T. DataType −> CheckerM Bool
i s Sub typeOf t1 t2 = do

s u b t y p e R e l a t i o n S e t <− v iew s u b t y p e R e l a t i o n <$> g e t S t a t e
i f r e f D e g r e e t1 == r e f D e g r e e t2 then do

l e t baseType1 = baseType ’ t1
baseType2 = baseType ’ t2

i n S u b t y p e R e l a t i o n = fromMaybe False $ do
type1 <− baseType1 ^? _ P r i m i t i v e
type2 <− baseType2 ^? _ P r i m i t i v e
return $ S . member (type1 , type2) s u b t y p e R e l a t i o n S e t

return $ i n S u b t y p e R e l a t i o n | | (subtypeByWcard baseType1 baseType2)

e l s e return False
where

subtypeByWcard b1 b2 = (has _Wildcard b1 && has _Wildcard b2) | |
(not (has _Wildcard b1) && has _Wildcard b2) | |
(has _Dynamic b1 | | has _Dynamic b2)

Listing 5.15: Subtyping stack types

The presented approach already allows for checking the type consistency of polymor-
phic stack effects with respect to reference types. Still some questions remain: How does
a reference get created in the first place and what primitive base type does it refer to?
Can that base type be inferred or does it need to be specified by an annotation?

5.11.3 Creating References

Forth has the word create which reads the name of the variable to create from the
input stream. We introduce various ways to define the type of a reference and to infer
the type of a reference, respectively.

In the above figure various ways of defining and using the reference foo are depicted;
in all those cases, the type of the reference foo is inferred to be n, a number.
The first line corresponds to initializing the reference on definition – the word , stores
the top stack value in the lastly defined reference so that the reference can be trivially
assigned the type of that value.

45

1 create f oo 9 ,
2 create f oo foo @ 4 +
3 create f oo (other words) 9 foo !
4
5 : createNumberRef (:"name" :[n] -!-) create ;
6 createNumberRef foo foo c@ \ CLASH

Listing 5.16: Exemplary Reference Usage

In Line 2 the type of foo stays unknown until the execution of + as that word expects
two numeric values on top of which one stems from derefencing foo.
Line 3 shows another typical case as the type of foo is inferred at the time a value
is written into that reference. Line 4 sees a colon definition with a forced stack effect
comment. It contains an input stream type with an additional type annotation, giving the
base type of the created reference. Any reference created with createNumberRef will
then refer to a value of type n. As a consequence, there is a type clash in the next line as
c@ is a word which accepts its argument reference to contain a value of type char: Rule
3 of Figure 5.4 is responsible for the clash of the composition (→ ∗n)(∗char → char).

Inferring the Referenced Type

It is necessary to adapt the so far type checking to infer the reference types as in lines 2
and 3 of Listing 5.16. That’s why we add an UnknownType branch to the DataType
type in Listing 5.17.
Whenever create (or a word containing create) reads the name of the new variable
to create from the input stream, we add that name to a list of managed references in
the global CheckerState. If the base type was specified as in createNumberRef or
results from an initialization as in Line 1 of Listing 5.16, nothing has to be inferred. Any
misuse of that reference would then result in a type clash induced by the wildcard rules
or the stack effect composition rules.
If the base type of the reference has to be inferred, it is assigned the UnknownType with
a unique identifier and stored in the global CheckerState.

type I d e n t i f i e r = Int
data DataType = Dynamic | Wildcard | UnknownType I d e n t i f i e r

| Pr imi t ive TypeSymbol | Reference DataType

Listing 5.17: The UnknownType data type

An UnknownType behaves as a Wildcard in the so far wildcard rules with the follow-
ing exception: Whenever an UnknownType is unified with a Wildcard (or Dynamic)
it is the UnknownType which gets propagated.
In addition, when a wildcard UnknownType is unified with a primitive type (as in the

46

wildcard rule applications a) and b) of Figure 5.14), we add a side-effect to the normal
wildcard rule application: the so far unknown base type of the reference is replaced with
that now known primitive type in the CheckerState. As a result, the type of the
variable is known and storing a value of a different type into that variable would signal a
type clash.

5.12 The Dynamic Type

Listing 5.17 introduces Dynamic as an additional data type; it stands for any type in so
far as Dynamic unifies successfully with any other value of the DataType data type in
the scope of the wildcard rules, exactly as UnknownType, but also in isSubtypeOf of
Listing 5.15. As a type literal in stack effects, dyn refers to that dynamic type. As a
result, two configuration options arise for the checker:

• Use dynamic type. If enabled, you can use the literal dyn in stack effect
comments. Due to its treatment in isSubtypeOf there can never result a type
clash from the use of a Dynamic type in so far as the Rule 4 of Figure 5.13 is always
applicable. For example, myvariable in Listing 5.18 is annotated to reference a
dynamic type, so c@ can read a character from it because of the type consistent
composition

(→ ∗dyn) (∗char → char)⇒ (→ char)

dynamic2 shows how the dynamic type can be mixed with primitive data types in
the stack effect comment which is still valid according to the approach of Section 5.6.

• Dynamic CORE words. If this option is used, all data types in the effects of
all CORE words are replaced with the Dynamic data type, e.g. the stack effect
of + then translates to (dyn dyn -- dyn & dyn dyn -- dyn) internally.
Consequently, it is possible to only check the number of values of stack images
in stack effect comments. Matching the inferred effect of dynamic3 with its
specification in Listing 5.18, a stack overflow arises, in contrast to dynamic4.
dynamic5 shows how a stack underflow is detected in combination with a strict
assertion.

: dynamic1 (:"name" :[dyn] --) create 9 , ;
dynamic1 myva r i a b l e myva r i a b l e c@
: dynamic2 (dyn n -- dyn & u dyn -- u) + ;
: dynamic3 (dyn dyn --) + ; \ CLASH
: dynamic4 (dyn dyn -- dyn) + ;
: dynamic5 + (Assert! dyn dyn) ; \ CLASH

Listing 5.18: Using the dynamic type

47

5.13 Compile-time Programming

As detailled in Chapter 4 the stack effect of a Forth word in INTERPRETSTATE can
be different from the stack effect in COMPILESTATE, e.g. within a colon definition the
words inside of [and] are executed at the time of the word definition. The overall
compile-time stack effects of a colon definition are constrained to leave no value on the
stack behind and further constrained not to expect anything on the stack at the beginning
of the colon definition.

: f oo [3 +] ; \ CLASH as + expects 2 arguments
: add5 (n -- n) [5] l i t e r a l + ;
: end i f postpone then ; immediate
: 3 or5 i f 3 e l s e 5 end i f ; \ endif is executed at compile-time

Listing 5.19: Compile-Time programming

All in all, two sets of stack effects need to be managed in the CheckerState to check
both INTERPRETSTATE and COMPILESTATE stack effects. The getStackEffects
implementation for a specific Expr can then set the isCompiling field of the state,
e.g. setting it to False in case of [], such that the checking algorithm combines the
new effects either with the existing COMPILESTATE or the INTERPRETSTATE effects.
This approach, however, does not suffice if a Forth word has both a compile-time and
a run-time effect, as the word literal. It has the compile-time effect (x --) and
the run-time effect (-- x). It takes the top value from the stack at compile-time
and puts the same value onto the stack at the time the containing word is executed
(see Listing 5.19). Obviously, that compile-time unification substitution must be carried
along to the run-time effect consistency check so that the same wildcard substitutions
can be performed.

In order to support this, the implemented wildcard rules therefore expect an optional
StackEffect argument when the compile-time stack consistency is checked; that
argument represents the potential run-time effect and all substitutions that are performed
on the compile-time stack effect are equally performed on that optional argument. From
this it follows that unifying the type of 5 with the compile-time wildcard of literal
causes the same substitution for the wildcard of the run-time effect in Figure 5.19.

Limitations

Although the use of POSTPONE and immediate colon definitions are generally supported,
a postponed word must not occur in the context of interdeterministic stack effects, e.g.
in the branches of an IF or IFELSE expression, as it must be statically known during
the parsing phase what words a definition thus compiles into another definition. Apart
from that, the semantics of POSTPONE and immediate can be easily integrated into
the existing design.

48

5.14 Object-Oriented Programming

There have been diverse projects to extend Forth for supporting object-oriented program-
ming (see [RP96]). Gforth actually includes three object-oriented packages in its standard
library. It has been decided to include support for the simplest of those, mini-oof, which
adds class-based object-oriented programming with single inheritance and nominal sub-
typing. Parsers for the syntax of class definitions and method implementations are
written in the sense of Listing 5.3 and the getStackEffects implementations of the
resulting Expr execute the static analysis.

o b j e c t c l a s s
c e l l var age
method l i k e s (object person1 -- person1 flag)

end−class pe r son

pe r son c l a s s
c e l l var r e g i s t r a t i o n N u m b e r (n)
method s tudy

end−class s t uden t

Listing 5.20: Class definitions and method implementations

The names of classes can be used in stack effect comments to denote a value of
that type. The existing subtype relation on primitive types in the CheckerState is
complemented with the subtype relation resulting from derived classes. There exists a
supertype Object of all class types in the mini-oof library.

Figure 5.20 shows an example demonstrating the use of the object-oriented extension.
Classes Person and Student are defined where Student is derived from Person.
Type consistent implementations of the respective methods are given in Figure 5.21.

5.14.1 Methods

The hook for this type checking extension lies in the optional type annotations placed
after the field and method declarations and after the :noname word in the method imple-
mentations. When a method declaration has a type annotation, the inferred effect of the
implementation needs to conform to it, otherwise there is a type error. When a method is
not annotated in the class definition the corresponding type signature is inferred from the
implementation of the method. For instance, the stack effect (a-addr u x1 -- x1)
has been inferred from the words of the :noname definition of study. However, the cor-
rect effect for that class method is confined to (a-addr u person1 -- person1)
as all methods need to take the respective object as the top stack argument in the mini-oof
library (this is necessary in order to access the given object in the method implementation
as there is no this reference in that object-oriented extension). In the given example, the

49

top stack type x1 of the consuming stack image is unified with person. Type checking
would fail if the top stack type was not a wildcard or a data type other than person.
Note that the data type person in the stack effect comment of the method likes in
Listing 5.20 denotes the object upon which the method likes is called and does not
stand for a method argument of type person. Thus, all data types of the consuming
stack image except the top of stack are referred to when the arguments of a method are
mentioned below.

5.14.2 Overriding Methods

: noname swap (Cast object -- person) age @ 40 > ; pe r son de f ines l i k e s
: noname [person : : likes] swap age @ 20 = or ; s t uden t de f ines l i k e s
: noname s" I’m Studying! " type r o t r o t type ; s t uden t de f ines s tudy

Listing 5.21: Type consistent method implementations

In Listing 5.21 the method likes of Person is overridden in the subclass Student.
Using the mini-oof syntax for superclass method calls, [person :: likes], the
superclass method likes implementation is referred to.
The subclass likes method implementation has the inferred effect (object · student1→
student1 · flag). The prototype executes a check whether this stack effect obeys the
rules of contravariance in the method’s data types of its arguments and covariance in
its producing stack image with respect to the superclass method specification. For this
purpose, we use the procedure defined in Section 5.6.2. As to the consuming stack images,
only the method’s arguments are taken into account. We derive the empty stack effect
as required:

(→ object) (object→ student1 · flag) (person1 · flag →)⇒ (→)

In contrast, the checker detects the attempt of wrong subtyping, e.g. when binary
methods are attempted to be be overridden. This must not work as binary methods
offend the constraint of contravariance of a method’s arguments.

In Listing 5.22 the superclass specification for equals is (point·point→ flag). That
method should be overriden with an implementation having the signature (betterpoint ·
betterpoint→ flag). This time we get the clashing composition:

(→ point) (betterpoint→ flag) (flag →)⇒ ∅

The composition fails according to Rule 3 of Figure 5.13 because ¬(point ≤ betterpoint).
As a consequence, the checker refuses to accept that implementation of equals for
betterpoint.

50

o b j e c t c l a s s
c e l l var l o c a t i o n
method e q u a l s (point point -- flag)

end−class p o i n t

: noname l o c a t i o n @ swap l o c a t i o n @ = ; p o i n t de f ines e q u a l s

p o i n t c l a s s
c e l l var s i z e

end−class b e t t e r p o i n t

: noname (betterpoint betterpoint -- flag) s i z e @ swap
s i z e @ = ; b e t t e r p o i n t de f ines e q u a l s \ CLASH

Listing 5.22: Rejecting overriding a binary method

5.14.3 Fields

In contrast to methods, the data types which inherited fields refer to are checked to be
invariant. The types of fields which are not annotated in their class definition can be
inferred whenever they are used applying the same inference mechanisms as for references
in Section 5.11.3.

pe r son new age @ 12 ∗ ;

Listing 5.23: Accessing a field of an object

In Figure 5.23 it is shown that fields of a class are accessed with @ just as usual
references – in this example, the type of the unannotated age of the class person is
inferred to be n.

5.14.4 Inferring the Correct Class

The below listing makes use of the classes defined in Listing 5.20 and raises the question:
What stack effect does the prototype choose for composition when the parser reads the
word age? As age is a field of the classes person and student it could either compose
(student→ ∗n) or (person→ ∗n). The call of registrationNumber, which is only
defined for student, would however result in a type clash if the latter effect of age had
been chosen. The type checking algorithm does not support any look-ahead, anyway.

dup age @ swap r e g i s t r a t i o n N u m b e r @ + \ has effect (student -- n)

51

In this case, the prototype therefore inputs the intersection of all appropriate stack
effects into the stack effect composition. Thus, the inferred effect reads

(student1→ n · student1 & person1→ n · person1)

by the time dup age @ swap has been composed. That way, the composition with
registrationNumber simply restricts that intersection in a valid way according to
the rules of Section 5.6.2.

5.14.5 Limitations

• Only fields defined to be of size cell can be used. This is because only single-cell
types are supported in the current implementation (see Section 6.2.1).

• There are no overloaded methods allowed to occur in a class. This is typical of a
language supporting optional typing (see Section 3.3).

• Two classes which are not in a subtyping relation cannot define a method of the
same name. Indeed, the second definition would just redefine the first and would
thus make it inaccessible at runtime. That limitation avoids a potential stack effect
inference problem as in Listing 2.2.

• If a class B extends a class A all method implementations of unannotated methods
of A must be given above any :noname definitions which attempt to override
superclass methods of A in B. This simply retains the top-down quality of the
prototype’s type checking process.

5.15 Higher-Order Programming
Typically, supporting higher-order programming is about being able to use functions as
arguments and as return values. In Forth, an execution token represents such a function
value on the stack. In order to integrate execution tokens into the type system design, it
is necessary to deal with the Forth core words tick (which is parsed ’) and execute.

Tick reads a word from the input stream and puts the corresponding execution
token onto the stack; accordingly, the stack effect ("<spaces>name" -- xt) is
specified in the standard. The word execute takes an execution token from the stack
and applies the semantics which are denoted by it. In the standard, its stack effect reads
as (i*x xt -- j*x) where i*x and j*x stand for any number of types of any
kind as they are dependent on the effect denoted by xt . Furthermore, the standard
mentions that in INTERPRETSTATE the following holds:

’ xyz EXECUTE ≡ xyz

In order to reason about higher-order programming, it is necessary to retain that
equality on the type level and in the stack effects of tick and execute, respectively.

52

In theory, that could be achieved by introducing type variables corresponding to i*x,
which range over a sequence of types, using them to specify the effect of xt in the stack
effects and extending the stack – however, the existing stack calculus rule system would
need to be reconstructed heavily in order to support that unification of type variables
with a sequence of types. That’s why a less invasive way of reasoning over higher-order
programming has been chosen.

We define the stack effect of tick to be

("anyWord":[EFFECT] -- xt:[EFFECT])

where EFFECT is a newly introduced concept of a type variable ranging over stack effects
and may only occur in the scope of :[] which is allowed to occur for input stream types
and execution tokens to specify their semantics. This obviously conveys the semantics
of tick that the effect of the resulting execution token corresponds to the effect of the
word read from the input stream.

In order to do without the above mentioned i*x type sequences variables, an ap-
plication of execute needs a mandatory annotation as to the type of the execution
token’s semantics which it applies. That annotation is provided by means of an assertion
(see Section 5.7) as illustrated in Listing 5.24: in handleNumbers the execution token
stored in the variable op is fetched and gets executed after the mandatory assertion
specifying its semantics.

: p l u s (n n -- n) + ;
: minus (n n -- n) − ;
create op
’ p l u s op !
: handleNumbers op @ (Assert xt :[n n -- n]) ex e cu t e ;

Listing 5.24: Higher-Order Programming

Limitations

In any case, there is a limitation as to the words which can be consumed by tick: they
must be defined in the program or be included in the set of CORE words known to the
checker, however, words with a purely syntactic meaning as IF or : cannot be used.
This is because those syntactic words are only used for successfully parsing the abstract
syntax tree and do not have stack effects on their own in the checker design.

5.16 Configuration Options

Throughout this chapter, several practical configuration options have emerged which
influence the accomplished degree of static type consistency. These options can be enabled

53

or disabled irrespective of each other such that optional checkers with variable guarantees
are created. Table 5.1 lists those options’ names and their effect if the option is enabled.

Option Description
Multiple effects Allow the use of words which result in an indeterministic

stack effect (Section 5.5).
Local failure A type clash in a colon definition does not stop the whole

type checking process. That option allows for type checking
programs partially (Section 5.6.2).

Use Dynamic type The Dyn type literal can be used in user stack effect com-
ments (Section 5.12).

Dynamic CORE words All data types mentioned in the stack effects of the provided
CORE words are replaced with Dynamic (Section 5.12).

Forced effects Specify a colon definition’s stack effect that does not get
checked against the inferred effect of the implementation
(Section 5.6.2).

Casts Cast the top stack type to a different type with a special
stack effect comment (Section 5.8).

Mini-oof Use the mini-oof extension for object-oriented Forth
(Section 5.14).

Table 5.1: Boolean configuration options

In addition to the above boolean options, a subtype relation on primitive data types
can be plugged in when the checker is created. Moreover, the checker can be fed a list of
third-party words along with their unchecked stack effect specifications.

Subtypes Provide a function of the type

TypeSymbol⇒ [TypeSymbol]

with the intended meaning that the latter list value types
are subtypes of the former primitive type.

Third-Party Words Provide a list of the stack effect specifications of third-party
words (Section 5.6.2).

Chapter 6 will evaluate the use of those options by applying different checkers to a
small Forth program.

54

CHAPTER 6
Evaluation

The design and implementation of optional, pluggable types for Forth have been intro-
duced in the previous section. Now the prototype gets evaluated as its practical use
is demonstrated in the process of type checking a small Forth program. At last, the
prototype is analyzed in the scope of optional, pluggable types and compared with related
work.

6.1 Using pluggable Forth types

Listing 6.1 shows a small, functionally correct Forth program; it will now be type checked
under different checker configurations to showcase the prototype’s practical usage.

The example program implements a game often referred to as “Guess the number”. Ba-
sically, you start the game calling start-game so that a random number between 0 and
99 is generated in init-secret-number and stored in the reference secret-number.
Then, a loop repeatedly asks a number command-line input from the user and compares
it with secret-number: If they match, the loop stops and the user wins; otherwise
the user told is whether the searched-for number is smaller or larger and the loop continues.

First of all, it is worth mentioning that the program uses the random word and
the seed reference included from the extension random.fs. While the current im-
plementation does not check files which are included, it has support for bridging to
third-party words as they can be added as part of the configuration. Alternatively, the
allowForcedEffects and allowLocalFailure options can be used for defining a
stack effect of a colon definition which uses unknown, imported words – the empty stack
effect specified for init-seed is thus not checked in the checking process.

Listing 6.2 shows the checker configurations that are used in the following. Typically,
let’s begin with the weakest typing configuration checker1: by enabling allCoreDynamic

55

1 i nc lude random . f s
2 create s e c r e t−number
3
4 : create−random−nr 100 random ;
5 : i n i t −seed (-!-)
6 ut ime drop he r e xo r ut ime drop l s h i f t s eed ! ;
7 : i n i t −s e c r e t−number
8 i n i t −seed create−random−nr s e c r e t−number ! ;
9 : read−gue s s

10 pad 2 accep t pad swap
11 s>number? swap drop ;
12 : s u c c e s s c r ." You guessed it! " c r
13 \ swap drop
14 ;
15 : g i ve−a d v i c e
16 swap c r ." The requested number is "
17 0 < i f ." larger. "
18 e l s e ." smaller. " then c r ;
19
20 : f e edback
21 s e c r e t−number @ −
22 dup 0= dup
23 i f
24 s u c c e s s
25 e l s e
26 g i ve−a d v i c e
27 ." Try again " c r
28 then ;
29
30 : wrong−i n p u t
31 drop ." Your input was not a number! " c r
32 0 \ (Cast n -- flag)
33 ;
34
35 : s t a r t−game
36 i n i t −s e c r e t−number
37 c r ." Guess the number between 0 and 99 " c r
38 begin
39 read−gue s s
40 i f f e edback
41 e l s e wrong−i n p u t
42 then
43 u n t i l ;

Listing 6.1: "Guess a number" in Forth

56

checke r1 = Checke rCon f i g {}
& a l l o w L o c a l F a i l u r e .~ True
& al lCoreDynamic .~ True
& a l l o w F o r c e d E f f e c t s .~ True
& a l l o w M u l t i p l e E f f e c t s .~ True
& t h i r d P a r t y .~ [do { p a r s i n g " random " ;

e f f e c t " (n −− n) " }]
& a l l o w C a s t s .~ False
& allowOOP .~ False
& allowDynamicType .~ False
& sub type s .~ (const [])

checke r2 = checke r1
& a l l o w M u l t i p l e E f f e c t s .~ False
& al lCoreDynamic .~ False
& a l l o w C a s t s .~ True

checke r3 = checke r2
& a l l o w M u l t i p l e E f f e c t s .~ True

checke r4 = checke r2
& a l l o w C a s t s .~ False
& a l l o w L o c a l F a i l u r e .~ False
& sub type s .~ (\ x −>

i f | x == f l a g −> [n]
| True −> [])

Listing 6.2: Creating different checkers

the types of all effects of all words are replaced with Dynamic such that no type clash
but a stack underflow/overflow can arise.

In Figure 6.3 we can see part of the output of a run of the checker given that configu-
ration. We see what types have been inferred for the definitions in the absence of any
type annotations. All types being Dynamic or flag, there is an error in the type of
start-game as the checker complains that the body of the loop does not produce exactly
one flag value, which is a stringent requirement for a BEGINUNTIL loop. In order to
get to the bottom of that problem, we look at the inferred types of wrong-input and
feedback: It stands out that feedback has two stack effects and leaves one flag too
many on the stack in one of them.

We continue disabling allCoreDynamic and set allowMultipleEffects to
False such that the checker fails for feedback in Figure 6.4, consequently. The output
gives away the inferred, different effects of the IF-ELSE branches. The source of error
can thus be located more easily in the IF branch as an empty stack effect is inferred for
success where the flag value is not removed from the stack – adding a swap drop

57

f e edback
(dyn -- Flag Flag)
(dyn -- dyn)

s t a r t−game
FAILURE : Body o f BEGIN−UNTIL must produce e x a c t l y one f l a g v a l u e !

wrong−i n p u t (dyn -- dyn)

Figure 6.3: Detecting a stack overflow using the checker1

(see Line 13 in Listing 6.1) removes it and the problem disappears. The original Forth
program unintentionally left a flag value on the stack in the success case – this did
not impair the observable correctness of the program but can typically give rise to bugs
which are hard to track down later on in a developing process.

f e edback
FAILURE : f e edback : I f−E l s e b ranche s do not have matching t yp e s
IF_BRANCH : (Flag --)
ELSE_BRANCH : (N x1 Flag -- x1)

s u c c e s s (--)

g i ve−a d v i c e (N x1 -- x1)

Figure 6.4: Part of the output running checker2

Using checker3, the checker now complains about a badly typed BEGINUNTIL
expression again (see Figure 6.5), the reason being the numerical value it infers in one
branch instead of a flag value.

s t a r t−game
FAILURE : Body o f BEGIN−UNTIL must produce e x a c t l y one f l a g v a l u e !
(-- Flag)
(-- N)

Figure 6.5: Reject a BEGIN-UNTIL loop that does not always produce a top flag value

Anyway, the literal 0 is used in the ELSE branch of start-game to indicate that the
loop should continue in case the input could not be parsed as a number. We circumvent

58

: g i ve−a d v i c e
c r ." The requested number is "
0 < i f ." larger. "

e l s e ." smaller. " then c r ;

’ g i v e−a d v i c e (assert xt :[n --]) e x p l a i n−wrong−gue s s !
: f e edback

s e c r e t−number @ − dup
0= dup
i f

s u c c e s s
e l s e

swap

e x p l a i n−wrong−gue s s @ (assert xt :[n --]) ex e cu t e

." Try again " c r
then ;

Listing 6.6: Using indirection for factoring out functionality

the problem by using the cast (Cast n -- flag), see Line 32 in Listing 6.1. As a
matter of fact, it is only that cast annotation that is actually needed to make the checker
succeed, all other types are inferred, including the type of secret-number.

create−random−nr (-- N)
e x p l a i n−wrong−gue s s (-- *xt :[N --])
f e edback (N -- Flag)
g i ve−a d v i c e (N --)
i n i t −s e c r e t−number (--)
i n i t −seed (--)
read−gue s s (-- N Flag)
s e c r e t−number (-- *N)
s t a r t−game (--)
s u c c e s s (x1 x2 -- x2)
wrong−i n p u t (x -- N)

Figure 6.7: Final inferred effects of running checker4

The one area where annotations are always needed is the use of higher-order program-
ming. As a possible real-world enhancement or refactoring, we factor part of feedback
out into a reference to a function such that it is configurable how much to advise the
player. That reference explain-wrong-guess thus references a word with the effect

59

(n --). Those changes are visible in Listing 6.6. In addition, we could get rid of the
cast by replacing 0 with an explicit 1 0=. Alternatively, we specify n being a subtype of
flag in checker4. We can gain trust by disabling allowCasts and thus ruling out
casts in our codebase. As a matter of fact, the conservative checker checker4 now runs
successfully.
Consequently, we have now achieved static type consistency since the rigorous configura-
tion of checker checker4 does not permit statically unsound features. Optionally, we
could now add the inferred stack effects of Figure 6.7 as stack effect comments in order
to document the intent of the defined words.

Above it has been shown how those checkers can guide the evolution of an existing
program towards static type consistency. Obviously, the checkers can provide their
benefits even easier when they are integrated into the development of a new program from
scratch: otherwise necessary, possibly large modifications to later account for static type
consistency are not needed when the checker is run routinely. In addition, providing stack
effect comments for colon definitions as a rule is highly recommendable since the cause
of error can then be determined more easily from the checker’s output, in general. As
experience has shown, assertions are useful in this regard, too – they allow for step-wise
checking the intended stack image with the checker’s computed stack image as explained
in Section 5.7. Thus, assertions are a helpful debugging tool useful to narrow down
the exact location of the error when the checker reports a mismatch between a colon
definition’s inferred effect and its specificied stack effect comment.

6.2 Comparing related work

6.2.1 Comparison of functionality

Limitations. The starting point of integrating Forth words has been the Forth CORE
wordset. However, the use of some words of that wordset is not supported in
the presented implementation. The following words are not supported as they
excel the intended goals listed in Section 1.4: 2@, 2!, state, recurse, r@, r>,
does>, variable, constant. In the case of the latter words, the more general
create is supported for working with references while does>, variable and
constant could be partly expressed in terms of create. In contrast, [Kna93]
features support for those words in its design of the FLINT Forth type checker and
checks recursive calls of recurse by comparing the stack image at the point of
that word’s occurrence with the stack effect specification. Similarly, support of the
return stack (or other stacks as a floating point stack) for words like r@ could be
added without great effort. The words 2@ and 2! are used for accessing references
of a double-cell sized type which could be supported with considerable modifications
of the stack effect calculus implementation. Furthermore, words as unloop, quit,
leave, exit, evaluate, environment?, abort, abort-quote and find
cannot be used with the implemented checkers. This is not surprising as they have

60

effects which are typically hardly amenable to static analysis. Supporting abort
and abort-quote would have required modifying the stack effect calculus to a
greater extent as those words work on an arbitrarily large stack image.

Stack Effect Calculus. The checker implementation uses the commonly used stack
effect calculus as presentend in Section 5.3 as its theoretical basis. In contrast to
previous works, that approach has been expanded to deal with multiple stack effects,
input stream arguments, reference types, object-oriented programming and compile-
time programming in such a way that accounts for static type consistency. In
addition, casts and assertions as already proposed in [Kna93] have been successfully
integrated into the calculus. Moreover, an annotation-based integration of higher-
order programming has been outlined where the type of the function stack value
needs to be specified by an assertion before execution. That requirement is partly
due to the workings of the chosen stack calculus and partly due to the nature of
the difficulty of compile-time type checking of higher-order programming. Doing
without type annotations in some cases of higher-order programming would have
been feasible if a Hindley-Milner variant, adapted to stack operations, had been
used as a basis for type inference. In that case, however, stack operations involving
higher-order programming would need to be expressed as at least Rank-2 types
insofar as all stack operations are polymorphic in the part of the stack they leave
untouched. While type inference for Rank-2 types is known to be decidable (see
[Wel93]) it would be difficult to integrate it into the existing stack effect calculus.
Having said that, there is the programming language Cat which promises simple
type inference for stack-based languages (see [Dig08]). It makes use of a Hindley-
Milner variant and claims to cope with Rank-2 type inference by introducing a
rewriting rule in addition to core Hindley-Milner. However, since [Wel93] it is
known that the type inference problem for types of rank greater or equal to 3 is
undecidable anyway. Unfortunately, the necessity of Rank-3 types can easily arise
in higher-order programming scenarios; consequently, it is not possible to provide
full type inference for higher-order programming without type annotations in the
general case. As a result, current research is rather done on how to implement
higher-order type inference with as few annotations as possible (see [PJVWS07]).

Control Structures

IFELSE. The predominant approach for compile-time typing an IFELSE or IF ex-
pression in the literature is about enforcing or computing a common type of both
branches from the beginning; likewise, this behavior holds if the configuration
option allowMultipleEffects is set to False. This has been a conscious
design decision – as the implemented stack effect calculus can deal with multiple
stack effects this allows for a more gradual typing process given an existing Forth
program. Consequently, it is the user’s choice to enforce a static typing approach
by disallowing multiple effects by configuration. In that case, it is attempted to
derive a common type of both branches with the approach of Section 5.6. [Pö03]

61

deals better with that problem by making use of a typing rule for the computation
of a greatest lower bound of stack effects.

Loops. The body of loop expressions is checked to leave the stack untouched as there
is no compile-time knowledge as to how often a loop is executed. This is a stringent
requirement mentioned in all other works on static Forth analysis and is detailled
in [SK93].

6.2.2 Optional, pluggable types

In comparison with similar projects for adding optional typing to an existing language,
the implemented Forth type checker rather resembles the TypePlug system’s [HDN09]
approach: A checker is created by overriding options in some sort of configuration while
the stack effect composition algorithm stays unchangeable as opposed to specifying type
system rules as in [MME+10].

The implementation of the stack effect calculus providing type inference and type
checking adheres to the restrictions of an optional, pluggable type system proposed in
[Bra04]: Firstly, the type system trivially has no effect on the runtime-semantics of the
programming language and secondly, it does not mandate any type annotations in the
syntax – stack effect comments are optional in colon definitions. However, there is a
language feature where type annotations are needed, namely higher-order programming
as explained in Section 6.2.1.

62

CHAPTER 7
Conclusion

In chapters 2 and 3 an overview of the implications of type systems enforcing different
degrees of static type consistency has been given. In doing so, the qualities and differences
of representatives of soft typing, gradual typing and optional typing were analyzed in
order to motivate the use of optional, pluggable typing for the Forth programming
language.

Chapter 4 has elaborated on the characteristics of Forth concerning its stack-based
computational model. Having those in mind, Chapter 5 provides the design of the op-
tional, pluggable typing prototype for Forth together with an implementation in Haskell.

Related work on static Forth program analysis has been discussed in order to find
a theoretical basis for type checking and type inference in the form of a stack effect
composition algorithm. Thus, a simple stack effect calculus has been introduced and
implemented. The implementation has then been enhanced to deal with input stream
arguments, multiple stack effects, compile-time programming, subtyping, reference types,
respectively. In addition, a simple object-oriented programming extension as well as
higher-order programming were integrated. Generally, the problem of type inference has
turned out to be easier to handle in Forth than in other languages. Type annotations in
the form of stack effect comments provide optional, checked documentation of a colon
definitions effect. It is only in the field of higher-order programming where annotations
have proved necessary to assist the stack effect composition algorithm.

In Chapter 6 the limitations of the resulting type checker have been listed and it has
been practically evaluated. Certain words of the targeted Forth CORE wordset could not
be integrated, mostly due to their dynamic semantics. Besides, support for the return
stack, double-cell types and the runtime semantics of created references with does>
would be considered to be useful in future work. Moreover, various improvements to the
stack effect language in use would be beneficial, e.g. the feature to give names to the
values standing for the types in a stack effect.

63

In the context of optional typing approaches, the checker has been considered to be
similar to TypePlug [HDN09] in so far as the type checker features a fixed type checking
algorithm where types are "plugged in" by configuration options.

Finally, it has been shown how the system can be configured to create checkers of
varying type safety which were applied to a small, functionally correct Forth program as
a demonstration of their practical use. The tested checkers range from a configuration
only checking for stack overflow to a configuration allowing multiple effects, casts and
assertions. At last, a strict configuration enforcing conservative type consistency has been
used in that process. In that way, it has been demonstrated how the checkers identify
typical violations of static type consistency within the scope of functionally correct Forth
code. In addition, that example successfully illustrates how the user is guided from a
checker’s output to change the input program to account for more static type consistency,
thus gradually increasing the degree of compile-time type consistency as part of the Forth
developing process.

64

Bibliography

[ACF+13] Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus
Denker. Gradual typing for Smalltalk. Science of Computer Programming,
2013.

[ACPP89] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing in a
Statically-typed Language. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’89,
pages 213–227, New York, NY, USA, 1989. ACM.

[ans94] ANS Forth-1994. Downloaded from http://www.forth.com/downloads/dpans94.pdf
on 07/11/2015., 1994.

[BG93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a
Production Environment. In Proceedings of the Eighth Annual Conference
on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’93, pages 215–230, New York, NY, USA, 1993. ACM.

[Bo81] Barry W. Boehm and others. Software engineering economics, volume 197.
Prentice-hall Englewood Cliffs (NJ), 1981.

[Bra04] Gilad Bracha. Pluggable type systems. In In OOPSLA’04 Workshop on
Revival of Dynamic Languages, 2004.

[BS12] Ambrose Bonnaire-Sergeant. A Practical Optional Type System for Clojure.
PhD thesis, The University of Western Australia, 2012.

[Car96] Luca Cardelli. Type Systems. ACM Comput. Surv., 28(1):263–264, March
1996.

[CF91] Robert Cartwright and Mike Fagan. Soft typing. ACM SIGPLAN Notices,
26(6):278–292, 1991.

[CHH09] Patrick Camphuijsen, Jurriaan Hage, and Stefan Holdermans. Soft typing
PHP. Technical report, Technical report, Utrecht University, 2009.

[CK14] Paolo Capriotti and Ambrus Kaposi. Free applicative functors. arXiv
preprint arXiv:1403.0749, 2014.

65

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstrac-
tion, and Polymorphism. ACM Comput. Surv., 17(4):471–523, December
1985.

[DDES11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, and Todd W. Schiller.
Building and Using Pluggable Type-Checkers. 2011.

[DDLM07] Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe Marschall.
Sub-Method Reflection. In Jean Bézivin and Bertrand Meyer, editor, TOOLS
Europe 2007, volume 6/9, pages 231–251, Zürich, Switzerland, 2007. JOT.

[Dig08] Christopher Diggins. Simple Type Inference for Higher-Order Stack-Oriented
Languages. Downloaded from http://bit.ly/1gudwu2 on 07/11/2015., 2008.

[EST95] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type
inference for objects. In ACM SIGPLAN Notices, volume 30, pages 169–184.
ACM, 1995.

[FAFH09] Michael Furr, Jong-hoon David An, Jeffrey S. Foster, and Michael Hicks.
Static type inference for Ruby. In Proceedings of the 2009 ACM symposium
on Applied Computing, pages 1859–1866. ACM, 2009.

[FF02] Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-order
Functions. In Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming, ICFP ’02, pages 48–59, New York,
NY, USA, 2002. ACM.

[FM90] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. Theoretical
Computer Science, 73(2):155–175, June 1990.

[Gra06] Martin Grabmüller. Algorithm W Step by Step. Downloaded from
http://bit.ly/1Mnme5G on 07/11/2015. 2006.

[HDN09] Niklaus Haldiman, Marcus Denker, and Oscar Nierstrasz. Practical pluggable
types for a dynamic language. Comput. Lang. Syst. Struct., 35:48–62, 2009.

[HP99] Haruo Hosoya and Benjamin C. Pierce. How Good is Local Type Inference?
pages 252–265, 1999.

[HTF10] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual
typing. Higher-Order and Symbolic Computation, 23(2):167–189, June 2010.

[II09] Lintaro Ina and Atsushi Igarashi. Towards Gradual Typing for Generics. In
Proceedings for the 1st Workshop on Script to Program Evolution, STOP
’09, pages 17–29, New York, NY, USA, 2009. ACM.

66

[II11] Lintaro Ina and Atsushi Igarashi. Gradual Typing for Generics. In Pro-
ceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’11, pages
609–624, New York, NY, USA, 2011. ACM.

[jav10] JavaCOP Tutorial. http://javacop.sourceforge.net/docs/tutorial.html, 2010.

[JG97] Mehdi Jazayeri and Carlo GHEZZI. Programming language concepts. New
York: Wiley, 1997.

[Jim96] Trevor Jim. What Are Principal Typings and What Are They Good for? In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’96, pages 42–53, New York, NY, USA,
1996. ACM.

[KJS10] Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with
type functions. In Reflections on the Work of CAR Hoare, pages 301–331.
Springer, 2010.

[Kna93] Peter J. Knaggs. Practical and Theoretical Aspects of Forth Software Devel-
opment. PhD thesis, The University of Teesside, 1993.

[KTU90] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The Undecidability of the Semi-
unification Problem. In Proceedings of the Twenty-second Annual ACM
Symposium on Theory of Computing, STOC ’90, pages 468–476, New York,
NY, USA, 1990. ACM.

[LG11] Jukka Lehtosalo and David J. Greaves. Language with a Pluggable Type
System and Optional Runtime Monitoring of Type Errors. In Proceedings
of International Workshop on Scripts to Programs (STOP), 2011.

[MD04] Erik Meijer and Peter Drayton. Static typing where possible, dynamic typing
when needed: The end of the cold war between programming languages. In
OOPSLA’04 Workshop on Revival of Dynamic Languages, 2004.

[Mit91] John C. Mitchell. Type inference with simple subtypes. Journal of functional
programming, 1(03):245–285, 1991.

[Mit95] John C. Mitchell. Lower bounds on type inference with subtypes. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 176–185. ACM, 1995.

[MME+10] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein, Chris
Andreae, and James Noble. JavaCOP: Declarative pluggable types for Java.
ACM Transactions on Programming Languages and Systems (TOPLAS),
32(2):4, 2010.

67

[MMI14] André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy.
Typed Lua: An Optional Type System for Lua. In Proceedings of the
Workshop on Dynamic Languages and Applications, pages 1–10. ACM, 2014.

[Nys03] Sven-Olof Nyström. A soft-typing system for Erlang. In Proceedings of the
2003 ACM SIGPLAN workshop on Erlang, pages 56–71. ACM, 2003.

[PACJ+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H. Perkins,
and Michael D. Ernst. Practical pluggable types for Java. In Proceedings of
the 2008 international symposium on Software testing and analysis, pages
201–212. ACM, 2008.

[Pie91] Benjamin C. Pierce. Programming with Intersection Types and Bounded
Polymorphism. Technical report, 1991.

[PJVWS07] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark
Shields. Practical Type Inference for Arbitrary-rank Types. J. Funct.
Program., 17(1):1–82, January 2007.

[Poi91] Jannus Poial. Multiple Stack-effects of Forth Programs. In 1991 FORML
Conference Proceedings, euroFORML, volume 91, pages 11–13, 1991.

[Pö90] Jaanus Pöial. Algebraic Specifications of Stack Effects for Forth Programs.
In EuroFORML’90 Conference Proceedings, 1990.

[Pö02] Jaanus Pöial. Stack effect calculus with typed wildcards, polymorphism and
inheritance. In Proc. 18-th EuroForth Conference, page 38, 2002.

[Pö03] J. Pöial. Program analysis for stack based languages. In EuroFORTH
conference on the FORTH programming language and FORTH processors,
Herefordshire, UK (October 17-19, 2003), 2003.

[Pö06] Jaanus Pöial. Typing Tools for Typeless Stack Languages. In 22nd EuroForth
Conference, page 40, 2006.

[Pö08] Jaanus Pöial. Java Framework for Static Analysis of Forth Programs. In
Proc. 24-th EuroForth Conference, 2008.

[RCH12] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The Ins and Outs of
Gradual Type Inference. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’12,
pages 481–494, New York, NY, USA, 2012. ACM.

[RP96] Bradford J. Rodriquez and W. F. S. Poehlman. A Survey of Object-oriented
Forths. SIGPLAN Not., 31(4):39–42, April 1996.

[RSF+14] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagi-
otis Vekris. Safe & Efficient Gradual Typing for TypeScript. 2014.

68

[SDD+04] J. Stecklein, Jim Dabney, B. Dick, Bill Haskins, Randy Lovell, and Gregory
Moroney. Error cost escalation through the project life cycle. National
Aeronautics and Space Administration, 2004.

[SG12] Jeremy G. Siek and Ronald Garcia. Interpretations of the Gradually-typed
Lambda Calculus. In Proceedings of the 2012 Annual Workshop on Scheme
and Functional Programming, Scheme ’12, pages 68–80, New York, NY,
USA, 2012. ACM.

[SGT09] Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the Design Space
of Higher-Order Casts. In Proceedings of the 18th European Symposium on
Programming Languages and Systems: Held As Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, ESOP ’09,
pages 17–31, Berlin, Heidelberg, 2009. Springer-Verlag.

[SK93] Bill Stoddart and Peter J. Knaggs. Type Inference in Stack Based Languages.
Formal Aspects of Computing, 5:289–298, 1993.

[ST06] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages.
In Scheme and Functional Programming Workshop, volume 6, pages 81–92,
2006.

[ST07] Jeremy Siek and Walid Taha. Gradual Typing for Objects. In ECOOP 2007
– Object-Oriented Programming, number 4609 in Lecture Notes in Computer
Science, pages 2–27. Springer Berlin Heidelberg, January 2007.

[SV08] Jeremy G. Siek and Manish Vachharajani. Gradual Typing with Unification-
based Inference. In Proceedings of the 2008 Symposium on Dynamic Lan-
guages, DLS ’08, pages 7:1–7:12, New York, NY, USA, 2008. ACM.

[SVB13] Jeremy G. Siek, Michael M. Vitousek, and Shashank Bharadwaj. Gradual
Typing for Mutable Objects. 2013.

[Tha90] Satish Thatte. Quasi-static Typing. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’90, pages 367–381, New York, NY, USA, 1990. ACM.

[THF08] Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementa-
tion of Typed Scheme. In Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’08,
pages 395–406, New York, NY, USA, 2008. ACM.

[THF10] Sam Tobin-Hochstadt and Matthias Felleisen. Logical Types for Untyped
Languages. In Proceedings of the 15th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP ’10, pages 117–128, New York,
NY, USA, 2010. ACM.

69

[Unt12] Martin Unterholzner. Refactoring Support for Smalltalk Using Static Type
Inference. In Proceedings of the International Workshop on Smalltalk Tech-
nologies, IWST ’12, pages 1:1–1:18, New York, NY, USA, 2012. ACM.

[WC97] Andrew K. Wright and Robert Cartwright. A practical soft type system
for Scheme. ACM Transactions on Programming Languages and Systems
(TOPLAS), 19(1):87–152, 1997.

[Wel93] Joe Wells. A Direct Algorithm for Type Inference in the Rank 2 Fragment
of the Second-Order Lambda-Calculus. Technical report, Boston University,
Boston, MA, USA, 1993.

[Wes02] J. Christopher Westland. The cost of errors in software development: evi-
dence from industry. Journal of Systems and Software, 62(1):1–9, 2002.

70

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Definition
	Methodological Approach
	Aim of the Work
	Structure of the Work

	Comparing Static and Dynamic Typing
	The Nature of Static and Dynamic Typing
	The Trade-offs of Static and Dynamic Typing
	Discussion

	Combining Static and Dynamic Typing
	Soft typing
	Gradual Typing
	Optional typing
	Discussion

	Forth Language Characteristics
	Designing Optional, Pluggable Types for Forth
	Integrating CORE Forth words
	Parsing
	Forth Static Analysis
	Implementing Stack Effect Inference
	Handling of Multiple Stack Effects
	Type Checking Colon Definitions
	Assertions
	Casts
	Subtyping
	Introducing Polymorphism
	Reference Types
	The Dynamic Type
	Compile-time Programming
	Object-Oriented Programming
	Higher-Order Programming
	Configuration Options

	Evaluation
	Using pluggable Forth types
	Comparing related work

	Conclusion
	Bibliography

