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Abstract

Knuth’s attribute grammars are a formalism for specifying the semantics of context-free lan-
guages. They imply an attribute evaluation step that requires finding a topological sorting of
a directed acyclic graph. Historically, various approaches have been used to shift the resulting
workload to the compile-time of evaluators or to reduce it by lowering the expressiveness of
the formalism. This thesis describes the conceptual background and implementation of a fully
expressive dynamic (run-time) attribute evaluator within an LALR(1) and GLR parser, and an-
alyzes the trade-offs involved in both dynamic and various compile-time evaluation approaches.
The resulting evaluator uses algorithms that are linear in time and space with regard to the size
of the parse tree. Benchmarking suggests it is performant enough for practical purposes.
The evaluator supports GLR attribute grammars that result in a single valid parse tree. In
addition, the core of the evaluator is made available as a separate run-time library.

Zusammenfassung

Attributierte Grammatiken wurden von Knuth eingeführt und stellen ein Formalismus dar, um
die Semantik von kontextfreien Sprachen zu spezifizieren. Ein wesentlicher Bestandteil dessen
ist die Attribut-Evaluation, die auf einer topologischen Sortierung eines gerichteten, zyklen-
freien Graphens beruht. Diverse Ansätze wurden historisch entwickelt, um den resultierenden
Rechenaufwand an die Übersetzungszeit des Evaluators zu verlagern oder diesen durch einer
Abschwächung des Formalismus zu reduzieren. Diese Arbeit beschreibt den konzeptuellen Hin-
tergrund und die Implementierung eines vollständigen dynamischen (Laufzeit-) Attributevalua-
tors innerhalb eines LALR(1) und GLR-Parsers und vergleicht dazu den dynamischen Ansatz
mit solchen Ansätzen, die zur Übersetzungszeit stattfinden. Die dem dynamischen Evaluator
zugrundeliegenden Algorithmen haben lineare Laufzeit und linearen Speicherbedarf in der Größe
des Syntax-Baumes. Vergleichstests zeigen, dass dieser für praktische Zwecke performant genug
ist.
Der Evaluator unterstützt die Attributierung von GLR-Grammatiken, welche als Ergebnis einen
einzigen gültigen Syntax-Baum haben. Der Kern des Evaluators steht außerdem auch als
Laufzeit-Bibliothek zur Verfügung.
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Chapter 1

Introduction

Attribute grammars [Knu68; Knu71] were introduced in 1968 by Donald E. Knuth and are a
formalism for defining the meaning (semantics) of context-free languages. In this formalism,
symbols may have a number of attributes associated with them. Each attribute encodes a
semantic property of the corresponding symbol and is accompanied by a set of rules to calculate
its value; in the context of such a rule, the value of an attribute may depend on that of other
attributes.

This thesis describes the implementation of an evaluator for attribute grammars realized on
top of GNU Bison 1, an open-source LALR(1) and GLR parser.

Two main approaches to attribute evaluation can be found throughout literature: static and
dynamic. Static approaches use the specification of an attribute grammar to generate a custom
evaluator for all possible inputs accepted by the grammar. Determining if an attribute grammar
is valid and thus generating an evaluator for it was shown to have exponential complexity in the
size of the grammar [JOR75]. For this reason, many static approaches concentrate on subclasses
of attribute grammars that are not as expressive, but which can be analyzed and evaluated more
efficiently. The subclasses’ membership tests range from NP-complete to linear in the size of the
grammar.

Dynamic approaches do not require in-depth analysis of the grammar specification. Instead,
they rely on building a dependency graph at runtime from actual input and on a dependency
resolution algorithm to schedule attribute evaluation. The underlying algorithms have linear
complexity in the size of the parse tree. They work for all valid attribute grammars.

GNU Bison already supports a limited subset of attribute grammars via its “semantic ac-
tions”. Owing to the parsing algorithm used by Bison, “semantic actions” do not require an
explicit dependency graph to be built or a separate dependency resolution step to be performed.
However, they also do not offer the full flexibility of attribute grammars as they only allow infor-
mation to be passed in one direction through the parse tree, which substantially limits possible
applications.

The goal of the thesis is to implement full attribute grammar support in GNU Bison. A
dynamic evaluation approach is preferred due to the high flexibility and low complexity involved.
As the evaluator’s performance plays a key role in assessing its practical significance, benchmarks
and comparisons are seen as an integral part of the resulting work.

1http://www.gnu.org/software/bison
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GNU Bison can parse ambiguous context-free grammars using the Generalized LR (GLR)
algorithm. Another aspect of the thesis is to determine how GLR and attribute grammars can
be used together, as there are few documented approaches of doing so in practice.

A final implementation aspect is to determine whether the evaluator core should be separated
into an external library for easier re-use.

The main objectives of the thesis are thus summarized by the following research questions:

• What are the steps required to implement an attribute evaluator in an existing parser
generator?

• Is a dynamic evaluator fast enough for practical purposes?

• Generalized LR (GLR) is an extension of LR for parsing ambiguous context-free grammars.
How can GLR best interact with attribute grammars?

• Is it advisable to separate the evaluator runtime into an external library?

The thesis itself begins with a description of context-free grammars and ways to parse them.
It then continues with an in-depth explanation of attribute grammars and their properties,
showing common methods of evaluating attributes. The problem of cycles (and cycle detection)
in attribute grammars is also discussed. Attributed tree traversals are mentioned as a concept
not immediately related to attribute grammars, but which can be integrated easily therein.

The design chapter features a discussion of advantages and disadvantages of various evaluation
techniques, explaining the rationale behind implementing a dynamic attribute evaluator. It then
goes into detail into the design of the dynamic evaluator itself and concludes with a discussion
of potential approaches to integrating attribute grammars with GLR.

The implementation chapter contains data that was gathered while writing the program. It
documents decisions that were taken during the creation of the evaluator, details the structure
of the program, how it fits into Bison and explains all optimizations that were made.

The last chapter contains the results of benchmarks run on the implementation and compar-
isons with an existing system.
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Chapter 2

Conceptual foundation of parsers
and attribute grammars

Attribute grammars were conceived as an add-on to context free grammars; this chapter explains
both of them. It first introduces context-free grammars in the context of the Chomsky hierarchy,
explaining their characteristics both theoretically and informally. It then continues with a de-
scription of parsing methods that can determine whether a given input belongs to a context-free
language and, if so, how exactly the input matches the description of the grammar. Attribute
grammars and corresponding evaluation methods are explained further on; again, an informal
and theoretical description of the formalism precedes a discussion on evaluation methods. Re-
lated aspects then follow, including cycle detection in attribute grammars, handling ambiguity
(in particular with regard to GLR parsing) and tree traversals. This chapter concludes with a
brief survey of existing dynamic attribute grammar evaluators.

2.1 Context-free grammars

Context-free (Type-2) grammars are one of the four types of formal grammars composing the
Chomsky hierarchy [Cho56; Cho59]. The hierarchy describes several types of grammars, each a
superset of the next, from most expressive (Type-0) to least expressive (Type-3).

Formal grammars are described using productions; each production has a left hand side and
a right hand side, both of which can contain terminal and non-terminal symbols. All strings
of terminal symbols that can be generated by iteratively substituting the left hand side of a
production with its right hand side, starting with a predefined start symbol, compose the language
accepted by that grammar. The grammars in the Chomsky hierarchy have different constraints
imposed on their productions:

Type-0 Unrestricted grammars. Productions are of the form:

α→ β

Both α and β may contain terminals, as well as non-terminals. The languages generated
by such grammars are called recursively enumerable [Cho59, p. 143].

Type-1 Context-sensitive grammars. Productions are of the form:

αAβ → αγβ

3



In this case, α, β and γ may contain terminals and non-terminals; α and β may be empty.
A is a non-terminal. The special property of these grammars is their “context”, a non-
terminal (A) may have a different meaning depending on its surroundings (α and β).

Type-2 Context-free grammars. Productions are of the form:

A→ γ

As in Type-1 grammars, A denotes a non-terminal and γ a string of terminals and non-
terminals.

Type-3 Regular grammars. Two types of regular grammars – left regular and right regular
grammars – exist, both having the ability to describe the same set of languages. They are
discerned by the position of the optional non-terminal (B) with regard to the terminal (a).
For example, productions for a right regular grammar may be of the form:

A→ a or A→ aB

Regular grammars describe the same languages as regular expressions and finite automata,
the three formalisms are thus interchangeable.

Context-free grammars are popular in language design due to their relatively high expressivity
and their manageable complexity. They are equivalent in power to pushdown automata [Sip06,
p. 115 ff.,193]. This enables, among others, the relatively straightforward creation of a recursive
descent parser for a given language.

While the typical formal question is whether an input belongs to the language generated by
a context-free grammar or not, in practice the substitution steps required to derive the input, as
well as the order in which they are performed, are of equal importance.

2.1.1 Formal definition

A context-free grammar is defined as a tuple [Sip06, p. 102] [ASU86, p. 26] G = (V,Σ, P, Z):

V is the set of non-terminals used in the grammar.

Σ is the set of terminals.

P is the set of productions belonging to the grammar. Such a production has a non-terminal on
the left side and zero or more symbols (terminals or non-terminals) on the right side.

Z is a designated start symbol from the set of non-terminals.

A derivation represents a series of transformations applied to the start symbol and the result-
ing strings, in each of which a non-terminal is replaced by the right hand side of a compatible
production. The derivation ends when no more non-terminals can be replaced and the resulting
string contains only terminals; a sentence of the grammar is then said to have been derived. In
contrast, strings containing both terminals and non-terminals are called sentential forms.

The language generated by a grammar is the set of all sentences that can be derived using
the grammar specification. Two grammars that generate the same language are said to be
equivalent; while it is possible to construct an equivalent grammar in some cases, the general
question whether two given grammars are equivalent is undecidable [Sip06, p. 197].

The sample grammar below describes a notation for addition of binary digits:

4



V = {S,E, T}
Σ = { 0 , 1 , + }
P = { 1. S → E

2. E → E +E

3. E → 0

4. E → 1 }
Z = S

(2.1)

0 + 1 + 0 is an example sentence in the given language. It can be shown that the sentence
is in the language by providing a derivation for it. We begin by looking at the start symbol; we
then apply several production rules:

S
Rule1⇒ E

Rule2⇒ E +E
Rule3⇒ 0 +E

Rule2⇒ 0 +E +E
Rule4⇒ 0 + 1 +E

Rule3⇒ 0 + 1 + 0

The symbol ⇒ is used to denote a single derivation step. To sum up zero or more steps, or,
in other words, denote that a sentential form is derivable from another sentential form,

∗⇒ can
be employed.

When performing a derivation step, two choices must be made [ASU86, p. 167-169]:

• Which non-terminal to replace?

• What production to use?

With regard to the first question, two important derivation types are discussed in literature:
leftmost and rightmost (also called canonical). They are performed by always replacing the
leftmost (or, respectively, rightmost) non-terminal in a sentential form.

The previous example shows a leftmost derivation; a possible rightmost derivation would be:

S ⇒ E ⇒ E +E ⇒ E + 0 ⇒ E +E + 0 ⇒ E + 1 + 0 ⇒ 0 + 1 + 0

The difference between the derivations can be see in the third step; the leftmost E is replaced
by a 0 in the first example, while the rightmost E is replaced in the second example.

More than one leftmost or rightmost derivation can exist. To exemplify this, a second leftmost
derivation is given:

S ⇒ E ⇒ E +E ⇒ E +E +E ⇒ 0 +E +E ⇒ 0 + 1 +E ⇒ 0 + 1 + 0

In this case, rule 2 is used in the third step (on the leftmost instance of E) to expand E +E
to E +E +E, diverging from the first example, where rule 3 is used to expand an E into a 0 .
Similarly, rule 2 could be applied twice in a row on the rightmost derivation example.

2.1.2 Derivations, parse trees and ambiguity

A parse tree is a graphical representation of a derivation. The children of each non-terminal node
represent the symbols on the right side of the production used to expand that non-terminal. A
parse tree is complete if all its leaves are non-terminals; reading the leaves from left to right yields
the parsed sentence.

5



Parse trees do not contain information about the order in which derivation steps are per-
formed; the parse tree for a leftmost or rightmost derivation of a certain string may be identical.

Using the same grammar as above, we analyze the parse tree for the sentence 0 + 1 . While
two derivations do exist (a leftmost and a rightmost one), the parse tree is the same, as shown
in Figure 2.1.

S ⇒ E ⇒ E +E ⇒ 0 +E ⇒ 0 + 1

S ⇒ E ⇒ E +E ⇒ E + 1 ⇒ 0 + 1

S

E

E +E

10

Figure 2.1: Both derivations of 0 + 1 have the same parse tree.

A grammar is said to be ambiguous when there can be more than one parse tree for a sentence.
This also equates to more than one leftmost or rightmost derivation being possible.

The given grammar has this property. Two parse trees for 0 + 1 + 0 are shown in Figure 2.2.
In this case, both parse trees can arise from leftmost and rightmost derivations, depending on
whether the first rule applied to E +E derives a terminal or another instance of E +E.

S

E

E +E

E +E

01

0

S

E

E +E

0E +E

10

Figure 2.2: Parse trees for 0 + 1 + 0

In applications such as language design, where semantics are tied to syntax, ambiguous
grammars are avoided as this would give sentences in the language more than one meaning.
Techniques to remove ambiguity from grammars range from rewriting the grammar specifications
to adding special rules (for example “precedence rules”) that only allow one derivation and discard
the rest. The latter option is used in practice and not specified by the context-free grammar
formalism.

2.1.3 Subclasses of context-free grammars

Several subclasses of context-free grammars have been researched alongside corresponding algo-
rithms, allowing the creation/generation of more efficient parsers:

6



LL Left-to-right leftmost derivation. In this case, the input is parsed from the leftmost to the
rightmost token by applying a production that matches the leftmost non-terminal of the
current derivation string. For example, consider the input x + y and the grammar:

S → E +E

E → x

E → y

(2.2)

S is the start symbol. An LL parser would perform the following substitutions:

S ⇒ E +E ⇒ x +E ⇒ x + y

LL parsers are top-down parsers. They begin their derivation with the start symbol,
gradually performing substitutions on it until the input string has been derived. When
necessary, such parsers look ahead into the input stream to ensure the correct production
is chosen for a substitution.

LR Left-to-right rightmost derivation. The input is parsed from the leftmost to the rightmost
token, however, as opposed to LL grammars, a production that matches the rightmost
non-terminal of the derivation string is chosen. Thus, given the previous example, an LR
parser would perform the following substitutions:

S ⇒ E +E ⇒ E + x ⇒ x + y

LR parsers are bottom-up parsers. When parsing an input token, the algorithm derives
“backwards” by substituting the already parsed symbols, together with the input token
with a corresponding left hand side of a production. The last step of an LR parser thus
involves obtaining the start symbol with no more input to parse.

LALR Look-ahead LR. LALR is an LR parsing method that represents a compromise between
two algorithms: the compact, but less expressive simple LR (SLR) and the more space-
consuming canonical LR. LALR trades in part of canonical LR’s expressiveness for space
efficiency and is implemented in parsers such as Bison.

GLR Generalized LR. GLR parsers [Tom84; Tom87] were introduced to handle ambiguous LR
grammars. In the case of a parsing conflict (an ambiguity in the grammar), a GLR parser
“splits up” and pursues all alternatives. Alternatives that lead to errors are discarded.
Furthermore, optimizations are made to share common elements of the parsers’ states and
of the resulting parse trees.

A detailed discussion on how to parse such grammars can be found in Appendix A.1. Infor-
mation on GLR in particular is available in Appendix A.1.3.

2.2 Attribute grammars

2.2.1 The concept

Attribute grammars (AG) are an extension to context-free grammars. In this formalism, gram-
mar symbols may have attributes, each of which describes a certain semantic property of that

7



symbol. Since multiple instances of a symbol may be derived for a certain input, each instance
of the symbol has its own attribute instances. For example, consider the following grammar
(adapted from Knuth’s original paper [Knu68, p. 128 ff.]):

L → LB | B
B → 0 | 1

(2.3)

We would like the non-terminal L to describe binary numbers and B to describe a single
binary digit. For this purpose, we define value to be an attribute of L and of B.

For the input string 1 0 1 , we have three instances of B, whose values should be 1, 0 and 1,
respectively. We also have three instances of L, whose values should be 12, 102 = 2 and 1012 = 5
(see Figure 2.3).

L
value = 1012

B
value = 12

1

L
value = 102

B
value = 02

0

L
value = 12

B
value = 12

1

Figure 2.3: Attributed parse tree for Grammar 2.3 and input 1 0 1

Simply specifying that an attribute exists and giving attribute values for some fixed input is
not sufficient; we need a generic way to calculate them. For this purpose, a set of semantic rules
is attached to each production. Such a semantic rule describes how to calculate the value of a
symbol’s attribute based on attributes of other symbols in the production. For Grammar 2.3,
such rules can be defined as follows 1:

L0 → L1B { L0.value := 2 · L1.value+B.value; }

L0 → B { L0.value := B.value; }

B → 0 { B.value := 0; }

B → 1 { B.value := 1; } (2.4)

1L0 and L1 denote the same non-terminal L, but are used to disambiguate the two in the semantic rule.
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The first rule, for example, specifies that the value of the left hand side L0 is twice the
value of L1 on the right hand side, plus the value of B. Thus, L1.value and B.value are both
dependencies of L0.value.

As we can see, semantic rules use only the local context of a production, which encom-
passes the attributes of all symbols in that production. By definition, there are two kinds of
attributes [AM91, p. 127-128] [Knu68]:

Synthesized attributes depend on attributes of the current symbol and on attributes of its
descendants in the parse tree. Within the context of a single production, synthesized
attributes can only be defined for the left hand side symbol.

Inherited attributes depend on attributes of the current symbol and on those of its ancestors
in the parse tree. In a production, such attributes are defined for a symbol on the right
hand side.

In the previous example (AG 2.4), value is a synthesized attribute, since the value of an
instance is always determined using attributes of child nodes. To show how inherited attributes
work, the grammar is modified to use the position (or “place value”) of a binary digit when
calculating the digit’s value. An attribute position for L and B is introduced for this purpose.
The rightmost digit in a number has position 0, the digit to its left has position 1, and so on.
This results in a value of 0 or 1 for the rightmost digit, 0 or 2 for the digit to its left, and so on.

As a first step, a new start symbol, N , is added to the grammar, featuring a semantic rule
that defines the initial position:

N → L { N.value := L.value; }
{ L.position := 0; }

The semantic rules for L.value are modified to use simple addition instead of multiplication
by two:

L0 → L1B { L0.value := L1.value+B.value; }

L0 → B { L0.value := B.value; }

The rules for B.value are also modified to take the position of the digit into account:

B → 0 { B.value := 0; }

B → 1 { B.value := 2B.position; }

Additionally, rules to increment and propagate position are added:

L0 → L1B { . . . }
{ L1.position := L0.position+ 1; }
{ B.position := L0.position; }

L0 → B { . . . }
{ B.position := L0.position; }

The attribute grammar has thus been successfully modified to use the inherited attribute
position when calculating its value. AG 2.5 contains the full listing:
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N → L { N.value := L.value; }
{ L.position := 0; }

L0 → L1B { L0.value := L1.value+B.value; }
{ L1.position := L0.position+ 1; }
{ B.position := L0.position; }

L0 → B { L0.value := B.value; }
{ B.position := L0.position; }

B → 0 { B.value := 0; }

B → 1 { B.value := 2B.position; } (2.5)

N
value = 1102

L
value = 1102

position = 0

B
value = 02

position = 0

0

L
value = 1102

position = 1

B
value = 102

position = 1

1

L
value = 1002

position = 2

B
value = 1002

position = 2

1

Figure 2.4: Attributed parse tree for grammar 2.5 and input 1 1 0

Figure 2.4 shows the complete attributed parse tree for input 1 1 0 . While the parse tree
does list the values of all attribute instances, it does not show the order in which the values
were calculated. In order to synthesize L.value, an instance of L first has to inherit position
and obtain the value of its children. A possible evaluation order is shown in Figure 2.5. There,
position is first inherited to all instances of L and B, after which B.value and L.value are
calculated in a bottom-up fashion.
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N
value = 1102 [13]

L
value = 1102 [12]
position = 0 [1]

B
value = 02 [11]
position = 0 [6]

0

L
value = 1102 [10]
position = 1 [2]

B
value = 102 [9]
position = 1 [5]

1

L
value = 1002 [8]
position = 2 [3]

B
value = 1002 [7]
position = 2 [4]

1

Figure 2.5: Attributed parse tree for grammar 2.5 and input 1 1 0 , with evaluation order in
brackets
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The precise order in which the attributes are calculated is irrelevant, as long as the depen-
dencies specified by the semantic rules are fulfilled.

2.2.2 Formal definition

Formally, an attribute grammar is a tuple [AM91, p. 2][Knu68, p. 131 ff.]AG = (G,SD,AD,R,C)
where:

G = (V,Σ, P, Z) is a context-free grammar as described in Section 2.1.1.

SD = (TYPE-SET,FUNC-SET) is a so-called semantic domain. More precisely, TYPE-SET
contains the definition of possible attribute types and is structured as a set of sets {type1,
type2, . . . typen}. FUNC-SET is a set of functions with the signature typei1 × typei2 ×
typein → typei0 , n ≥ 0 that are used within semantic rules.

AD = (A, I, S,TYPE) is an attribute definition composed of several sets. For each symbol X ∈
V , A(X) is defined to be the set of all attributes of X; I(X) and S(X) are the (by definition
disjoint) sets of inherited and synthesized attributes, respectively. TYPE(a) ∈ TYPE-SET
is the set of all possible values of an attribute a ∈ A(X). Within this formal definition,
attributes are unique to symbols, so, for example, two attributes of non-identical symbols
X.a and Y.a are different [AM91, p. 2].

R(p) is the set of semantic rules associated with production p ∈ P . Each element of R(p) has
the form [AM91, p. 3]:

(a0, p, k0) := f((a1, p, k1), . . . , (am, p, km))

Here, a0 and a1, . . . , am are attributes belonging to the symbols present in production
p = Xp0 → Xp1Xp2 . . . Xn. An attribute occurrence (a, p, k) denotes the attribute instance
of a for the symbol Xpk of production p. In this case, (a0, p, k0) is said to depend on
(a1, p, k1), . . . , (am, p, km).

C is described as a “set of semantic conditions associated with production p” [AM91, p. 4]. A
condition can be used as a constraint on the sentences accepted by the production and is
specified as a function of attribute occurrences. This function yields true if the sentence is
semantically correct and false if it is not.

The attribute occurrences for a production p are denoted with AO(p); this set is further
split into two disjunct sets, DO(p) and UO(p). DO(p) contains the defined attribute occurrences
within p and UO(p) contains the used attribute occurrences, as featured in semantic rules.

More precisely, DO(p) encompasses all synthesized attributes of the left hand side and all
inherited attributes of the right hand side:

DO(p) = {(a, p, 0) | a ∈ S(Xp0)} ∪ {(a, p, k) | a ∈ I(Xpk)}

UO(p) encompasses all inherited attributes of the left hand side and all synthesized attributes
of the right hand side:

UO(p) = {(a, p, 0) | a ∈ I(Xp0)} ∪ {(a, p, k) | a ∈ S(Xpk)}

The set of semantic rules R(p) is restricted such that all elements (a0, p, k0) on the left side
of a rule belong to DO(p). Furthermore, if all elements on the right hand side belong to UO(p),
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for all rules of all productions, the grammar is said to be in normal form [AM91, p. 3]. Using a
series of substitutions, all elements belonging to DO(p) on the right hand side can be expressed
using elements from UO(p), thus, attribute grammars can be easily transformed to normal form.

2.3 Evaluating attribute grammars

The semantic rules of an attribute grammar are said to be well-defined if all attribute instances
can be calculated using that set of rules for all possible parse trees [Knu68, p. 133]. More precisely,
each production has to be annotated with semantic rules such that each of the synthesized
attributes of the left hand side symbol, as well as all of the inherited attributes of the right hand
side symbols can be calculated. Furthermore, no cyclical dependencies between attributes may
arise. If the rules of an attribute grammar are well-defined, they can be applied to the parse tree
obtained from a certain input. This is called evaluating the attribute grammar.

During the evaluation process, a so-called attributed parse tree is constructed. For each node
N of a parse tree T , let X ∈ V be the label of N , the symbol associated with it. N has a set
of attribute instances a0 . . . am connected to it, where each attribute instance corresponds to an
attribute in A(X). Furthermore, attribute evaluation instructions [AM91, p. 4] of the form:

Nk.a := f(Nk1
.a1, . . . , Nkm

.am)

are instantiated for each semantic rule:

(a, p, k) := f((a1, p, k1), . . . , (am, p, km))

in R(p). If all attribute instances for all nodes have been calculated, the parse tree is said to
be attributed and the evaluation process complete.

Dependencies within attribute evaluation rules need to be transferred when creating attribute
instances. For a parse tree T , its dependency graph D(T ) is defined as follows:

• The vertices of D(T ) are the attribute instances contained in T .

• An edge (Ni.a,Nj .b) exists for D(T ) iff Nj .b depends on Ni.a.

An attribute instance N.a can only be calculated if all of its dependencies (Ni.ai where
(Ni.ai, N.a) ∈ E(D(T ))) have been calculated. If the graph is acyclic, the edges impose a partial
order on the vertices of the dependency graph.

A topological sort, a total order of the vertices in D(T ) that also satisfies the partial order,
can then be calculated. The topological sort specifies a valid evaluation order of the attribute
evaluation instructions; the instructions are executed in the order their associated attribute
instances appear.

The two steps that an attribute evaluator must execute are [DJL88, p. 9]:

1. Building a plan, that is, the construction of an evaluation order.

2. Attribute computation, the actual attribution of the parse tree.

In practice, these steps are often interleaved.
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2.3.1 Analyzing the parse tree

One can analyze the behaviour of attribute dependencies within a given parse tree as fol-
lows [AM91, p. 11] 2:

IS Given a subtree “T/N” of T with the root N , the dependency graph D(T/N) can be calcu-
lated analogously to D(T ). The “i-to-s” behaviour of N , IS(T/N) is defined as a directed
graph with the attributes of X, N ’s label, as its vertices. Edges exist from a vertex cor-
responding to an inherited attribute i of X to a vertex corresponding to a synthesized
attribute s of X if and only if there is a path in D(T/N) from N.i to N.s.

SI Given a parse tree T with the subtree T/N subtracted from it (except for the node N itself),
a dependency graph D(T − T/N) can be defined for the result, “T − T/N”. The “s-to-i”
behaviour of N , SI(T −T/N), is defined as a directed graph with the attributes of X, N ’s
label, as its vertices. Edges exist from a synthesized attribute s to an inherited attribute i
if and only if there is a path in D(T − T/N) from N.s to N.i.

By analyzing all possible trees T for a given attribute grammar, one can define the sets
IS-SET(X) and SI-SET(X) for the grammar’s symbols by deriving them from the IS and SI
graphs of all nodes labeled with X:

IS-SET(X) := {IS(T/N) | T = parse tree, X = label of N}
SI-SET(X) := {SI(T − T/N) | T = parse tree, X = label of N}

Since, for all symbols of the grammar, the IS and SI graphs have a number of vertices limited
by A(X), both the IS-SET and SI-SET are finite (although the number of graphs contained
within a set can be exponential with relation to the number of vertices).

Both the IS-SET and the SI-SET can be calculated using a fixed point algorithm, whereas
SI-SET also depends on IS-SET [AM91, p. 13-14]. In order to understand the calculation and the
further analysis and classification of attribute grammars, more definitions have to be introduced:

DGp is the dependency graph of a single production. The nodes of this dependency graph repre-
sent the attribute occurrences within the production, its edges are given by the dependency
rules specified for DO(p).

DGp[D0,. . .,Dnp
] is an extension of DGp where edges are added for two attribute occurrences

(a, p, i) and (b, p, i) if the graph Di contains that corresponding edge, meaning (Xpi.a,
Xpi.b) ∈ E(Di). Here, Di is not given explicitly, it may be any arbitrary graph with
A(Xpi) as vertices. np is the number of symbols on the right hand side of production p.

DGp − k[. . .] is used to denote DGp[D0, . . . , Dk−1, Dk+1, . . . , Dnp
], which has the same effect as

setting Dk to a graph with no edges.

DGp − k∗[. . .] is based on DGp − k[. . .]∗, the transitive closure of DGp − k[. . .]. It only contains
the attributes of Xk as vertices. If an edge ((a, p, k), (b, p, k)) exists in DGp − k[. . .]∗, then
an edge (a, b) exists in DGp − k∗[. . .].

2Different notations are used throughout literature, such as sdt(X0) for IS(t/X0), idt(Xu) for SI(t − t/X0)
and USD(X) for IS-SET(X), UID(X) for SI-SET(X) [DJL88, p. 5-6]
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Calculation of IS-SET and SI-SET

IS-SET is initialized with an empty set for all non-terminals and with a set containing a graph
with no edges for all terminals. During an iteration, for productions where the IS-SETs of all
symbols on the right hand side are non-empty, a new graph is constructed by using graphs from
each of the right hand side symbols’ IS-SETs and by combining them with the local dependency
graph to form DGp−0∗[. . .]. The graph is then added to the production’s IS-SET [AM91, p. 13].

for all X ∈ V :

IS-SET(X) := {}

for all X ∈ Σ:

IS-SET(X) := {Empty graph with vertices A(X)}

do until no more graphs can be added:

for each production p := X0 → X1 . . . Xn:

if IS-SET(X1) . . . IS-SET(Xn) are non -empty:

for i := 1 to n:
Di := Random graph from IS-SET(Xi)

G := DGp − 0∗[D1, . . . , Dn]
if G 6∈ IS-SET(X0):

Add G to IS-SET(X0)

Algorithm 2.1: Calculation of the IS-SETs

Analogously, SI-SET can be calculated iteratively by starting with an empty set for all
symbols, except for the start symbol, whose set is initialized with a single graph with no edges. In
an iteration, all productions whose left-hand-side symbol’s SI-SET and right hand side symbols’
IS-SETs are non-empty are considered. The k-th symbol of the production is picked and for it
DGp − k∗[D0, . . . , Dk−1, Dk+1, . . . , Dnp

] is calculated and added to SI-SET(Xk), where D0 is a
graph from SI-SET(X0) and Di (1 ≤ i ≤ n) is a graph from IS-SET(Xi).

for all X ∈ V :

SI-SET(X) := {}

SI-SET(Z) := {Empty graph with vertices A(Z)}

do until no more graphs can be added:

for each production p := X0 → X1 . . . Xn:

if SI-SET(X0) is non -empty:

Pick a graph D0 from SI-SET(X0)
Pick a k between 1 and n
for i := 1 to n:

if i 6= k:
Di := Random graph from IS-SET(Xi)

G := DGp − k∗[D0, . . . , Dk−1, Dk+1, Dn]
if G 6∈ SI-SET(Xk):

Add G to SI-SET(Xk)

Algorithm 2.2: Calculation of the SI-SETs
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Use of IS-SET and SI-SET

These sets can be used to determine whether a grammar is circular or to calculate a fixed
evaluation order.

A way of determining the circularity of a grammar by using IS-SETs is given in Algorithm 2.3.
For each production, each combination of IS-SET graphs D1, . . . , Dn corresponding to the right
hand side symbols X1, . . . , Xn is tested; if DGp− 0[D1, . . . , Dn] contains a cycle, then the gram-
mar is circular and thus not well-defined.

for each production p := X0 → X1 . . . Xn:

for each D1 ∈ IS-SET(X1), . . . , Dn ∈ IS-SET(Xn):
if DGp − 0[D1, . . . , Dn] contains a cycle:

fail /∗ Grammar i s c i r c u l a r ∗/

success /∗ Grammar i s non−c i r c u l a r ∗/

Algorithm 2.3: Membership test for well-defined grammars [AM91, p. 14]

The problem of circularity is addressed in more detail in Section 2.4.

Example

Given AG 2.5, one can first obtain the local dependency graph for each production as given in
Figure 2.6.

N

L

value

position value

(a) DGN→L

L

B

position value

position value

(b) DGL→B

L

L B

position value

position value position value

(c) DGL→LB

B

0

position value

(d) DGB→0

B

1

position value

(e) DGB→1

Figure 2.6: The local dependency graphs, DGp, for AG 2.5

From the local dependency graphs, IS-SET(X) can be calculated for all symbols (see Fig-
ure 2.7). In this case there are two possible “i-to-s” behaviours of B, one in which value depends
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on position (production B → 1 ) and one in which it does not (production B → 0 ). These
behaviours are reflected in IS-SET (B) and propagate further to IS-SET (L).

{
value

N } {
position value

L
, position value

L } {
position value

B
, position value

B }
(a) (b) (c)

Figure 2.7: The IS-SETs of the symbols in AG 2.5

In order to check if the grammar is well-defined, for each production, edges from all possible
combinations of IS-SET graphs of the right hand side symbols are inserted into the dependency
graph of that production and the resulting graphs are checked for cycles. The graphs for AG 2.5
are shown in Figure 2.8. In this case, a total of ten graphs must be analyzed.

As none of the graphs exhibits a cycle, the grammar is well-defined.

2.3.2 Static evaluation of attribute grammars

A number of static analysis techniques has been devised for attribute grammars [DJL88; EF89].
Such approaches use the attribute grammar specification to determine possible behaviours of
attributes in parse trees.

These behaviours can be used to determine if an attribute grammar is well-defined and to
then create an evaluator for it. Various types of evaluators exist, including such based on visits,
passes and sweeps.

Due to the exponential complexity involved in handling all well-defined attribute grammars,
several subclasses of AGs have been searched for and analyzed throughout literature.

Static analysis techniques are detailed further in Appendix A.2.

2.3.3 Dynamic attribute evaluation

In a parse tree, each node is associated with a matching symbol from the context-free grammar.
Attribute instances associated with a certain node correspond to the attributes defined for its
symbol; their dependencies arise from the local dependency graph DGp applied to the node (and
the nodes directly above or below in the parse tree).

Since attribute instances can depend on other attribute instances, one can build a dependency
graph encompassing all the instances that have to be calculated at runtime, with the edges given
by the dependencies between them. A partial order of the nodes can be found such that if A
depends on B, B < A. From this, a topological sort of the graph, which is a total order based
on B < A, can be derived. Evaluation rules for calculating the attributes’ values may then be
called as per the total order, finalizing the evaluation process.

Dynamic evaluation does not concern itself with the preprocessing and grammar analysis
techniques hinted at in the previous subsection (and detailed in Appendix A.2) or with the
construction of a predefined plan for the grammar. Instead, it relies on the dependency resolution
algorithm to evaluate the attribute instances in the right order either during or after parse tree
construction.

The dependency graph of an entire parse tree can be assembled from all local dependency
graphs of the productions applied on the nodes of the parse tree. In the context of a dependency
graph, attribute instances are referred to directly as nodes of the dependency graph.
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Figure 2.8: Dependency graphs from Figure 2.6 with combinations of edges from the IS-SET
graphs in Figure 2.7
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The parse tree from Figure 2.4 is reproduced here, with the dependency graph overlaid. Edges
from DGp (Figure 2.6) are added whenever a node plus its children match production p. For
example, the labels of the root N I and its child LI match the symbols of production N → L,
so all edges from DGN→L (Figure 2.6 (a)) are transferred. In this case, there is only one edge:
LI.value→ N I.value.

NI

LI

LII

LIII

BIII

1

BII

1

BI

0

value

position value

position value

position value

position value

position value

position value

BI.value

BII.value
BIII.value

LI.value

LII.value

LIII.value

NI.value

LI.position

LII.position

LIII.position

BI.position

BII.position
BIII.position

(a) (b)

Figure 2.9: Attributed parse tree for AG 2.5 and input 1 1 0 , with dependency graph overlaid (a)
and resulting dependency graph (b).

There are two main approaches for dynamic evaluation: eager (or supply-driven) and lazy (or
demand-driven). They differ in the order they traverse the dependency graph – eager algorithms
begin with nodes that have no incoming edges, meaning their dependencies have already been
fulfilled, while lazy algorithms are given a set of required nodes and from there work their way
iteratively through all nodes that they depend on.

The lazy algorithm is based on depth-first search and can be easily implemented as a recursive
procedure (see Algorithm 2.4). In this case, the function evaluate is called for each node in the
dependency graph; if only a certain set of nodes have to be calculated, the number of calls can
be reduced.

1 T := {}

2
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3 function evaluate(n):
4 if n ∈ T :
5 return

6

7 for each node m where the edge m→ n exists:

8 evaluate(m)

9

10 append n to T
11

12 /∗ Eva lua te a l l nodes in t r e e ∗/
13 for each node n:
14 evaluate(n)
15

16 /∗ T con ta in s the e v a l u a t i o n order ∗/

Algorithm 2.4: Lazy (demand-driven) attribute evaluation

Figure 2.10 shows the algorithm at work. In order to calculateN I.value, the function evaluate
must be called for each attribute node in part. The numbered arrows denote the order in which
nodes are visited (calls to evaluate(a) for each node a). When a node is appended to T , the
sequence of this event is marked using a circled number near the node.

Backtracking steps (returns of the evaluate function) are not listed.
The eager algorithm involves iteratively finding nodes with no edges and removing them from

the graph:

1 S := set of all nodes;

2 T := {};

3

4 while S contains nodes with no incoming edges:

5 for all nodes n with no incoming edges:

6 for all nodes m where the edge n→ m exists:

7 remove n→ m;

8 S -= n;
9 T += n;

10

11 /∗ T now con ta in s the e v a l u a t i o n order ∗/

Algorithm 2.5: Eager (supply-driven) attribute evaluation

An example of eager evaluation is given in Figure 2.11, with the evaluation order indicated
by a circled number next to each node. The two nodes with no incoming edges, BI.value and
LI.position, are evaluated first – as nodes 1 and 2 – and removed from the graph together with
their outgoing edges. Nodes with no incoming edges in the new graph, in this case LII.position
and BI.position, are evaluated next – as nodes 3 and 4 . A single evaluation step of the
algorithm can thus affect more than just one node. The order in which nodes are evaluated within
this step is interchangeable, so LI.position could conceivably be evaluated before BI.value. The
first node in each step is marked with a more prominently circled number in Figure 2.11.

The advantages and disadvantages of these algorithms are discussed in more detail in the de-
sign chapter. A discussion of cycle detection during dynamic evaluation is given in Section 2.4.1.

Dynamic evaluation can be interleaved with parsing. Whenever a node is created in the
parse tree, its attribute instances are added to the dependency graph. The resulting (partial)
dependency graph can be subjected to preliminary evaluation in an eager fashion; all attributes
with dependencies met, for which the corresponding parse tree nodes have also been constructed,
can be calculated. Such techniques are discussed in more detail in the design chapter as well.
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Figure 2.10: Lazy evaluation of input 1 1 0 for AG 2.5 shown in attributed parse tree (a) and
isolated dependency graph (b).
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Figure 2.11: Eager evaluation of input 1 1 0 for AG 2.5 shown in attributed parse tree (a) and
isolated dependency graph (b). 22



2.4 Cycles in attribute grammars

As an attribute grammar cannot be evaluated if it contains cycles, a circularity test is useful
for providing a guarantee that the evaluation will terminate for any possible input. Originally,
Knuth specified an incomplete circularity test [Knu68, p. 134], which was then corrected, the
complexity of the underlying algorithm, however, increased from polynomial to exponential as
a side effect [Knu90; Knu71]. Circularity tests for attribute grammars were shown to be of
exponential time complexity by Jazayeri et al. [JOR75] – this was one of the first practical
problems which turned out to be so difficult [JOR75; Knu90]:

The upper and lower bounds on the time complexity of the problem are, respec-
tively, 2c1n and 2c2n/ log n where c1 and c2 are constants and n is the length of the
description of the attribute grammar. [JOR75, p. 128]

Jazayeri used attribute grammars to define a specification of a linear bounded automaton and
of a writing pushdown acceptor, thus reducing cycle detection in an attribute grammar to the
membership problem of these automata 3 and being able to infer the lower bound. The upper
bound was given by a refinement of Knuth’s circularity test based on constructing a context-
free grammar from an attribute grammar such that, in the case of circularity, the resulting
context-free grammar is non-empty.

It has been further shown [Wu04] that the problem is EXPTIME-complete, meaning it re-
quires exponential time and polynomial space to solve on an alternating Turing machine. Still, an
implementation of the given alternating Turing machine itself on a computer requires exponential
time and space.

2.4.1 Cycle detection in dynamic evaluators

The problem of detecting cycles at runtime is more simple, as it can be performed during the
dependency resolution algorithm itself, with just a few additions to the basic algorithm.

Algorithm 2.4 specifying lazy evaluation can be modified to also track a list of visited nodes
V , mirroring the parameters in the call stack of evaluate. If evaluation reaches a node n already
present in V , a cycle has been detected. The sublist of V from the last occurrence of n to the
most present entry shows the encountered cycle.

Algorithm 2.5 can also detect cycles with ease; if at some point S is non-empty, but all nodes
have at least one incoming edge, then one of the nodes must reference itself, either directly or
indirectly, producing a cycle. There may be more cycles within the remaining graph, a standard
algorithm for detecting strongly connected components such as Tarjan’s algorithm [Tar72] can
be used to find them.

2.5 Attribute grammars and GLR

Generalized LR (GLR) extends LR parsing with the ability to process ambiguous context-free
grammars. When the parser encounters an LR conflict, it splits into two sub-processes that
follow both alternatives. Sub-processes that encounter an error are discarded, and if two sub-
processes reach the same state after processing the same input, they are merged back into one.
The method is explained in more detail in Appendix A.1.3.

The interaction between attribute grammars and ambiguous parsers such as GLR is not
discussed often in literature. While the two are technically compatible, using them in combination

3The membership problem denotes whether a certain input will be accepted by the automaton.
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exposes a few problems. In particular, applying semantic rules in an ambiguous context can result
in several different attributed parse trees being generated for one particular input. In the case
of GLR, where compatible parse tree nodes can be merged back into one, it is possible for one
parse tree node to have different possible sets of attributes.

A method of handling such concerns efficiently, especially in the case of GLR, is not available
within the context of “ordinary” attribute grammars. Thus, an extension of the formalism is
required.

Research in this area is sparse and mostly focuses on pruning erroneous parses using condi-
tional attributes [DDPS09]. In this approach, a boolean attribute called “ok” is defined for a
parse tree node; the value of the attribute determines if the node (and its corresponding parse
tree) will be kept.

Bison implements the option to merge “semantic actions” (Bison’s in-built synthesized at-
tribute per node) from multiple tree derivations [FSF15a, Sec. 1.5.2]. This can be done either
using precedence rules specified within the grammar or by employing a user-defined merge ac-
tion. A merge action will receive all values from the potential derivations as input and calculate
a new value based on them.

Furthermore, Bison provides a construct similar to conditional attributes via its “semantic
predicates” [FSF15a, Sec. 1.5.4]. Such predicates are evaluated immediately when a correspond-
ing rule is reduced in one of the GLR subprocesses; if the result is 0 (false), the subprocess
terminates and the corresponding parse tree is discarded. At the time of writing however, se-
mantic predicates do not have access to the value of semantic actions while the parse tree is
ambiguous, so they cannot be used in conjunction with them.

This thesis proposes a set of approaches for merging attribute grammars and GLR in Sec-
tion 3.3. The dynamic evaluator implemented as part of the thesis supports evaluation for all
well-defined attribute grammars on unambiguous parse trees (see Section 4.2.3).

2.6 Traversals

Traversals [ALSU07, p. 56-60] allow nodes of a tree to be visited in an explicit and predictable
order as specified by the type and direction of the traversal.

Due to their predictable nature, traversals are a useful complementary technique to attribute
grammars, for which execution order can depend on many factors and is most safely regarded as
an implementation detail. Traversals are particularly useful when performing sequential opera-
tions involving the entire parse tree, such as outputting generated code.

In the context of attribute grammars, traversals are ideally performed on the attributed
parse tree once evaluation is complete. This gives traversals access to the values of all attribute
instances. Multiple traversals of various types can then be executed in sequence.

Several types of traversals exist; two of the most common ones – postorder and preorder –
are detailed below. They are variants of depth-first search and can be easily described using
recursive procedures.

In a postorder traversal, a node is visited after its children:

1 function postorder(n):
2 for all children m of n:
3 postorder(m)

4

5 visit(n)

In a preorder traversal, a node is visited before its children:
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1 function preorder(n):
2 visit(n)
3

4 for all children m of n:
5 preorder(m)

The direction in which child nodes are visited is determined by the iteration order in lines 2
and 4 respectively; commonly, the direction is either left-to-right or right-to-left.

Although they are orthogonal concepts, traversals and attribute grammars are often encoun-
tered together. An evaluator based on traversals can be generated statically for subclasses of
attribute grammars such as multi-pass AGs (see Appendix A.2.1). In the absence of attribute
grammar support, it is common for compiler implementations to use one or more explicit traver-
sals over a parse tree to perform similar kinds of analyses.

2.7 Existing dynamic attribute grammar evaluators

A brief overview of existing systems that support dynamic attribute grammar evaluation is given
in this section.

2.7.1 Ox

Ox is an attribute grammar evaluator toolkit written by Kurt M. Bischoff [Bis93]. It prepro-
cesses scanner and parser definitions written for the Lex and Yacc generators, turning attribute
definitions into “semantic actions” understood by the generators. In effect, Ox can be seen as
a dynamic evaluator generator for well-defined grammars or, more precisely, as a program that
transforms any well-defined attribute grammar into an S-attributed one, which is then evaluated
using Yacc’s semantic actions.

The toolkit requires for attributes to be defined as a C-like struct in the preamble of the
Yacc parser definition. Within the parser and scanner specifications, for each terminal or produc-
tion, there may be an attribute reference section specifying attribute evaluation rules (attribute
definitions) as annotated C/C++ code. A definition mode annunciator, which is part of each
attribute definition, specifies how to obtain the attribute’s dependencies – they can either be
given explicitly outside the C/C++ code block, “guessed” from their occurrences in the code
itself or a combination thereof.

The generator implemented in the thesis has a similar feature set to that of Ox, as it has
proven useful in practice. However, there are some differences, most notably the presence of
GLR support and of other, more intuitive, mode annunciators; these differences are discussed in
the implementation chapter (Section 4.1.2).

2.7.2 JastAdd

JastAdd [EH07] is a Java-based system for extensible compiler construction. JastAdd supports
dynamic evaluation of attribute grammars in a lazy (on-demand) fashion. The toolkit expects
the entire tree to be parsed before evaluation, but also offers a multitude of other features such
as references, circular attributes and tree rewriting.
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2.7.3 Happy

Happy4 is a parser generator for Haskell featuring attribute grammar support. Happy leverages
Haskell’s functional lazy evaluation mechanism.

4https://www.haskell.org/happy/doc/html/sec-AttributeGrammar.html
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Chapter 3

Design of the attribute evaluator

This chapter details the rationale behind implementing a dynamic evaluator. It also explains the
choice of algorithm and explains potential approaches to integrating attribute evaluation with
GLR.

3.1 Static versus dynamic approaches

The idea was to create a conceptually simple evaluator that could handle any well-defined at-
tribute grammar. Dependency resolution would not be necessary until the parsing stage.

Evaluation of attribute grammars is an old problem which has been researched in great depth.
However, most of this research has concentrated on static analysis of subclasses of well-defined
attribute grammars, such as purely synthesized AGs, l-ordered AGs and absolutely non-circular
AGs [AM91; DJL88]. The problem, as cited with respect to general approaches that handle all
well-defined attribute grammars, is exponential with regard to grammar size [DJL88; JOR75].
In addition, some subclasses are interesting because it is possible to construct efficient evaluators
for them based on tree-walk approaches (see Appendix A.2.1).

For well-defined attribute grammars, the complexity of static analysis stems from the need
to analyze the dependency graph of each production in the context of all possible parse
trees. The procedure is outlined in Section 2.3.1 and refers to the calculation of IS-SET s
and SI-SET s and to the membership test in particular. Figure 2.8 hints at the potential
complexity involved.

Absolutely non-circular grammars attempt to avoid the exponential complexity by mod-
ifying the membership test. They are a superset of most other researched subclasses of
AGs [AM91, p. 110] and are discussed in Appendix A.2.1.

The example given in Appendix A.2.1 shows that even simple grammars can be well-defined
but not absolutely non-circular.

l-ordered grammars are the largest class that can be statically evaluated (see Appendix A.2.1).
They are a subclass of absolutely non-circular grammars and as such inherit their limita-
tions.

In practice, many attribute grammars can be statically evaluated and do not incur significant
runtime costs. As such, static approaches should not be discounted immediately due to two main
advantages:
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• The membership test, implying cycle detection, can be a useful tool during development
since it is usually performed at evaluator construction time and is thus valid for all possible
input.

• The ability to construct an efficient evaluator after analyzing the grammar can optimize
use of computing resources.

Nevertheless, it is possible to create grammars that do not conform to a specific subclass,
and results in practice show that it may not be obvious when this happens or how to deal with
the issue [NGIHK99].

With regard to evaluating all well-defined attribute grammars, static approaches can thus be
employed as optimizations of the dynamic evaluation technique. If a grammar does not pass the
membership test for a specific subclass offering an optimized method of evaluator construction,
it can fall back to another subclass or to dynamic evaluation.

If, however, the dynamic evaluator is fast enough in practice, the complexity of a static
approach may be unwarranted. It is therefore of interest to see how a dynamic approach fares,
especially given the computational resources available nowadays. Recent research suggests that
dynamic evaluation approaches work well in practice [EH07; SKV10].

It is to be noted that some static analyses can be performed in linear time in the size of the
grammar. This concerns verifying that attributes of a symbol are consistently used as inherited
or synthesized, and that they are calculated in all productions where the symbol appears on the
right or left hand side respectively. This analysis ensures the grammar is well-defined – except
for cycle detection – and is useful at evaluator construction time.

3.2 The dynamic evaluator

3.2.1 Topological sorting complexity

Topological sorting, when done during the parsing stage, requires a linear amount of time with
regard to the number of nodes and edges of the dependency graph. A more detailed analysis is
given here:

Nodes Since the nodes represent attribute instances, their number is limited by the nodes of
the parse tree times a constant factor which, in worst case, is the maximum number of
attributes that a symbol has.

Edges Synthesized attributes can only depend on attributes of the same node or of a node below
in the parse tree. The number of vertices belonging to a synthesized attribute node is thus
limited by the maximum number of symbols in a production times the maximum number of
attributes a symbol has. Inherited attributes of a node can only depend on other attributes
of that node, attributes of the parent node or attributes of its siblings. Again, the limiting
factor is the number of symbols in a production times the maximum number of attributes
per symbol.

Asymptotically, the number of edges can be larger than the number of nodes. Given the
following factors:
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N . . . The number of nodes in the parse tree.

Ps . . . The maximum number of symbols in a production rule.

Sa . . . The maximum number of attributes a symbol has.

Pa . . . The maximum number of attributes in a production rule.

the worst-case complexity of topological sorting can thus be expressed as:

O(N · Sa +N · Sa · Sa · Ps︸ ︷︷ ︸
Pa

)

The algorithm remains linear with regard to the size of the parse tree. The two values that
play an additional role in the complexity formula (Ps and Sa) are constants given a concrete
grammar. The only interesting question that remains is the relationship between the size of the
input (given by the number of input tokens) and the number of nodes in the parse tree. As LR
parsing requires linear time [Knu65, p. 638][Tay02], this relationship is linear as well. The space
required by the algorithm is also linear with respect to the nodes and edges of the dependency
graph, as nothing else but a copy of the graph is used by the algorithm.

3.2.2 Lazy and eager evaluation

Depending on the starting point of a topological sorting algorithm, the corresponding evaluator
can be classified as either “eager” or “lazy”. An eager evaluator begins at nodes that have no
dependencies and gradually works its way to the other nodes, computing a node as soon as it
becomes available. By contrast, a lazy evaluator is given a set of nodes that have to be computed;
the evaluator then recursively follows the nodes’ dependencies through the graph, marking the
nodes in its way, until there are no more dependencies to follow.

Both evaluation methods have advantages and disadvantages. A prominent advantage of lazy
evaluation is that a subset of nodes can be evaluated selectively; nodes that are not related to the
subset remain untouched. Eager evaluation cannot guarantee the latter. This feature, however,
is not relevant when all attributes have to be evaluated.

An advantage of the eager algorithm is its intrinsic ability to calculate attributes as soon
as possible. This is of relevance, for example, when evaluating purely synthesized attribute
grammars, since all attributes will be calculated by the time the parser is done, rendering an
extra loop over all nodes unnecessary. Deferring attribute evaluation requires information about
dependencies to be stored in memory, memory that needs not be used if it is known that all
dependencies are met and evaluation can proceed immediately.

An eager algorithm was chosen for the implementation of the evaluator because it possesses
the useful features outlined above and does not have any disadvantages with regard to algorithmic
complexity.

3.2.3 The eager evaluation algorithm

The standard eager algorithm [Kah62] gradually refines the set of all nodes S by removing nodes
with no incoming edges (dependencies) and all their outgoing edges. As such, nodes that had
no other dependencies come next, the order of removal is the same as the topological sort. The
algorithm can easily detect cycles – they occur when some nodes are still left in the set, but no
node can be removed:
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1 S := set of all nodes;

2 T := {};

3

4 while S contains nodes with no incoming edges:

5 for all nodes n with no incoming edges:

6 for all nodes m where the edge n→ m exists:

7 remove n→ m;

8 S -= n;
9 T += n;

10

11 if S is not empty:

12 error (); /∗ c y c l e d e t e c t e d ∗/
13

14 /∗ T now con ta in s the e v a l u a t i o n order ∗/

The set data structure. While the basic idea of the algorithm remains the same, some
operations need additional consideration in order to be performed efficiently.

A naive implementation would employ an unordered list for S. This would mean that finding
all nodes with no incoming edges (line 5) would require traversing the entire list in each iteration.
The worst case complexity of the two loops from lines 4 and 5 would thus be O(n2), which would
occur when the last node in the list matches on every iteration of the outer loop.

Fundamentally, the two loops together cannot be more efficient than O(n) since all n nodes
have to be added to T and only one node can be added at a time. However, it is possible to
reduce the complexity of the two loops by partitioning the nodes according to the number of
incoming edges; when an outgoing edge is removed, the node it pointed to is moved one partition
to the left. As a result, all nodes with no incoming edges can be found in the first partition and
so the inner loop never needs to go beyond it.

A partition-based implementation. The enhanced algorithm described here uses d parti-
tions, where d is the maximum number of dependencies an attribute can have. While Pa is a worst
case value for d, the actual number can be determined while parsing the grammar specification.

1 for i := 0 to d:
2 Si := all nodes with i dependencies;

3

4 T := {};

5

6 while S0 is not empty:

7 for all nodes n in S0:

8 for all nodes m where the edge (n→ m) exists:

9 remove (n→ m);

10 move m one partition to the left;

11

12 S0 -= n;
13 T += n;
14

15 if S1 . . . Sd are not empty:

16 error(); /∗ c y c l e d e t e c t e d ∗/
17

18 /∗ T now con ta in s the e v a l u a t i o n order ∗/
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An issue with implementing separate partitions as sets is that nodes have to be constantly
moved from one partition to another, which incurs some overhead. To mitigate this, partitions
S1, . . . , Sd can be merged into a single partition SNR of nodes whose dependencies have not yet
been resolved. The dependency count (deps) of nodes in SNR becomes a property of that node,
which is decremented until it reaches 0 instead of moving the node to another partition.

1 S0 := {};

2 SNR := {};

3

4 for all nodes n:
5 n.deps := dependency count of n;
6 if n.deps = 0:

7 S0 += n;
8 else:

9 SNR += n;
10

11 T := {};

12

13 while S0 is not empty:

14 pick a node n from S0:

15 for all nodes m where the edge (n→ m) exists:

16 remove (n→ m);

17 decrease m.deps by 1;

18 if m.deps = 0:
19 S0 += m;

20

21 S0 -= n;
22 T += n;
23

24 if SNR is not empty:

25 error(); /∗ c y c l e d e t e c t e d ∗/
26

27 /∗ T now con ta in s the e v a l u a t i o n order ∗/

3.2.4 Evaluation at runtime

In order to save memory, evaluation can be performed during the parsing stage, before the depen-
dency graph is known in its entirety. Essentially, all attributes from the local dependency graph
of a symbol are submitted to the evaluation routine whenever that symbol is found (reduced); if
the attribute instance’s dependencies have already been evaluated, that attribute instance is also
evaluated immediately; otherwise, it is “enqueued” within the dependency graph structure. As-
suming no circular attribute dependencies, all attribute instances within the dependency graph
will have been evaluated after the start symbol is reduced. The algorithm, which is set to be
called after every reduce operation of the parser with the obtained parse tree node as parameter,
is described in Algorithm 3.1.

To concretize the implementation of the dependency graph, more precisely of the query
“all nodes m where the edge (n→ m) exists”, a property dependees is added to each node (n),
containing links to other nodes that depend on it. dependees can thus be viewed as the adjacency
list of n encompassing outgoing edges.

The initialization of n.dependees must happen before any node m that depends on n is
processed. Any such node m must belong to DO(p) (see Subsection 2.2.2). This encompasses
synthesized attributes of the production’s left hand side symbol and inherited attributes of the
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production’s right hand side symbols. Since the parser’s reduce operation traverses the tree in
a bottom-up fashion (children first), all references to attributes of right hand side symbols have
with certainty been initialized in a previous call to reduce. The initialization of (synthesized)
attributes referenced by the left hand side symbol is ensured by marking them as non-calculated
at the beginning of reduce attributes, before any dependency analysis operation.

1 T := {};

2

3 /∗ p i s t h e parse t r e e node c r ea t e d a f t e r r educ t i on .
4 I t c on ta in s the a t t r i b u t e i n s t a n c e s o f t he node
5 r e s u l t i n g from the product ion ’ s l e f t hand s ide ,
6 as w e l l as l i n k s to c h i l d nodes ( f o r symbo ls on
7 t h e r i g h t hand s i d e ) .
8 ∗/
9

10 function reduce_attributes(p):
11 S0 := {};

12

13 for all attribute instances n of p:
14 n.dependees = {};

15

16 for all attribute instances n of p:
17 n.deps = 0;

18

19 for all dependencies d of n:
20 if d not in T :
21 increase n.deps by 1;

22 d.dependees += n;
23

24 if n.deps = 0:

25 S0 += n;
26

27 while S0 is not empty:

28 pick a node n from S0:

29 for all nodes m in n.dependees:
30 decrease m.deps by 1;

31 if m.deps = 0:

32 S0 += m;

33 discard n.dependees;
34

35 S0 -= n;
36 T += n; /∗ ( e v a l u a t e n) ∗/
37

38 . . . call reduce_attributes(p); after each reduction . . .
39

40 if a node n exists with n.deps > 0:

41 error(); /∗ c y c l e d e t e c t e d ∗/
42

43 /∗ T con ta in s the e v a l u a t i o n order ∗/

Algorithm 3.1: A runtime eager evaluator.

The dependency graph structure is thus reduced to a single counter deps per node representing
the incoming edges and an adjacency list dependees representing outgoing edges. The number of
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dependees is kept low, as they are only added if a node’s dependencies have not been calculated
yet. In best case (as would be, for example, with a synthesized-only grammar featuring properly
ordered attributes), dependees would always remain empty.

On line 36, n can be evaluated instead of being added to T . The check whether d is in T on
line 20 can be worked around by adding a special “evaluated” flag to the node properties (or by
saving, for example, a negative value in deps). Maintaining the list T is thus not required at all.

3.3 Integrating attribute grammars and GLR

GLR (”Generalized LR”) is an extension of LR parsing that can handle ambiguous context-free
grammars (see Appendix A.1.3). In practice, GLR can be used to generate both a parse forest
containing all possible parse trees or, in combination with semantic rules, to generate one or
more valid parse trees. In case a single parse tree is generated, GLR can be seen as effectively
increasing the expressiveness of the LR variant used.

This section offers an overview of possible ways to integrate attribute grammars with GLR
and details the reasoning behind choosing a specific approach for the implementation.

3.3.1 Potential approaches

Generating an attributed parse forest

Like with other parsing techniques, the resulting parse trees can be later attributed; thus a simple
(but blunt) way of extending GLR to support attribute grammars is to obtain all parse trees
and subsequently perform attribute evaluation on each one. Depending on the level of ambiguity
of the grammar, an exponential amount of parse trees with regard to the size of the input may
have to be processed.

Using GLR’s compact parse forest representation

In one of the initial papers on GLR, Tomita describes a method of generating compact parse
forests by employing two optimizations: sub-tree sharing and local ambiguity packing [Tom85].
The result is a directed acyclic graph from which all possible parse trees can be derived. These
optimizations are based on the equivalence in behaviour of equal parser states that are reached
after processing the same input.

If attributes come into play, this equivalence no longer necessarily holds. As an example,
consider AG 3.1 below describing addition of binary digits. Here, the attribute code is used to
translate the input into reverse Polish notation.

S → E { S.code := E.code; }

E0 → E1 +E2 { E0.code := concatenate(E1.code, E2.code, + ); }

E → B { E.code := B.code; }

B → 0 { B.code := 0 ; }

B → 1 { B.code := 1 ; } (3.1)

For input 0 + 1 + 0 , the GLR parser will split to pursue the ambiguity in rule E0 → E1 +E2.
Both parse trees are merged back and treated as one as soon as the topmost E is derived, but
E.code now has two possible values: 0 1 + 0 + and 0 1 0 + + (see Figure 3.1). This shows that a
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Figure 3.1: A compacted GLR parse forest for AG 3.1 and input 0 + 1 + 0 . Red and blue nodes
belong to different parse trees, black nodes are shared between them.

one-to-one relationship between compacted GLR nodes and attributed nodes cannot be assumed.
Note that this also affects nodes compacted via sub-tree sharing: for example, if one were to
calculate the depth of the tree for each node labelled E by inheriting it from the topmost E
onward, then the first and last bottom-most nodes labelled E in the example would each have
two different possible values.

In order to handle this issue, two courses of action are possible:

• Ensuring that the equivalence between compacted nodes and attributed nodes does indeed
hold by extending attribute grammars with “merge actions” that produce unique attribute
instance values for nodes shared by multiple parse trees. In the example above, the merge
action would simply select one of the alternatives.

Such an approach is used, for example, for Bison’s semantic values: by adding a %merge

clause one can calculate the semantic value of a merged node based on values from the
derivations leading to the merge.

A merge action in the case of well-defined attribute grammars is needed both when calcu-
lating synthesized attributes of merged parent nodes (as is the case with Bison’s semantic
values) and when calculating inherited attributes of child nodes in common sub-trees (where
the parent node is part of a GLR split).

This method offers a clean mapping of attributes to GLR parser structures. However, it
can be tedious and error-prone to define merge actions for all affected attributes.

• Relaxing the compacted representation and determining node equivalence based on dis-
tinctive features of attributes, be it their values or – particularly in the case of dynamic
evaluation – their dependencies within the dependency graph.

This approach retains maximum flexibility at the expense of efficiency and/or complexity.
While it is conceivable that the approach can be optimized to not affect GLR parsing and
to calculate only the minimum amount of attributes required, it is yet uncertain whether
such expressivity is required in practice.

Generating a single attributed parse tree

A relatively straightforward approach is to generate a single valid parse tree from the GLR
grammar and then perform attribute evaluation on it.
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This approach is particularly useful when only one valid parse tree is actively sought for;
examples can be parsing programming languages or using GLR to increase the expressiveness
of an underlying LR parser. The approach entails starting with a single parse tree, pursuing
multiple sub-trees in the case of a GLR split, but then merging (or picking, or discarding) parse
trees into a single one during a GLR merge. In this case, attribute evaluation can be performed
after parsing or while only one parse tree is present.

This method also requires the use of “merge actions” or precedence rules in order to choose
the desired parse tree in face of ambiguity. However, the scope is more limited in this case and
only applies to the parse tree itself, not to individual attributes. The parser may be furthermore
configured to pick a random alternative by default if so desired.

3.3.2 Chosen approach and rationale

Bison already supports various mechanisms for selecting one of several possible parse trees. This
includes precedence rules, semantic predicates and %merge clauses [FSF15a, Sec. 1.5].

Furthermore, Bison expects all ambiguities to be resolved before parsing ends. For this reason,
performing attribute evaluation on a single valid parse tree is seen as the most sensible approach.

Bison’s deferred semantic action mechanism can be used to construct the dependency graph
and perform eager evaluation only at times when the parse is unambiguous. This saves processing
time, as attributes are not evaluated by sub-parsers that will be later discarded.
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Chapter 4

Implementation in Bison

As part of the thesis, an attribute evaluator was implemented on top of Bison, a popular LALR(1)
and GLR parser generator. This chapter focuses on how the implementation was done, in
particular with respect to the syntax additions made to support attribute grammars, to the
portions of the Bison source code affected and to various architectural and user-centric decisions.
The chapter also details the implementation of libxnag, a library encapsulating the core of
the resulting dynamic evaluator. It furthermore explains how the code was tested and lists
optimizations made to the evaluator during the course of the implementation.

4.1 Concepts and their syntax

Bison [FSF15a] is an open-source LALR(1) and GLR parser generator. Its syntax is compatible
to that of Yacc, another LALR(1) parser generator 1, and allows specifying context-free grammars
which can be compiled into C, C++ or Java parsers.

Rules consist of the name of a non-terminal on the left hand side, followed by a colon and a
list of symbol names for the right hand side (which can be non-terminals or tokens). Rules end
in a semicolon, vertical bars can however be used to separate alternative right hand sides.

A “semantic action” can be specified for each rule. Such actions allow for one synthesized at-
tribute to be calculated per symbol and are easily implemented as part of the reduce() operation.
The parser has access to all necessary data, as nothing else is needed beyond the synthesized
attributes of the right hand side symbols (which are saved on the parser stack) and the actual
code to be executed (saved together with the rule). No dependency problems can arise, as there
are no inherited attributes; the grammar is S-attributed (see Appendix A.2.1).

After reading all rules, settings and their associated actions, Bison proceeds by generating
a temporary data file containing the LR parsing table, all rules and action code. This data file
is used in conjunction with a template called a “Bison skeleton” to generate the actual parser
in the programming language of choice, optionally using a different algorithm instead of LALR.
Code required for several debug and compatibility options is also handled by the skeletons.

In order to make attribute evaluation possible, certain add-ons had to be made to Bison:

%attributes. Since the languages supported by Bison are statically-typed, a listing of all at-
tributes of a symbol, together with their corresponding types, is required. This listing is
implemented as a new Bison option called %attributes and has the following syntax:

1http://dinosaur.compilertools.net/yacc/
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%attributes {attributes} symbols

attributes is an annotated listing of attributes, separated by comma or semicolon, also
containing their types, matching the definition of a C/C++ struct. This construct is
detailed in Subsection 4.1.1, together with the two related options %autosyn and %autoinh.

Attribute actions and specifiers. In addition to the “semantic actions” supported by Bison
itself, a rule of the grammar may have several “attribute actions”, formally equivalent to
“semantic rules” in an attribute grammar. Attribute actions allow the use of inherited
attributes, as well as more than one synthesized attribute. Each attribute action specifies
code that is to be executed to obtain the value of one or, in some special cases, several
attributes.

In contrast to Bison’s semantic actions, attributes defined this way remain available after
the parsing stage for traversals.

Attribute specifiers are used to prefix attribute actions (or actions that are to be executed
during traversal). At the same time, they allow the user to specify which attributes are
being calculated, together with their dependencies. The attributes and dependencies can
be entirely or partially inferred from the position of attribute references in attribute actions
by using the correct specifier (@i, @e, @m). Alternatively, the @d specifier can be used to
infer dependencies based on the declared types of the attributes.

A more in-depth description can be found in Subsection 4.1.2.

Traversals. While attributes themselves are sufficient to execute all the necessary operations
in the semantic phase of a compiler, explicit traversals of the parse tree have also been
added as a way to use calculated attribute values more effectively. Traversals are useful
for debugging purposes or for such tasks as code generation, when the entire parse tree is
traversed and instructions calculated using attributes are output for each node.

Traversals come into being by adding a corresponding %traversal option to the header of
the Bison grammar specification:

%traversal order direction name

order is either %preorder or %postorder, direction is either %ltr (left-to-right) or %rtl

(right-to-left). order and direction can be swapped. name is a designation for the traversal,
“@name” can be used as an attribute specifier to run an attribute action as part of the
traversal when the node corresponding to the left hand side is reached. For more details,
see Section 4.1.3.

Attribute assignment in Flex. In order to allow initialization of attribute values associated
with tokens, attribute support was added to Flex, a scanner generator commonly used with
Bison. An attribute a of a token TOK can be referenced in a Flex action returning a TOK

via $TOK.a. More details are given in Section 4.1.4.

4.1.1 %attributes

The attributes of one or more symbols can be specified using the %attributes option:

%attributes {attributes} symbols
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The names and types of all attributes given in braces are associated with the given symbols.
The entire contents of attributes, without any annotations, is translated into a C/C++ struct

definition and represents the actual type corresponding nodes will have in the attributed parse
tree. As an example, a definition of:

%attributes { char *name; int length; } Identifier

will cause the C skeleton to yield:
struct yyattr1 { char *name; int length; }

which will be used every time the attribute values of an Identifier are referenced.
The attribute names must be known to the system as to ensure proper usage in attribute

specifiers and attribute actions. Furthermore, information not required for the C/C++ output
(annotations) can be associated with attributes. Each attribute exhibits the following properties:

The attribute name. Names match the format of C identifiers – strings of alphanumeric char-
acters including underscore, but not starting with a digit. A name is detected as the last
such string before a comma or semicolon.

The attribute kind. Attributes can be declared as “inherited” or “synthesized” by adding
%inh or %syn before their name, respectively. For example:

%attributes { %inh char *name; %syn int length; } Identifier

Using %inh and %syn is optional. In their absence, the information is inferred from specifiers
and attribute actions in which the specific attribute occurs. However, if an attribute is
erroneously used as both inherited and synthesized, being able to fall back to the declaration
can yield a more useful error message.

Note that the @d specifier also depends on %inh or %syn being used; the specifier cannot
be employed unless the declaration is present (see Section 4.1.2).

Propagation options. Attribute grammars often require information to be passed several levels
up or down the parse tree, resulting in the usage of a series of “copy rules”. These copy
rules can be generated automatically from a template, but may cause confusion if they are
not specified by the user in advance. For this reason, attributes that are to be “passed-
through” in one direction or the other for a symbol or set of symbols can be annotated
using a preceding %autoinh if inherited or %autosyn if synthesized. In this case, %inh and
%syn are implied.

Note that propagation options for an attribute can be specified outside of %attributes as
well, using the dedicated Bison options %autoinh and %autosyn respectively. Their syntax
is:

%autoinh attributes
%autosyn attributes

attributes is a whitespace-separated list of attribute identifiers.

The dedicated options %autoinh and %autosyn only apply to %attributes declarations
following them.

A symbol can be referenced in at most one %attributes declaration (this is a limitation of the
current implementation). The following will result in an error, as the attributes for Identifier
are declared more than once:

%attributes { int i; } Term Identifier

%attributes { char *name; } Identifier
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4.1.2 Actions and attribute specifiers

Bison allows specifying a context-free grammar using a series of rules. Such rules consist of a
left hand side (Expression) and a right hand side (Term ’+’ Term and Term ’-’ Term, respec-
tively), separated by a colon:

Expression: Term ’+’ Term ;

Expression: Term ’-’ Term ;

Rules must end in a semicolon.
If the left hand side of several rules is the same, they can be joined together using vertical

bars:

Expression: Term ’+’ Term

| Term ’-’ Term

;

Since the first syntax is less complicated, it is used more prominently further on. The distinc-
tion is handled transparently by Bison; semantic actions and attribute specifiers work in both
cases.

A “standard” Bison semantic action is specified by inserting it between the last term of the
right hand side and the semicolon 2:

Expression: Term ’+’ Term { $$ = $1 + $3; }

| Term ’-’ Term { $$ = $1 - $3; }

;

$$ references the value of the parent, $1 and $3 refer to the values of the first and third right
hand side symbol. Symbols can be named to increase the descriptiveness of semantic actions:

Expression[e]: Term[t] ’+’ Term[u] { $e = $t + $u; } ;

Attribute actions have a similar syntax. Assuming a synthesized attribute called “value”
is defined for Expression and Term, an attribute action serving the same purpose as the code
above would look like this:

Expression[e]: Term[t] ’+’ Term[u]

@i { $e.value = $t.value + $u.value; } ;

Attribute actions are easily recognizable as they are always preceded by an attribute specifier
(in this case @i – explained below). The attribute action itself exhibits the use of references
to attributes, such as $t.value. Symbols are referenced in the same way as in Bison semantic
actions. The identifier after the last dot of the reference is extracted as the attribute name,
meaning $x.a.y is parsed as ($x.a).y – the attribute y of the symbol $x.a. The separation is
made for error checking purposes and in order to infer dependencies, if requested by the user.

Attribute specifiers like @i above are used to determine the dependencies of the attribute
action. They follow the same semantics as the “definition mode annunciators” in Ox (see Sec-
tion 2.7.1) except @d, which Ox does not support. To keep Bison’s grammar unambiguous,
attribute specifiers start with an “@”. The following specifiers exist:

2Bison also supports “mid-rule actions”, which are evaluated after part of a rule has been parsed. They are
only useful in cases when semantic attribute (and attribute actions) are unavailable. Therefore “mid-rule attribute
actions” are not implemented in the attribute evaluator extension.
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@i Implicit mode. This specifier lets the first encountered attribute depend on the rest. This
specifier is useful for assignments using the assignment operator:

A: B ’+’ C @i { $B.y = $A.x + $C.z; } ;

In this example, B.y depends on A.x and C.z.

@m attributes Mixed mode. This specifier has one or more parameters, separated by space,
designating “dependees”. Attributes specified as parameters depend on all other attributes
encountered in the action. This is useful when more complex code is executed in the
attribute action and @i would not have the desired effect:

A: B ’+’ C @m B.y { int tmp = $A.x + $C.z; $B.y = tmp; } ;

Here, B.y depends on A.x and C.z.

@e dependees: dependencies Explicit mode. This specifier requires both the dependees and the
dependencies as parameters.

A: B ’+’ C

@e B.y: A.x C.z { $B.y = $A.x; if (0) {/* use C.z */} } ;

Here, B.y depends on A.x and C.z.

@d Declaration mode. This specifier uses the attribute declaration to find out whether an
attribute is synthesized or inherited and thus associate with it the role of dependency or
dependee.

%attributes { %syn int val; } Expression Term

...

Expression: Term[t] ’+’ Term[u] @d {

int tmp = $t.val; $$.val = tmp + $u.val;

} ;

In this example, Expression.val depends on Term[t].val and Term[u].val.

More attribute actions may be given for a rule, but an attribute specifier must appear every
time:

A: B ’+’ C @i { $A.x = $B.y + $C.z; }

@m C.f {

if ($B.g)

$C.f = $A.h;

else

$C.f = -$A.h;

} ;

Section 4.2 contains more information about how attributes are saved and how attribute
values are actually calculated.

Traversal specifiers also start with an “@” and use this mechanism; they are detailed below.
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4.1.3 Traversals

Traversals are used to perform operations on the nodes of a parse tree in a predefined order,
after the parsing process is complete. Each node for which a traversal action is set is visited and
its traversal action is executed. All attribute values are readily available in the traversal phase.

Traversals are defined using the %traversal option:
%traversal order direction name

Traversal order. order can be either %preorder or %postorder – in a preorder traversal, a
node is visited before all of its children; in a postorder traversal, the children are visited
first.

Traversal direction. direction can either be %ltr (left-to-right) or %rtl (right-to-left). This
determines the order in which children are visited and works both with %preorder and
%postorder.

Name. Each traversal must have a name. This name is used to distinguish traversal actions – a
traversal specifier with @name must precede traversal actions for the traversal called name.

The position of order and direction may vary. An example traversal definition would be:
%traversal %preorder %ltr output

A traversal action for output may look like this:
Expression: Term ’+’ Term @output { print($$.value); }

Traversal actions and attribute actions may follow each other:

Expression[e]: Term[t] ’+’ Term[u]

@i { $e.value = $t.value + $u.value; }

@output { print($e.value); }

An actual parse tree with the forward and backward links necessary to traverse it in any
direction given a node is constructed during parsing. After both parsing and attribute evaluation
are complete, traversals are executed, one after another, in the order that they were defined in
the .y file.

4.1.4 Attribute assignment in Flex

The evaluator offers the ability to define attribute actions for tokens in a corresponding scanner
(.l) file in a way similar to Ox (see Section 2.7.1). Attribute support is enabled in the modified
version of Flex by adding:

%option attributes

to the initial section of the input file or by calling flex with the -A command line flag.
The syntax is relatively straightforward and involves referencing the attribute data via a $

followed by the token name; this can be done in a regular Flex action.
In the following example, the attribute val of nodes labelled NUM matching 0x[0-9a-fA-F]+

is set to the value of the scanned string parsed as a hexadecimal number:

0x[0-9a-fA-F]+ { $NUM.val = strtol(yytext, NULL, 16); return NUM; }

The evaluator runtime checks if the returned token identifier is compatible with the token
that was used in the attribute assignment. Token names used in %attributes are exported by
Bison as #defines prefixed with YYA_ that reference the corresponding %attributes struct, so
using an invalid token will result in a compiler error.
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4.2 Implementation details

4.2.1 Scanners and parser

Bison uses a bootstrapping process to generate a parser for its own input file format. By default,
a compiled version of the grammar for Bison’s input format is included with the distribution;
when the distribution is rebuilt, a previously created Bison executable is used to regenerate the
Bison parser from the specification. All relevant files can be found in the src/ directory of
the distribution; parse-gram.y is the grammar specifying input files accepted by Bison, while
parse-gram.c is the compiled version.

The scanners employed by Bison are also not hand-coded – they are created at build time using
Flex, an open source scanner generator. The corresponding definition files have the extension
.l, as more scanners are employed for particular purposes. The challenge met when adding
attribute grammar support was to reuse as much of the existing code and tokens as possible,
integrating new features “naturally” yet retaining a certain degree of independence, such that
unrelated changes to the grammar in the future do not influence the functionality of the attribute
grammar code.

A summary of the definition files including their use and additions made to support attribute
grammars follows:

scan-gram.l is used to produce input tokens for Bison’s main grammar, including identifiers,
option names, comments, strings, bracketed and unbracketed code.

Tokens corresponding to the new Bison options (%attributes, %traversal, %preorder,
%postorder, etc.) were added. Attribute specifier-related tokens (@i, @e, @m, @d, as well
as every token encountered in the scanner’s initial state starting with an “@”) are also
handled. In particular, the scanner recognizes strings that start with “@” and end before
a “{” as a single token; a simple parser is then used to extract the attribute / traversal
specifier and its parameters from the string.

scan-attributes.l is the scanner used to parse attribute declarations inside %attributes op-
tions. Beside identifying and removing comments, the scanner generates:

• A string that can be used as the body of a C/C++ struct definition by the skeleton.
This is done by removing annotations (everything starting with a “%”) and escaping
certain characters, as required by the skeleton’s macro language.

• An attribute_decl_list structure that maintains all attributes listed in the dec-
laration. Attribute names are detected as C identifier tokens preceding commas or
semicolons. The structure contains the name of the attribute and flags indicating
whether the attribute is synthesized or inherited and whether this is done automati-
cally.

• An attributes_props structure that collects all of the gathered information, includ-
ing the attribute_decl_list, the number of attributes, the struct code string and
the location of the declaration in the Bison input file. Information from this structure
is transferred by the parser to each symbol referenced by the %attributes option.

scan-code.l handles semantic action code. This scanner was enhanced to also understand at-
tribute actions and traversal actions; this was done by introducing a new Flex state which
handles references containing a dot separately. The function responsible for performing
the actual work, handle_action_attribute, checks whether the attribute name is valid
for the referenced left or right hand side symbol and if that is the case, translates it into
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a b4_lhs_attribute or b4_rhs_attribute macro, respectively, to be turned into special
programming language code later during the skeleton stage. It generates an error message
if the referenced item or attribute is unknown or cannot be used.

All attributes encountered in the code are saved in a list to be used for determining depen-
dencies, together with the attribute specifiers.

scan-skel.l is a scanner that is used to interpret special directives and escape codes output by
the instantiation of a skeleton. No changes were made to this file.

In order to make deployment of the attribute-enabled Bison version easier, changes to the Bi-
son grammar had to be compatible with Bison versions without attribute support. As such, new
features are implemented using a combination of Bison’s semantic actions and global variables:

Options Bison options relevant to attribute grammars are implemented and handled like any
other option. Their tokens are defined at the beginning of the grammar and used in a
prologue_declaration. The non-terminal attribute_declaration is used for attribute
blocks, a semantic action that outputs the structure and attribute declarations needed by
the skeleton is present here. The action also updates the sym_content of referenced symbols
with structure and attribute information via a call to symbol_attribute_data_set.

Traversal specifications for the skeleton are output when a %traversal is encountered.

Semantic actions The definition of a RHS in Bison is recursive – a list of RHS symbols and
actions is created this way. The relevant line for attribute actions and traversal actions is:

rhs: rhs attribute_specifier "{...}" ;

Thus, one or more attribute actions for a RHS can be given. Each such action must begin
with an attribute_specifier. A specialized function called grammar_current_rule_-
attribute_append, detailed later on, is called to parse the attribute specifier and add the
action to the structure belonging to the current rule, which is managed as a global/member
variable by Bison.

Attribute specifiers are, too, saved in global variables during parsing and used/cleaned
up immediately when the corresponding rhs rule is reduced. current_specifier_type

determines how dependencies and dependees of the attribute action will be calculated
(based on the specifier token), while current_specifier_option_type together with
current_specifier_options (which is handled by the gramar_current_specifier_*

functions) manage a string or list of strings which hold the traversal name or the de-
pendencies of an @e or @m specifier respectively.

4.2.2 Attribute actions

The function grammar_current_rule_attribute_append is called each time a rule correspond-
ing to an attribute/traversal is reduced. This function creates a new entry in the (user input)
rule’s attribute_props_list structure containing the specifier, the rule type and preallocated
space for data that is filled in when scan-code.l’s scanner is called. This is done after all input
has been parsed.

The function code_props_translate_attribute_code fills in the aforementioned data. It is
called in reader.c by translate_attributes_code, which is one of the operations performed
on the “symbol list” representation of the grammar. code_props_translate_attribute_code

generates both properly escaped code for use by the skeleton and the list of attribute references
found in the code. The list of attribute references is then used along with the specifier to
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obtain a concrete list of dependencies that can be processed directly by the topological sorting
algorithm. Checks that ensure the user gave a definition of all attributes are also executed during
translate_attributes_code:

• The start symbol must not have any attributes declared as inherited or auto-inherited, as
there is nowhere to inherit them from.

• Each attribute of a symbol must be used consistently as either inherited or synthesized in all
rules of the grammar in which the symbol is present. If an attribute is explicitly declared
as inherited or synthesized, this must be reflected in its usage. Attributes declared as
%autoinh or %autosyn are assumed to be inherited and synthesized, respectively.

• For each rule of the grammar, all synthesized attributes of the left hand side symbol and
all inherited attributes of all the right hand side symbols must be defined (appear as
“dependees”) in exactly one attribute action. Inherited attributes of the left hand side
symbol and synthesized attributes of the right hand side symbols may not be defined in
any of the rule’s attribute actions. For attributes that have not been explicitly declared as
inherited or synthesized, the attribute kind is inferred from the presence of either zero or
one attribute actions in which they are defined. This is cross-referenced with the inferred
attribute kind from other rules featuring the same attribute; any conflicts result in an error.

Error handling

Error reporting is an important usability aspect of any software, in particular that of libraries
and tools. Thus, particular attention is given to the context in which error messages are output
and to the information reported to the user. Any conflicts or inconsistencies in the attribute
grammar are reported. The goal behind the error messages is to pinpoint inconsistencies in an
understandable way.

Error handling and reporting is done in a single pass over the grammar. The main func-
tions that perform error handling are called check_unused_attributes_in_rule and symbol_-
attribute_usage_set. The following error conditions will be detected:

• Redefinitions of the same attribute in the same rule.

• Missing or conflicting definitions in all affected rules if the attribute was explicitly declared
as inherited or synthesized. For example, given the following Bison grammar that features
a missing declaration of B.y in the rule B: ’1’:

%attributes { %syn int y; } B

%%

N: B;

B: ’0’ @i { $B.y = 0; };

B: ’1’;

an error message such as this will be output:

syn-missing.y:5.4-6: error: synthesized attribute ‘y’ of symbol

’B’ is undefined here

B: ’1’;

^^^
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Similarly, if the synthesized attribute features in a rule where it would be inherited:

%attributes { %syn int y; } B

%%

N: B @i { $B.y = -1; };

B: ’0’ @i { $B.y = 0; };

an error message such as this follows:

inh-conflict.y:3.9-22: error: synthesized attribute ‘y’ of symbol

‘B’ inherited here

N: B @i { $B.y = -1; };

^^^^^^^^^^^^^^

• Rules with a @d specifier in which no attribute is calculated and all attributes are interpreted
as dependencies due to their types. In order to elicit a more helpful response in the case
of user error – such as having used the wrong attribute type in an attribute definition or
having placed the rule at an incorrect position – such rules are not allowed. For example,
the specification:

%attributes { %syn int y; } B

%%

N: B @d { $B.y = 1; };

B: ’0’ @d { $B.y = 0; };

yields an error message such as this:

no-parents.y:3.9-33: error: none of the attributes have types (inherited or

synthesized) that suggest they could be calculated here

N: B @d { $B.y = 1; };

^^^^^^^^^^^^^

• Mismatches between the inferred type of an attribute from one rule and the way it is used
in another rule, if the attribute was not explicitly declared as inherited or synthesized.
Error messages emphasize the mismatch itself, but assume a rule in which an attribute is
used to more likely represent the attribute type:

%attributes { int y; } B

%%

N: B;

B: ’0’ @i { $B.y = 0; };

B: ’1’;

will yield:
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rhs-missing.y:4.11-23: error: missing definition: attribute

‘y’ of symbol ’B’ is synthesized here,

B: ’0’ @i { $B.y = 0; };

^^^^^^^^^^^^^

rhs-missing.y:5.4-6: error: but not synthesized in this rule

B: ’1’;

^^^

An equally valid interpretation of the grammar would be that the attribute B.y is inherited,
that the declaration in N: B is missing and the declaration in B: ’0’ is superfluous. This
would mean that the rule B: ’1’ is correct.

• Note that in order to obtain relevant error messages when an attribute is used incorrectly,
it is recommended to declare attributes as inherited or synthesized in the %attributes

definition.

As a further example, given the grammar:

%attributes { int y; } B

N: B;

B: ’0’;

B: ’1’;

it is unclear whether B.y is inherited or synthesized. As such, the error handler will first
assume that the attribute is synthesized (since it is undefined for N: B), then report a
conflict when B: ’0’ and B: ’1’ are processed.

Declaring the attribute as inherited would yield a single and more descriptive error, namely
that the inherited attribute B.y is undefined in the rule N: B.

4.2.3 The skeleton

The %attribute structures and their size, all attribute/traversal action code, identifiers of at-
tributes defined by tokens and their dependencies are saved as key-value pairs into a table, the
contents of which is used as input data together with the skeleton to obtain the actual parser
using the macro language M4.

Multiple skeletons exist for various combinations of output programming language and parsing
algorithm. Attribute evaluation was implemented for the C language skeleton in the standard
(LALR) and GLR variants.

A detailed description of how this is accomplished is given below.

yacc.c

yacc.c is the skeleton file for C language LALR parsers. It contains additional variable definitions
and macro calls that enable attribute evaluation.

• Two additional variables – yynval and yylnval – hold the parse tree nodes belonging to
the current symbol and lookahead symbol respectively, in a manner similar to yyval and
yylval (which are used by Bison to hold “semantic values”). Furthermore, the parse tree
node stack is maintained in variables prefixed with yyns, analogously to yyvs for “semantic
values”.
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• Calls to the macros b4_node_init_tok and b4_node_cleanup_tok are used to initialize
parse tree nodes for tokens.

• Calls to the macro b4_node_init are used to initialize parse tree nodes during a reduce
operation. For each attribute action defined in the scope of the reduced rule, a call to
b4_node_dependency is emitted, which adds the necessary dependency initialization code
for that action.

• A call to the macro b4_evaluate_ready_set is performed after initializing the above. The
macro emits code that will evaluate attribute instances with no remaining dependencies.

• b4_support_structs outputs C struct declarations for the data structures used internally
by the evaluator.

• b4_support_header outputs variable declarations that need to be present in the generated
C headers.

• b4_support_functions outputs function definitions used internally by the attribute eval-
uator and by traversal code.

• b4_attr_yyattrs outputs code to be executed after parsing has been completed, which
includes the circularity check and traversal execution.

bison.m4

bison.m4 contains language-independent M4 macros. The macro for checking if attribute sup-
port is enabled (b4_attr_if), as well as macros that output user code for attribute actions
((b4_attribute_actions) and traversal actions (b4_trav_actions) are defined here.

glr.c

glr.c is the skeleton file for C GLR parsers; this file is also used by the C++ GLR skeleton.
Like yacc.c, it contains variable definitions and macro calls that add support for attribute

grammars inside the parser.

• struct yyGLRState, which embodies a GLR state, is extended to hold a pointer to yynval,
an attributed parse tree node.

• The set of attribute instances ready for evaluation, yyai_ready_list, is added to struct

yyGLRStack.

• Since the GLR parser uses different variable names and data structures than the LALR
parser, access to the current parse tree node and its children is performed differently.
Macros that abstract away this aspect (b4_lhs_attribute_node, b4_rhs_attribute_node
and b4_root_attribute_node) are defined for this purpose.

• Several functions declarations, such as yyglrShift, yydoAction, yyresolveAction and
yyuserAction are amended to accept a pointer to the active yynval. With this, parse tree
nodes can be initialized when shifting tokens or evaluating (deferred) actions.

• yyuserAction is extended with the code necessary for node initialization and attribute
evaluation.

• The yyparse function is modified to execute all traversals after successful parsing.
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Code related to attribute evaluation is executed when a deferred action is resolved. This is
generally the case when the parse is not – or no longer – ambiguous. Only the attributes of the
accepted parse tree are evaluated. An exception is the evaluation of a user-defined GLR merge
action, in which case both possible parse trees are generated internally.

c-attr.m4

c-attr.m4 isolates the evaluator-specific C code from yacc.c and glr.c (except for some variable
definitions) in order to increase legibility and support code re-use. It also contains definitions
of other macros that are used throughout the code, including in attribute/traversal actions and
when outputting %attribute structures. The most important macro definitions are listed below.

• b4_attribute_actions outputs all attribute actions of the generated parser as a list of C
case statements. Each attribute action is assigned a unique identifier.

• Analogously, b4_trav_actions outputs all actions associated with traversals as C case

statements, with each traversal action being assigned a unique identifier.

• b4_node_init is used when a new parse tree node is generated. It outputs code to allocate
memory for the node and link all child nodes.

• b4_node_init_tok and b4_node_cleanup_tok are used when a new pare tree node is
generated for a token; such nodes can be handled more efficiently as they do not have
children or attribute dependencies, and in some cases may be completely superfluous.

• b4_node_dependency is expanded once for each attribute action in a rule, after the macro
b4_node_init. The attribute’s dependencies within the context of the rule are passed to
the macro as parameters. The code adds the attribute instance to the dependency graph
and enqueues it for evaluation if possible.

• b4_evaluate_ready_set iteratively evaluates actions of all attribute instances that have
no unresolved dependencies.

• b4_lhs_attribute and b4_rhs_attribute expand to code that accesses the data of the
given attribute; calls to these macros are inserted into the attribute action code by code_-
props_translate_attribute_code.

• b4_copy_rule generates a copy rule for a specific attribute instance; such rules are added
for automatically inherited / synthesized attributes in the absence of user-specified rules.

• b4_attr_struct is used to output a %attributes declaration as a C/C++ struct.

• b4_attr_struct_alias is used to make the type name of a token’s %attributes struct

available via YYA_<token name>. Flex can use that alias when outputting an attribute
action without requiring knowledge of the structs’ internal numbering.

• b4_attr_support_structs outputs all data structures and functions used internally by
the evaluator, the most important of which are described below.

The attribute evaluator uses several data structures (C structs) internally.

The parse tree is saved in a recursive data structure of type YYNTYPE.
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1 typedef struct YYNTYPE

2 {

3 struct YYNTYPE ** children;

4 int num_children;

5

6 struct YYNTYPE *parent;

7 int idx_in_parent;

8

9 int trav_actions@ {] b4_trav_count[@};

10

11 struct YYAITYPE *attr_instances;

12 int num_attr_instances;

13

14 void *attrs;

15 } *YYNTYPE;

This data structure contains the following:

• Pointers to child nodes (struct YYNTYPE **children) and the number of children (int
num_children). These pointers are used to look up attribute instances and to execute
traversals.

• Pointers to the parent node (struct YYNTYPE *parent), as well as the index within the
parent (int idx_in_parent). These values are used to traverse the tree without the need
for a stack.

• The action (code) to be executed during each traversal (int trav_actions[]).

• An array of attribute instance nodes associated with the current parse tree node (struct
YYAITYPE *attr_instances) and their count (int num_attr_instances). While the at-
tribute instance nodes are in principle independent of the parse tree, they are stored here
for retrieval dependency resolution purposes and for simplicity.

• void *attrs, which points to the actual data of the attribute instances at runtime. This
is cast to one of the struct yyattr* data types on use, as detailed in Section 4.1.1.

Attribute instance nodes are saved in a recursive data structure of type YYAITYPE:

1 typedef struct YYAITYPE

2 {

3 int action;

4 struct YYNTYPE *context;

5 int deps;

6 struct YYAILIST *dependees;

7 } *YYAITYPE;

The data structure is based on the requirements of Algorithm 3.1 and contains:

• The action (code) to be executed when the attribute instance can be evaluated (int action).

• The context in which the attribute instance is to be evaluated (struct *YYNTYPE context).
The code linked to by action thus references either context->attrs or one of context->
children[...]->attrs.

• The number of currently unsolved dependencies of the attribute instance (int deps), or a
negative value if the attribute instance has been calculated.
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• Pointers to all attribute instance nodes that depend on the current object. Once the object
has been evaluated, the deps field of all dependees is decremented and any dependees with
no unresolved dependencies are enqueued for evaluation.

YYAILIST is a single-linked list used for holding both the dependees of an attribute instance
and the set of attribute instances with no unresolved dependencies (S0).

1 typedef struct YYAILIST

2 {

3 struct YYAITYPE *data;

4 struct YYAILIST *next;

5 } *YYAILIST;

4.2.4 The algorithm

For the practical purposes of the implementation, several steps – building the dependency graph,
performing the actual topological sort and evaluating the semantic rules – become intermingled.

In an LALR parser, nodes will be added to the parse tree either when a token is encountered,
producing a leaf, or during a reduce operation, producing a node for the left hand side and
linking the corresponding child nodes to it.

The basic workings of the algorithm are detailed in Section 3.2.4 (Algorithm 3.1). As men-
tioned in the text, the set T is not explicitly needed and is thus not included in the code.

Elements of the algorithm are transformed into code as follows:

• The set S0 of attributes with no incoming edges is implemented by YYAILIST yyai_ready_-
list. yyai_ready_list, being a single linked list, is usually accessed as a stack. This does
not add any unnecessary complexity, as all operations on S0 can be performed in constant
time on yyai_ready_list by accessing the first element of the list.

• The function reduce_attributes(p) is split into two parts; initialization and generation of
the dependency graph structure (lines 13 – 25) is performed in the macros b4_node_init

and b4_node_dependency and expanded for each possible rule of the grammar in part.
Evaluation of instances in S0 (lines 27 – 37) is implemented within the macro b4_eval-
uate_ready_set, which is expanded after the user actions’ switch/case statement.

• The check on line 20 whether an attribute instance has been evaluated (so it doesn’t have
to be added as a dependency) is done by comparing the value of its deps field with the
constant YYAI_DEPS_CALCULATED; this marker is set immediately after the attribute action
is run.

The algorithm, as implemented in code, contains some additional complexity as it performs
special handling for attribute actions that generate more than one attribute. In such a case, one
attribute instance is designated as parent and is calculated by performing the action after its
dependencies have been resolved; the others are treated as separate nodes in the graph with a
single dependency on the parent and with an empty attribute action.

4.3 Implementation of the evaluator core as a separate li-
brary

The thesis aims to determine whether it is beneficial to implement the core of the evaluator as
a separate library.
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A C library (libxnag 3) was developed in order to shed light on this aspect. The use
of the library for providing dynamic attribute evaluation in Bison has both advantages and
disadvantages; these are discussed below following an overview of the library’s implementation.

4.3.1 Implementation overview

The main tasks to handle while performing dynamic evaluation are:

• Initializing the parse tree structure.

• Handling operations on the LR stack (shift and reduce).

• Building the dependency graph structure.

• Performing dependency resolution.

• Running attribute actions in the right context.

• Running traversals.

Initialization

Before parsing can begin, the data structure that maintains the parse tree, dependency graph
and evaluator state must be initialized.

In the Bison implementation, this is handled by using the yyns stack and yyai_ready_list,
respectively.

In the library, this task is encapsulated into a function that allocates the memory required
and returns a pointer to the datastructure (XNAG).

1 /∗ I n i t i a l i z e t he XNAG data s t r u c t u r e . Used the passed f un c t i on to
2 e v a l u a t e a t t r i b u t e s ( f un c t i on i s passed a c t i on ID and con t e x t node ) .
3 Also pass number o f t r a v e r s a l s used . ∗/
4 XNAG nag_init(

5 void (* action_function)(int, XNAG_Node),

6 unsigned int num_travs);

Handling the parse tree structure

When a shift is performed, a parse tree node must be created and pushed onto the stack. When
performing a reduce operation, a new node must be created and, based on the reduced rule, a
specific number of symbols at the top of the parse tree node stack must be removed and linked
as the new node’s children. Finally, the new node can be pushed onto the stack.

Creation of the node ideally involves allocating memory for attribute data based on the node’s
label.

Maintaining the stack and the nodes can either be done in the library or in the gener-
ated parser directly. In the Bison implementation, these actions are emitted using the macros
b4_node_init and b4_node_init_tok. An initial version of the library required an initialization
step declaring all symbols of the grammar, including sizes of their attribute data structures, eval-
uation functions and dependencies of attribute actions. A shift or reduce would thus be followed

3Note that while the abbreviations “nag” and “XNAG” are used throughout the code, this library is not related
in any way to the NAG numerical library (https://www.nag.com).
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with a single call to the library’s evaluation routine with the name of the new symbol. This
would perform node and dependency graph initialization as well as eager attribute evaluation.

The actual, revised version also maintains the underlying stack, nodes and dependency graph
itself; however, operations on them are performed explicitly using separate function calls. This
has both the benefit of simplifying the library (no need to maintain the rule data structure at
runtime) and of making the evaluator abstraction easier to understand.

The first function allows initialization of a node with children directly on the stack.

1 /∗ Push a new node wi th the g i v en a t t r i b u t e s onto the s t a c k .
2 Pop i t s c h i l d r e n from the s t a c k and l i n k them . A l l o c a t e
3 memory i f needed . ∗/
4 XNAG_Node nag_node_push(

5 XNAG nag , unsigned int children ,

6 unsigned int num_attributes , unsigned int data_size);

Another set of functions is available for the token version; an XNAG_Node is allocated outside
of the library, then initialized via reference and copied to the stack when needed.

1 /∗ I n i t i a l i z e an XNAG node t h a t i s not l i n k e d to a s t a c k .
2 A l l o c a t e a node y o u r s e l f and pass i t , t h e c a l l w i l l modify i t . ∗/
3 void nag_node_init_unlinked(XNAG_Node node);

4

5 /∗ Push a node i n i t i a l i z e d ou t s i d e o f t he XNAG s t a c k onto the s t a c k .
6 This a l l o c a t e s memory f o r the copy on the s t a c k .
7 You have to f r e e the o r i g i n a l node y o u r s e l f . ∗/
8 void nag_node_push_unlinked(XNAG nag , XNAG_Node node);

Building the dependency graph

As shown in Algorithm 3.1, a reduce operation triggers the creation of new dependency graph
nodes and edges based on the attributes that can be enqueued in that step.

Dependencies are part of the input required by the library. After a node has been pushed
onto the stack, attribute instances can be added to it. Each attribute instance has an action
associated with it, as well as a series of dependencies.

In the Bison implementation, this is handled by the b4_node_dependency macro.

1 /∗ Add an a t t r i b u t e i n s t an c e to e v a l u a t e to the g i v en node ∗/
2 XNAG_AttributeInstance nag_instance_add(

3 XNAG_Node node , unsigned int symbol_index ,

4 unsigned int attribute_index ,

5 int action);

6

7 /∗ Add a dependency to pa r en t i n s t anc e , i . e . p a r e n t i n s t a n c e
8 can on ly be c a l c u l a t e d when a l l i t s dependenc i e s added t h i s
9 way are e v a l u a t e d . ∗/

10 void nag_dependency_add(

11 XNAG_Node node , XNAG_AttributeInstance parent_instance ,

12 unsigned int symbol_index , unsigned int attribute_index);

13

14 /∗ Ca l l a f t e r a l l d ependenc i e s have been added
15 wi th nag dependency add . ∗/
16 void nag_dependencies_finish(

17 XNAG nag , XNAG_AttributeInstance instance);
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The library also supports attribute actions with more than one attribute generated from
them. This can be handled by calling a separate function after declaring all dependencies:

1 /∗ Add a second a t t r i b u t e i n s t an c e t h a t w i l l a u t oma t i c a l l y be marked
2 as c a l c u l a t e d a long wi th the o r i g i n a l i n s t an c e . ∗/
3 XNAG_AttributeInstance nag_computed_add(

4 XNAG_Node node ,

5 unsigned int new_instance_symbol_index ,

6 unsigned int new_instance_attribute_index ,

7 unsigned int original_instance_symbol_index ,

8 unsigned int original_instance_attribute_index);

Dependency resolution, running attribute actions

Eager dependency resolution involves maintaining a set of attribute instances with no unre-
solved dependencies, evaluating them and then possibly obtaining a new set of instances without
unresolved dependencies.

Adding instances to this set can be done either when the dependencies of an instance have
been completely defined or during evaluation.

In the Bison implementation, this is split among b4_node_dependency and a distinct call to
b4_evaluate_ready_set after all attribute instances of a rule have been initialized.

The library follows a similar approach, with the call to nag_dependencies_finish potentially
enqueueing a particular attribute instance and nag_evaluate performing the iterative evaluation
and enqueueing of any newly resolved instances.

1 /∗ Eva lua te t he s e t o f ready a t t r i b u t e s . ∗/
2 void nag_evaluate(XNAG nag);

In Bison, evaluation code is inlined. When using the library, the action_function passed
during initialization is called with the identifier of the action to evaluate and the corresponding
parse tree node.

Running traversals

After performing attribute evaluation, the library offers the option to run traversals on the
attributed parse tree (see Section 4.1.3).

In the Bison implementation, traversal actions are saved along with each parse tree node
using a call to b4_node_traversal. A set of functions to execute traversals of various types is
available; these are called after parsing is complete.

Similarly, the library offers the ability to define traversal actions for each node, for a predefined
number of traversals. The total number of traversals is passed to nag_init, and each traversal
action is defined using nag_node_traversal_add:

1 /∗ Assoc i a t e t he t r a v e r s a l w i th the g i v en index ,
2 wi t h i n the s p e c i f i e d node , w i th the g i v en ac t i on . ∗/
3 void nag_node_traversal_add(XNAG_Node node , unsigned int trav_index ,

int action);

After evaluation is complete, each traversal can be called in part using nag_traverse:

1 /∗ Perform a t r a v e r s a l on a l l nodes s t a r t i n g wi th roo t . Ca l l s t h e
a c t i o n f u n c t i o n f o r each node , pa s s i n g the a c t i on f o r the g i v en
t r a v e r s a l s e t w i th the node and the e v a l u a t i o n con t e x t .

2 Suppor t s l e f t −to−r i g h t , r i g h t−to− l e f t , pos to rder , p reorder
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3 ( s e t co r re spond ing XNAGORDER | XNAG DIRECTION f l a g s ) . ∗/
4 void nag_traverse(

5 XNAG_Node root , int traversal_index ,

6 void (* action_function)(int, XNAG_Node), int flags);

4.3.2 Integration in Bison

The library can be integrated in the Bison skeletons by initializing the XNAG data structure when
parsing begins, modifying the macros b4_node_init, b4_node_init_tok, b4_node_dependency
and b4_evaluate_ready_set to output function calls instead of code directly, and by outputting
separate functions containing attribute actions and traversal actions instead of inlining them.

As the macros and changes to the skeleton are still required (albeit less code is output),
Bison integration remains largely unchanged and does not become less complex except for the
encapsulation provided by library functions. Stack and parse tree memory handling – for example
– is done by the library, which largely removes this concern from the Bison skeleton. However,
this also means that the Bison-internal memory allocation mechanisms (including the use of
YYMALLOC, yyoverflow etc.) are not employed.

Without the library, generalization in Bison can be solved at skeleton level, with c-attr.m4

containing macros for these purposes that can be reused in more skeletons.
Additionally, integrating the library adds an external dependency to the generated parser.

This is unusual, as Bison parsers are generally self-contained, with the entirety of code required for
compilation being generated from the skeleton. An approach that keeps the “attribute evaluation
library” inside the skeleton in an isolated fashion would, of course, be possible. This is, however,
not much different from a direct integration.

As developed, the library does, nevertheless, allow other applications to integrate dependency
resolution and attribute evaluation functionality more easily. It also makes it possible to tackle
other concerns such as modification of the evaluator itself, or implementations of logging or
performance measurements, without modifying the Bison skeleton.

4.4 Testing

The evaluator is supplemented by a number of machine-executable tests. A test consists of a
Bison input file (possibly accompanied by a Flex .l file and other support code) together with
a set of testcases defining input and expected output of the resulting parser.

The tests fall into various categories and include:

• Specialized tests for errors – such as when an an attribute is undefined, or an attribute is
being used as both inherited and synthesized.

• Attribute grammar assignment submissions from the Compiler Construction course at the
Vienna University of Technology. These grammars define simple programming languages
and exhibit a variety of features, most notably the use of both inherited and synthesized
attributes, of various attribute specifiers and of traversals. As the grammars are written in
Ox syntax, they are first converted into a format the evaluator can understand. Grammars
that happen to depend on Ox-specific behaviour – such as an implicit evaluation order –
or on features not implemented by the evaluator (macros or actions executed in reverse
traversal order) are discarded.

• Performance tests as detailed in Chapter 5. The main purpose of these tests is to measure
the evaluator’s behaviour for input of various lengths. The tests, however, also generate
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specific output that is verified as part of the benchmark run. This is particularly useful for
testing large input and any code triggered by it, such as Bison’s stack memory reallocation
mechanism.

4.5 Optimizations

A few optimizations were made to the evaluator during its development. Implementation started
with a version based on “lazy” evaluation that was not pursued further; the version, as imple-
mented, uses sub-optimal data structures. The new version (described in the other sections)
switches evaluation mode to “eager” and also addresses the choice of data structures. A brief
overview is given below.

4.5.1 First version – “lazy” evaluator

The first implemented version performs topological sorting based on depth-first search. It main-
tains a “result” list containing the ordered elements and a stack containing the elements to be
processed. Attribute evaluation is performed after all elements have been sorted.

Both the stack and the “result” list are implemented using single linked lists.
While the stack is not empty, the first element is read from the stack. If all of the element’s

dependencies (which are stored in a dependency list inside the element) are in the “result”
list already, the element is removed from the stack and placed onto the “result” list as well.
Otherwise, the element remains on the stack and children of the element that have not been
calculated yet are also placed on the stack.

Determining whether an element is in the “result” list requires linear time.
This version is slow and does not exhibit linear runtime mainly due to the use of linked lists

for searching. This, however, is an implementation detail and does not stem from any inherent
complexity.

This version was not developed further because its main advantage, that of not calculating
attributes unless explicitly required, was not put to use. Other advantages offered by the “eager”
evaluator described below were more compelling, in particular the ability to interleave evaluation
and parsing.

4.5.2 Second version – “eager” evaluator

The second version implements a variant of Kahn’s algorithm [Kah62] as presented in Algo-
rithm 3.1. Each attribute instance element maintains a list of attribute instances that depend
on it and an unresolved dependency counter. After an attribute instance is evaluated, the unre-
solved dependency counter of all attribute instances depending on it is decreased by one; if the
counter reaches zero for a particular attribute instance, it is enqueued for evaluation.

A worklist (implemented as a single linked list) is used to keep track of attribute instances
with no unresolved dependencies.
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Chapter 5

Benchmarks

This section explains the methods used to measure the performance of the evaluator and gives
an overview of the results.

5.1 Benchmark code

In order to test the attribute evaluator under multiple conditions, a set of three different bench-
marks is used. The first two benchmarks are meant to analyze simple behaviours of the evaluator,
while the third aims to emulate a practical example.

5.1.1 Bincount

The first benchmark is based on a simple grammar with two synthesized attributes. The gen-
erated parser counts the number of ones and zeroes present in a given input and then outputs
these values.

%{

#include <stdio.h>

#include <stdlib.h>

%}

%attributes {

%autosyn int zeroes;

%autosyn int ones;

} b;

%traversal out

%%

start: b @out {

printf("zeroes: \%d ones: \%d\n", $b.zeroes, $b.ones);

};

b: b ’0’ @d { $$.zeroes = $1.zeroes + 1; };
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b: b ’1’ @d { $$.ones = $1.ones + 1; };

b: /* nothing */ @d { $$.zeroes = $$.ones = 0; };

%%

#include "../charlexer.c"

The parser is run with strings of various lengths as input. Given that this grammar is
S-attributed, it can be theoretically processed in a single pass during LR parsing. Complex
dependency resolution is not necessary.

5.1.2 Multipass

The second benchmark uses attribute grammars that, if they were evaluated by performing passes
over the attributed parse tree, would require a specific (fixed) amount of passes. The benchmark
itself consists of a number of attribute grammars constructed using the same technique but
requiring an increasing number of implied passes.

An example attribute grammar that can be parsed using two passes of the parse tree is given
below:

%{

#include <stdio.h>

#include <stdlib.h>

%}

%autosyn attr_1s

%autoinh attr_1i

%autosyn attr_2s

%autoinh attr_2i

%attributes {

long attr_1i, attr_1s, attr_2i, attr_2s;

} A;

%traversal out

%%

S: A

@i { $A.attr_2i = $A.attr_1s; }

@i { $A.attr_1i = 1; }

@out { printf("%ld\n", $A.attr_2s); }

;

A: A ’1’ A ’1’

@i { $$.attr_1s = $1.attr_1s + $3.attr_1s; }

@i { $$.attr_2s = $1.attr_2s + $3.attr_2s; }

;

A: ’0’
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@i { $A.attr_1s = $A.attr_1i; }

@i { $A.attr_2s = $A.attr_2i; }

;

%%

#include "../charlexer.c"

Each “pass” uses a synthesized and an inherited attribute – for example attr_1s and attr_1i

in the first pass (see Figure 5.1). The inherited attribute (attr_1i) is passed down from the root
of the parse tree down to all nodes matching the production A: ’0’, where its value is assigned to
a corresponding synthesized attribute (attr_1s) and passed back up to the root. The attribute
action in the intermediate production (A: A ’1’ A ’1’) calculates the sum of the children’s
respective synthesized values and passes it to the parent. When the value reaches the root, it
becomes the input for the inherited attribute of the next pass ($A.attr_2i = $A.attr_1s;), or
is output if there are no more passes.

The example above shows a grammar configured for two passes (attr_1i, attr_1s, attr_2i,
attr_2s) with the intermediate production being used to expand two non-terminal child nodes
(A: A ’1’ A ’1’).

Both the number of passes (determined by the attribute count), as well as the number of
non-terminal child nodes within the intermediate production are parameters of the constructed
attribute grammars.

Each parser generated from such an attribute grammar is run with input restricted to a
specific number of expansions of the rule A: ’0’. The lowest possible tree depth for such an
input is used.

5.1.3 AG2010

The third benchmark is based on an example attribute grammar from the Compiler Construction
course at the Vienna University of Technology. The benchmarked code performs syntax and
semantic checks on programs written in a simple constructed language. In particular, attribute
grammars are used to determine the visibility of variables and named fields within nested scopes.

Randomly generated programs of various lengths (up to one million lines of code / 26
megabytes) are used as input. All generated programs use random identifiers as variable, field and
function names, are syntactically and semantically valid; furthermore, the generator attempts to
expand all rules of the grammar.

The source code of the benchmark and a short example input file are listed in Appendix B.1.

5.2 Measurements and results

5.2.1 Timing of evaluator phases

The first set of measurements is made to determine the amount of time spent in each phase of
the evaluator. This places attribute evaluation and tree traversal in perspective with regard to
other phases such as parsing and scanning.

Parser instrumentation

An instrumented parser is generated from each benchmark’s parser specification(s). The parser
uses several calls to the clock_gettime(CLOCK_PROCESS_CPUTIME_ID, ...) function to mea-
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Figure 5.1: Attributed parse tree for input 0101101011 with the first “pass” highlighted. At-
tribute names are shortened for brevity (attr 1s becomes a1s and so on).
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sure the following:

• The total runtime of the parser (call to yyparse()), including the scanner and the attribute
evaluator.

• The runtime of the scanner alone (calls to yylex()) – referred to as “Scanner” in the
graphs below.

• The total runtime of the attribute evaluator, including:

– The dependency resolution algorithm which builds the foundation of the topological
sort. This includes construction of the parse tree.

– Attribute action execution.

– Time spent in tree traversals, including traversal actions.

• The runtime of the attribute actions alone – referred to as “AG actions” in the graphs
below.

• The runtime of the tree traversal and traversal action code alone – referred to as “AG
traversals” in the graphs below.

Samples are taken before and after entering code pertaining to one of the above, and totals
are output after both parsing and attribute evaluation have completed.

Furthermore, the number of parse tree nodes (both terminals and non-terminals) is recorded.

The results are then post-processed in order to obtain:

• The parser overhead without scanning and attribute evaluation – referred to as “Parser”
in the graphs below).

• The runtime of attribute evaluation (dependency resolution) alone, without time spent in
actions and traversals – referred to as “AG evaluation” in the graphs below.

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, ...) measures the CPU time used by the
parser process. This function reports nanosecond accuracy on the test machine, which is an
Intel R© CoreTM i5-6200U CPU @ 2.30GHz, running Ubuntu 16.04 with a Linux 4.4.0 kernel in
64 bit mode.

clock_gettime() is defined in the POSIX specification [POSIX09, p. 667-670]; support for
CLOCK_PROCESS_CPUTIME_ID is optional [POSIX09, p. 668] but available on Linux.

Measuring instrumentation overhead

Instrumentation incurs some overhead that must be taken into account when calculating the
proportions of evaluator phases to each other.

This overhead is measured using a version of the benchmark that counts only the number
of measurements per phase – without actually performing the measurements themselves. The
difference in execution time between this version and the regular one is subtracted proportionally
from the result of each phase. In order to increase accuracy, the results are averaged over three
runs of the parser.
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perf-based timing for libxnag

In addition to measurements using clock_gettime(), it is possible to use a sampling approach
based on the perf command1 to analyze time spent in each function of the library version of the
evaluator (for a list, see Section 4.3). The sampling approach has less overhead, does not require
code instrumentation and allows for a more detailed insight into the attribute evaluator.

The command used to perform sampling is:

perf record -e cycles -F3000 --call-graph=dwarf <BENCHMARK>

For this purpose, the corresponding benchmarks are compiled with debug information (-ggdb).
The percentage of time spent in each phase is obtained from the output of perf report --stdio.

Results: Bincount

Figure 5.2 shows the results of the “Bincount” benchmark for inputs of up to 20 000 characters.
This benchmark run primarily allows for a comparison between the first (unoptimized) version
of the evaluator – in this case built on lazy evaluation (see Section 4.5.1) – and the later ones
(embedded in Bison and using libxnag). The first version spends almost its entire time on
attribute evaluation and quickly exhibits non-linear behaviour. Both eager versions, on the
other hand, scale linearly with input size. The split among parser phases is largely similar for
these two (although the libxnag version is slightly slower in total). The lazy version requires
almost 20 seconds to parse 19 900 characters, while the eager versions require around 6 and 10
milliseconds respectively.

Figure 5.3 shows the same benchmark for inputs of up to 10 million characters, this time
only for the eager versions. The embedded version takes about 2.5 seconds to process 9 500 000
characters, while the libxnag version takes about four seconds.

A detailed comparison of the amount of time spent in each parser phase for “Bincount” is given
in Figure 5.4. The percentage remains constant even when input size increases. The detailed
breakdown using perf on the right hand side shows that of roughly 63% of time spent in “AG
evaluation”, 44% is spent constructing the parse tree and not actually performing topological
sorting. Attributes are usually enqueued for immediate evaluation without having to rely on
the dependency graph, which is evidenced by the large percentage of roughly 14% spent in
nag_dependencies_finish. At 22.5%, traversals also take a substantial amount of time. This
is because although only one traversal action exists in the tree, all nodes are actually visited by
the traversal. This shows one opportunity for potential future optimization.

Results: Multipass

Figures 5.5 and 5.6 show results of the “Multipass” benchmark, which is run for various numbers
of passes and tree widths as detailed in Section 5.1.2. The first figure shows timing information
for the Bison-embedded version of the evaluator. The second figure shows percentage of time
spent per phase and is based on measurements of the libxnag version with perf.

Unlike “Bincount”, where dependency resolution is very simple, topological sorting and build-
ing a dependency graph are crucial components of this benchmark. This is evidenced by the split
among attribute evaluator phases in Figure 5.6. Here, nag_dependency_add and nag_evaluate

are the two more resource-intensive parts of evaluation, particularly in the case of multiple passes
(the rightmost plots). Similarly to the scanner and LR parser, parse tree construction takes pro-
portionally less time when more “passes” over the grammar are involved. Percentage of time

1https://perf.wiki.kernel.org/index.php/Main_Page
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Figure 5.2: Results of “Bincount” for up to 20 000 characters.

63



0 2 4 6 8

0

2

4

Characters (in millions)

R
u

n
ti

m
e

(s
)

Bincount (eager)

AG traversals
AG actions
AG evaluation
Parser
Scanner

0 2 4 6 8

0

2

4

Characters (in millions)

R
u

n
ti

m
e

(s
)

Bincount (libxnag)

AG traversals
AG actions
AG evaluation
Parser
Scanner

Figure 5.3: Results of “Bincount” for up to 10 million characters.
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spent in traversals appears to be constant regardless of the number of passes, however stack trace
logging reveals that a substantial amount of time is spent in malloc_consolidate which is trig-
gered as part of the traversal’s printf call. Within nag_traverse, actual time spent traversing
the tree is proportional to tree size, not to number of attributes.

Results: AG2010

Figure 5.7 shows results of the “AG2010” benchmark and illustrates the behaviour of a more
balanced attribute grammar, similar to grammars that can be found in practice.

Figure 5.8 shows the percentage of time spent in each parser phase. In this case, the percent-
age is constant except for that of traversal actions (which are user-specified). This can be seen
more clearly in the bottom plot, where traversals and user actions are not shown.

Compared to “Bincount”, more time is spent in the scanner (Bincount uses a simple call to
getchar() while AG2010 uses a Flex scanner) and in the parser, less time is spent on creating
parser nodes, and the proportion between directly enqueueing attributes and evaluating them
later is skewed in favour of the latter – calls to nag_dependencies_finish take very little time
and most time is split among nag_dependency_add and nag_evaluate.

Compared to “Multipass”, the scanner and parser again are more prominent. The proportion
of parse tree construction to evaluation is higher than in all “Multipass” benchmarks, suggesting
a more parse tree-centric workload in this case.

In total, ignoring tree traversals and user actions, time is spent as follows:

• Scanning takes about 18%

• LR parsing takes about 8%

• Parse tree construction takes about 47%

• Dependency graph creation and attribute evaluation takes about 27%

5.2.2 Comparison with Ox

The AG2010 benchmark is used to compare execution time of the evaluator with that of an
Ox-generated parser (see Section 2.7.1) obtained from the same specification.

The parsers are compiled with -O2 and run without additional instrumentation. As Ox
preallocates the memory used by the evaluator, its maximum memory requirements are specified
at compile time:

ox -Yn1000000000 -Yc100000000 -Yr500000000 -Yt5000000 parser.y scanner.l

The execution time is measured using the UNIX time command.
Results are shown in Figure 5.9. Runtime of both the eager evaluator embedded in Bison

and the libxnag version is roughly twice that of Ox. For a practical input of 1 013 971 lines
of code (26 megabytes) that expands to 13 106 154 symbols, execution time of the implemented
evaluator lies at around 6 seconds.

Given the order of magnitude involved, the evaluator can be considered fast enough for
practical purposes. It is likely that this result could be improved further by implementing a
more intricate memory allocation strategy.
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Figure 5.7: Results of “AG2010”.
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Chapter 6

Conclusion

This thesis describes the implementation of a dynamic attribute evaluator in Bison, an
LALR(1) and GLR parser generator. A suitable and efficient topological sorting algorithm is
the cornerstone of the implementation. A set of extensions to Bison’s syntax allow the user to
specify any well-defined LALR(1) / GLR attribute grammar. The implementation also includes
tree traversal support. The syntax is similar to that of the Ox preprocessor [Bis93] but makes
use of Bison’s in-built way of referencing symbols and also exhibits other notable improvements,
in particular the ability to explicitly declare attributes as inherited or synthesized.

Attribute grammar support is implemented for the C LALR(1) and GLR parsers.

Performance. The evaluator is fast enough for practical purposes.
Benchmarks suggest the runtime of the evaluator is linear with regard to the size of the parse

tree; this aligns with the computational complexity of the underlying algorithms.

Separation of evaluator runtime into an external library. Bison uses so-called “skeleton
files” written in the macro language M4 as templates to generate parsers. Most code belonging
to the evaluator is embedded in a separate M4 skeleton. Existing skeletons reference sections of
it to enable attribute grammar support.

The evaluator runtime also exists as an externally linkable library. The architecture of Bison,
however, negates some of the advantages of using it. In particular, the skeleton approach already
provides structuring and encapsulation. Much of the code present in the skeleton is still needed
when interfacing with the library. The ease of using Bison-specific memory management code
and the fact that runtime library dependencies are uncommon for Bison-generated parsers also
speak in favour of a Bison-embedded version.

The developed evaluator runtime library libxnag is nevertheless flexible, offers useful encap-
sulation and can serve as a building block for other projects.

GLR. Various methods of combining attribute grammars and Generalized LR (GLR) are
shown. The best method to apply depends on the use case, be it generating the entire parse
forest or one or more valid parse trees.

A simple method that works in the case of a single valid parse tree is to perform attribute
evaluation on portions of the parse tree as soon as they become unambiguous. This method is
also implemented in the evaluator, where disambiguation is performed through Bison mechanisms
such as precedence rules, merge functions or semantic predicates.
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Appendix A

Annex

A.1 Parsing context-free grammars

Traditionally, attribute grammar evaluators have been viewed as extensions to syntax parsers.
Existing systems usually interleave the two for performance reasons as for some classes of at-
tribute grammars, evaluation can be done together with parsing, rendering extra passes of the
syntax tree and as such, a mandatory representation of the syntax tree in memory, unnecessary.

This section gives an overview of the more commonly used parsing algorithms, together with
their strengths and weaknesses.

A.1.1 Top-down parsers

The concept of top-down parsers [ASU86, p. 181 ff.] is very straightforward; a special kind of
top-down parsers (recursive descent parsers) can even be built manually with ease. The idea of
a top-down parser is to begin with the start symbol and complete the parse tree down to the
leaves, akin to a preorder traversal.

Recursive decent parsers

Recursive descent parsers use one function per non-terminal which calls functions corresponding
to the symbols on the right hand side of the rule. Given the following grammar with start symbol
A:

A → xBC

B → y

C → B z

(A.1)

a recursive descent parser would look like this:

function parse():
parseA();

function parseA():

consume( x ); parseB(); parseC ();
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function parseB():

consume( y );

function parseC ():

parseB(); consume( z );

The function consume() consumes a token (terminal) from the input, while the other functions
are simply the mapped rules. If consume() does not encounter the expected token in the input
string, the input does not belong to the given language.

Lookahead. For some grammars, it is impossible to tell which rule to choose without looking
“ahead” into the input stream 1:

A → wB | xC
B → y

C → B z

(A.2)

The function parseA() has to look at the first input token to determine whether to pick wB
or xC:

function parseA():

if lookahead == w :

consume( w ); parseB();

else if lookahead == x :

consume( x ); parseC ();

else error();

In general, more than one token of lookahead may be necessary to choose the right rule.
Sometimes, this can be solved by left factoring as described further below.

Predictive parsers. Predictive parsers are a special kind of top-down parsers that utilize
lookahead and two special sets of tokens for each non-terminal, called the FIRST and FOLLOW
sets, to choose the appropriate rule for a production. Predictive parsers can be implemented
both as recursive or as non-recursive parsers. In the latter case, the parser uses an explicit stack
and a parser table.

A recursive parser is assumed here.
The FIRST sets are used to generate the if statements that analyze the lookahead in func-

tions that map non-terminals. The necessity for the FIRST sets stems from the fact that gram-
mars can have ε-productions, as in productions of the form B → ε, with ε denoting an empty
string. As an example, for the grammar:

A → B x | C z

B → y | ε
C → z

(A.3)

1A → α | β is equivalent to the two separate productions A → α and A → β.
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the function parseA() will have to be aware of the token x because of the possible derivation
A ⇒ B x ⇒ x , where this token is the first to be read from input and as such a possible value
of the lookahead.

The FIRST set for a symbol X is thus the set of tokens with which a derivation of X may
begin and is determined as follows [ASU86, p. 189]:

if X is a terminal:

FIRST(X) := {X}

if production X → ε exists:

FIRST(X) += {ε}

if X is a non -terminal:

for all productions X → Y1Y2 . . . Yk of X:

for i := 1 to k:

if FIRST(Y1) . . . FIRST(Yi−1) all contain ε:
FIRST(X) += FIRST(Yi)

if FIRST(Y1) . . . FIRST(Yk) all contain ε:
FIRST(X) += {ε}

The algorithm begins with all FIRST sets being empty and must be run repetitively for each
symbol until no new items are added to the FIRST sets. The FIRST set for a string of symbols
can be computed analogously, by starting with the FIRST set of the first symbol and successively
adding the FIRST sets of the next symbols if the FIRST set of the last symbol included ε. If ε
is contained in all the FIRST sets of the symbols, it is also added to the computed FIRST set.

FOLLOW sets are used to track (descend into) non-terminals that derive ε. The parser
triggers the descent on encountering the first token following ε in the current production [ASU86,
p. 189]:

FOLLOW(S) := {$}

do until FOLLOW sets no longer change:

for all non -terminals A and B matching A→ αBβ:
FOLLOW(B) += FIRST(β) - {ε}
if ε is in FIRST(β):

FOLLOW(B) += FOLLOW(A)

for each production A matching A→ αB:

FOLLOW(B) += FOLLOW(A)

The special symbol $ is used to denote the end of input.

A recursive predictive parser for the grammar:

E → TE′

E′ → +TE′ | ε
T → 0 | 1 | (E )

(A.4)

is given as an example. To begin with, the FIRST and FOLLOW sets for each symbol are
determined:
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FIRST(E) = { 0 , 1 , ( } FIRST(E′) = { + , ε} FIRST(T ) = { 0 , 1 , ( }
FIRST( 0 ) = { 0 } FIRST( 1 ) = { 1 } FIRST( ) ) = { ) }
FIRST( ( ) = { ( } FIRST( + ) = { + }

FOLLOW(E) = { ) , $} FOLLOW(E′) = { ) , $} FOLLOW(T ) = { + , ) , $}

The FIRST sets for each of the grammar rules’ right hand sides are also calculated:

FIRST(TE′) = { 0 , 1 , ( } FIRST( +TE′) = { + } FIRST(ε) = {ε}
FIRST( (E ) ) = { ( }

The parse functions first analyze the lookahead to see which rule has to be applied in the
context of the left hand side symbol. If the lookahead matches one of the tokens from the FIRST
set of the right hand side string of a specific rule, then that rule is chosen. Additionally, a rule
is chosen if it can derive ε and the lookahead is contained in the FOLLOW set of the left hand
side. After a rule is selected by the parser, the corresponding parse() or consume() functions
for each of the symbols on the right hand side are called. If the lookahead did not match any of
the tokens, an error is thrown.

function parseE ():

if lookahead is in { 0 , 1 , ( }:
/∗ r u l e E → TE′ ∗/
parseT (); parse′E ();

else:

error();

function parseE′ ():

if lookahead is in { + }:

/∗ r u l e E′ → +TE′ ∗/
consume( + ); parseT (); parseE′ ();

else if lookahead is in { ) , $}:
/∗ r u l e E′ → ε ∗/

else:

error();

function parseT ():
if lookahead is in { 0 }:

consume( 0 );
else if lookahead is in { 1 }:

consume( 1 );
else if lookahead is in { ( }:

consume( ( );
else:

error();
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A table-driven predictive parser

The described recursive predictive parser can be modified to use a stack instead of function calls
and a table derived from the FIRST and FOLLOW sets of the grammar instead of concrete
application logic where the two sets are embedded.

The predictive table. To each combination of a non-terminal (represented by the current
parse function in the recursive parser) and input token (lookahead), the table associates a pro-
duction that will be “descended into” by the algorithm by placing the symbols from the right
hand side of production onto the stack. Cells that remain empty denote unreachable parser
states, they are treated as error entries. The table is built as follows [ASU86, p. 190]:

for each production A→ α:
for each terminal a in FIRST(α):

M[A, a] := A→ α
if ε is in FIRST(α):

for each terminal b in FOLLOW(A):
M[A, b] := A→ α

if $ is in FOLLOW(A):
M[A, $] := A→ α

The table for the example grammar is:

0 1 + ( ) $
E E → TE′ E → TE′ E → TE′

E’ E′ → +TE′ E′ → ε E′ → ε
T T → 0 T → 1 T → (

The parsing algorithm. Given an input token (the lookahead) and the symbol at the top of
the stack, the parser proceeds by either consuming the symbol, if it is a terminal, or by descending
into the rule specified by the corresponding table entry. A formulation of the algorithm in
pseudocode is given below [ASU86, p. 187]:

push the start symbol onto the stack;

while input exists:

l := lookahead;

S := symbol on top of stack;

remove S from stack;

if S is a terminal:

consume(S);
else if M[S, l] is empty:

error();
else:

a1 . . . ak := right hand side of M[S, l];
push ak . . . a1 onto the stack;

Limitations and pitfalls

Top-down parsers, although conceptually simple, have a series of limitations and pitfalls, which
are described below.
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Handling left recursivity. Top-down parsers cannot handle left recursive grammars2, where
for a non-terminal A, a derivation Aα is possible, such as in the following example:

A→ A a | a

In this case, A can be derived either to a or to A a , the latter being the reason for the grammar’s
left recursivity. The reason why the top-down parser fails is that it would first have to “descend”
into A, however, since it is unknown how many a s will be in the input string, the number of
descents (calls to the A() function) cannot be determined. A predictive parser implemented as
outlined in this section would loop forever for the given example.

Therefore, any left-recursive grammar that is to be parsed using this method has to be
transformed into an equivalent grammar not exhibiting the property. An algorithm for this
purpose exists [ASU86, p. 178] and is specified further below.

The basic idea of the algorithm is to gradually replace immediate left recursion, meaning
productions of the form:

A → Aα1 | Aα2 | . . . | Aαm | β1 | β2 | . . . βn

by an equivalent pair of productions not exhibiting left recursion:

A → β1A
′ | β2A

′ | . . . | βnA′

A′ → α1A
′ | α2A

′ | . . . | αmA
′ | ε

This is done incrementally for subsets of the grammar’s rules, so that non-immediate left
recursivity is also covered:

Order the non -terminals in the grammar from A1 to An.

for i := 1 to n:
for j := 1 to i− 1:

with Aj → δ1 | δ2 | . . . | δk as all productions for Aj:

Replace each production of the form Ai → Ajγ
by Ai → δ1γ | δ2γ | . . . | δkγ.

Eliminate immediate left recursion in all Ai.

The algorithm requires the input grammar to be both:

• Cycle free: No non-terminal A may be derivable to A.

• ε-free: No rules of the form A → ε may appear in the grammar, except if the symbol on
the left side is the start symbol S and S does not appear on the right hand side of any
other rule in the grammar.

Left factoring. Depending on the top-down algorithm and how many tokens of lookahead are
used, the parser may encounter problems with rules having a common prefix, where it is not
immediately clear which one to choose:

2This refers to left-to-right parsers, which parse the input from left to right. Right-to-left parsers, rarely seen
in practice, can handle left recursive grammars, but cannot handle right recursive grammars.
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A → αβ1

A → αβ2

The choice of rule is deferred until it is possible by introducing a common rule:

A→ αA′

and the rules of the non-terminal A′ differentiating between β1 and β2 at the beginning:

A′ → β1

A′ → β2

In order to get a left factored grammar, such transformations must be applied systematically
to all non-terminals.

Summary of limitations. The limitations of top-down parsers explained above are circum-
vented by using equivalent, adequately formed grammars. In the context of attribute grammars
and parsing in general, this is an undesired side effect, since the symbols (non-terminals in
particular) no longer represent a sensible, readable syntactic specification of the given language.

A.1.2 Bottom-up parsers

Unlike top-down parsers, bottom-up parsers start by detecting the leaves of a parse tree, working
their way up to the root. They use a successive series of “reverse derivations” that take part of
the already parsed input, a so-called handle, match it to the right hand side of a rule and replace
it with the left hand side. The process is called “handle pruning” and the operation itself is
called a reduction, as a series of symbols is “reduced” to a non-terminal.

Shift-reduce parsers are a common type of bottom-up parsers. Given an input token, the
parser chooses between four operations:

shift Assume the token is part of the right hand side of a rule, continue parsing accordingly.

reduce Perform a reduction; Replace some of the shifted tokens with a matching non-terminal.

accept Accept the input as part of the language specified by the grammar.

error Reject the input since the input string is not part of the language; notify that an error
state has been reached.

The state of a shift-reduce parser is usually kept as a stack. When a shift operation is
performed, the input token is pushed onto the stack. A reduce operation is only executed when
the symbols at the top of the stack exactly match the right hand side of a rule, meaning that a
handle has been found. In this case, the symbols corresponding to the handle are removed from
the stack and replaced by the matching non-terminal.

For shift-reduce parsers, handles are always found on top of the stack [ALSU07, p. 237].
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LR parsers

LR parsers are an implementation of shift-reduce parsers. They are composed of a “driver”
algorithm which uses a stack and two tables called action and goto to perform the parsing (see
Figure A.1). The driver algorithm is predefined, the action and goto tables must be computed for
each grammar [ALSU07, p. 248]. Since this is complicated to do by hand, LR parser generators
exist for this purpose.

LR parser

action goto

a1 ai an. . . . . .Input

Output
Stack
sm

sm−1

. . .
Tables

Figure A.1: LR parser schematic [ALSU07, p. 248]

The actual symbols need not be saved directly on the stack (as would be the case for shift-
reduce parsers). Instead, LR parsers employ states which contain summarized information about
the context. The state on top of the stack, together with the current input token (lookahead)
determine the next action of the parser.

The tables. The action table encodes, for each combination of state and lookahead token, one
of the four actions of a shift-reduce parser; the goto table is used only during reductions:

• A shift action specifies a new state s′ that will be pushed onto the stack and used for the
next action of the parser.

• A reduce action specifies a rule to reduce with. After the number of states corresponding
to the number of symbols on the right hand side of the rule have been removed from the
stack, a new state s′ is pushed. s′ is determined by looking up the goto table entry for the
state now on top of stack and the reduced non-terminal.

• accept and error actions have no additional parameters.

If a table cell has more than one entry, a shift/reduce or reduce/reduce conflict is said to exist,
depending on whether a shift action and one or more reduce actions or more reduce actions
are listed in the cell. Such conflicts can arise if the grammar is ambiguous, not LR, or does not
belong to the subclass of grammars the table generation algorithm adheres to (for example SLR
or LALR, see below).

The algorithm. The LR driver algorithm simply follows the instructions laid out in the action
table until the input is either accepted or an error occurs:

push the initial state onto the stack;
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while true:

s := symbol on top of stack;

a := lookahead;

if action[s, a] = shift s′:
push s′ onto the stack;

consume(a);

else if action[s, a] = reduce A→ β:
pop | β | symbols from the stack;

s′ := symbol on top of stack;

push goto[s′, A] onto the stack;

/∗ reduce A→ β ∗/

else if action[s, a] = accept:

/∗ done ∗/
break;

else:

error();

Calculating the tables is the most complex part of LR parsing. Several algorithms exist
for this purpose, including simple LR (SLR), canonical LR and look-ahead LR (LALR). The
subclasses of grammars that can be parsed with these methods are strictly contained in each
other:

SLR ⊂ LALR ⊂ Canonical LR

Incidentally, the size of the parsers generated using these three algorithms increases together
with its expressiveness.

SLR. The SLR algorithm uses so-called LR(0) sets to create a finite automaton that is later
translated into action and goto tables. A LR(0) set is composed of LR(0) items, which encompass
all productions of a grammar with a dot at any position on the right hand side. For example,
for the rule

A → BC

the following items are valid:

A → ·BC
A → B · C
A → BC ·

The dot symbolizes the progression of the parser within a rule; before parsing C in the above
example, the parser will execute actions corresponding to A → B ·C. After parsing C, actions
for A → BC· become relevant, such as reducing using A → BC. As such, items are the
starting point in calculating states; however, more items (a set) may be summed up by a single
state.

Given a set of items I, the closure of I is defined as follows:

• All items in I belong to closure(I).
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• For each item matching A → α · Bβ, all possible items matching B → · γ also belong
to closure(I).

The definition is applied repetitively until closure(I) no longer changes.
As an example, given the grammar:

S → E

E → E +N

E → T

T → (N )

N → num (A.5)

closure({S → · E}) is calculated by starting with S → · E. By matching it with
A → α ·Bβ (A = S α = ε, B = E, β = ε), it results that items belonging to all productions of
E must be added:

E → ·E +T

E → ·T

In the next step, items corresponding to all productions of E and T must be dealt with. Since
items for E have already been added, only items for T remain:

T → · (N )

The entire set thus contains:

S → ·E
T → ·E +T

E → ·T
T → · (N )

The other operation needed for calculating SLR tables is called goto [ASU86, p. 224]. goto(I,X)
is the closure of the set of items which contain all matching A→ αX ·β, provided that A→ α·Xβ
is in I.

For Grammar A.5, goto({T → E · +T}, + ) contains:

T → E + · T
T → ·E +T

T → · (N )

E → ·T
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The first element is obtained by matching the given rule (moving the dot over the + ), the
rest of the elements belong to the closure of the new set.

The canonical collection of LR(0) sets together with the goto operation can be viewed as
describing a finite automaton that accepts all viable prefixes of a grammar [ALSU07, p. 245-
247,256-257]. Items beginning with a dot (B → ·γ) can be reached from an item with the dot
right before the original item’s left hand side (A→ α ·Bβ) without consuming any symbol. This
is equivalent to an ε transition in the automaton; the closure operation is used to remove these
edges and merge states, turning the non-deterministic automaton into a deterministic one.

The collection is initialized with the closure of the start rule and is built by iteratively adding
all sets that can be computed by application of goto until a fixed point is reached. In order
to simplify the generation of accept actions, the input grammar is augmented by adding a new
symbol S′ and a rule S′ → S to it, where S is the start symbol of the input grammar. The
augmented grammar thus has a new start symbol S′ and a unique start rule that, when reduced,
triggers the accept action.

C := {closure({S′ → · S})};
do until C no longer changes:

for each I in C:

for each grammar symbol X:

if goto(I,X) != {} and goto(I,X) not in C:

C += goto(I,X);

The LR tables (action and goto) can be derived from the canonical collection of LR(0) sets:

• Each set Ii designates a state i.

• Items from Ii matching A → α · aβ, whereas a is a terminal, generate the entry
action[i, a] := shiftj, whereas Ij = goto(Ii, a).

• Items from Ii matching A → α·, whereas A is not the start symbol, generate action[i, a] :=
reduceA → α for all a in FOLLOW(α).

• Items from Ii matching S → α·, whereas S is the start symbol, generate action[i, $] :=
accept.

• For all items Ii and non-terminals X, generate goto[i,X] := j, whereas Ij = goto(Ii, X).

SLR cannot parse all LR grammars. A notable exception is Grammar A.6 describing simple
assignments, where the symbol ∗ indicates “content of”, akin to C pointers [ASU86, p. 229]:

S → L =R

S → R

L → *R

L → id

R → L

(A.6)

The SLR algorithm produces a table that has multiple actions defined for the state [{S → L·
=R,R → L·}, = ] – either a shift or a reduce can be executed. While the grammar is not
ambiguous, not involving the lookahead in the calculation of separate states causes this result.
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LALR

LALR can be viewed both as a more complex form of SLR or as a simplification of canonical
LR. Canonical LR works by also embedding lookahead in items – the sets of items constructed
in this manner are called LR(1) sets, and the algorithm is essentially the same as for SLR. The
LR(1) sets are also the starting point of LALR [ALSU07, p. 260-264], so they are detailed below:

closure(I) is defined as a fixed point function, using the following rules:

• All items in I belong to closure(I).

• For each item matching [A → α · Bβ, a], all possible items matching [B → · γ, b] also
belong to closure(I), whereas b is a terminal from FIRST(βa).

goto(I,X) is defined analogously to LR(0) and is the closure of the set of items which contain
all matching [A→ αX · β, a], provided that [A→ α ·Xβ, a] is in I.

The canonical set of LR(1) items is built similarly to the set of LR(0) items, starting with
the closure of items {[S′ → · S}, $])}.

Canonical sets of LR(1) items are very large, since they embed all possible lookaheads. It
has been noticed, however, that multiple sets exist where the items are the same except for the
lookahead. In this case, the item cores are said to be the same; such sets are merged to form an
LALR set [ALSU07, p. 267].

The merging of sets is guaranteed not to produce any shift/reduce conflicts for a valid LR(1)
grammar, since shift actions only depend on item cores. However, reduce/reduce conflicts may
arise [ALSU07, p. 267-268]. On invalid input, an LALR parser may perform a reduce oper-
ation first instead of directly signalling an error, but the error will arise when the a token is
shifted [ALSU07, p.266-267].

As to not generate the entire canonical sets of LR(1) items, a more direct approach is usually
employed. In order to save space, only the so-called kernel items of the LR(0) set are calculated
– items where the dot is not at the beginning, except for the “start item”, S′ → S. Afterwards,
the lookaheads are calculated for each item, resulting in the LALR(1) set.

Lookaheads can be obtained from two sources – they are either “spontaneously generated”
for an item or “propagated” from one item to another. An algorithm that discovers them, based
on the propagation of a dummy lookahead [ALSU07, p. 272], is given below. The algorithm
takes two parameters, I as a set of LR(0) items and X as a non-terminal. It generates SP , the
set of lookaheads spontaneously generated for an item in goto(I,X) and LA, the set of items
lookaheads are propagated from in goto(I,X).

K := kernel of I;
for each item A → α · β in K:

J := closure({[A → α · β,#]});
for each [B → γ ·Xδ, a] in J with a 6= #:

SP[B → γ ·Xδ] += a;
if [B → γ ·Xδ,#] is in J:

LA[B → γ ·Xδ, I] += A → α · β;

To obtain the LALR(1) set, the algorithm must be executed iteratively for each kernel of
the set of LR(0) items until no more lookaheads propagate. Parsing tables resulting from the
LALR(1) set are then calculated same as for LR(1) sets.

A.1.3 Generalized LR

Generalized LR (GLR) parsers [Tom84; Tom85; Tom87] extend LR parsers by allowing non-
cyclical ambiguous grammars to be processed. The algorithm is designed with natural language
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processing in mind, a domain where grammar complexity is higher than for programming lan-
guages, but lower than that possible with general context-free languages (for which algorithms
such as the Cocke Younger Kasami algorithm or Earley’s algorithm have been devised).

The GLR algorithm is a so called all-path parsing algorithm based on a graph-structured
stack. The standard LR algorithm employs a simple stack to keep record of the current state;
the symbol on top of the stack, together with the input token, determine the next action of the
parser and thus the new contents of the stack (see Appendix A.1.2). Having more than one
entry in the action table (a shift/reduce or a reduce/reduce conflict) means that the stack would
need to contain different values at once – this introduces ambiguity and thus non-determinism
in the parsing process. GLR parsers choose to “split” the stack in case of conflict and pursue all
possibilities.

In his paper [Tom85], Tomita offers several refinements of the stack-like data structure that
backs the multiple parses. He starts with a “stack list” – here, the parser can have one or more
“processes” running in parallel. Processes perform shift actions synchronously (thus always
reading the same input). When a process encounters a conflict, it spawns more processes to
handle all alternatives; each process has its own copy of the stack. When a process encounters
an error state, it is killed. This paradigm is seen as inefficient – processes cannot communicate
with each other or share duplicated work. The number of stacks used grows exponentially with
each ambiguity encountered.

The next refinement is that of a “tree-structured stack”. Here, the author observes that
processes with the same state on top of the stack will act the same until the state is popped from
the stack, so the processes can be merged into one. The stacks are then represented as a tree,
with the common top of stack as the root of the tree. This representation saves some space, but
the stack up to the common symbol still has to be copied to all processes.

The last refinement is the “graph-structured stack”, in which common stack prefixes are also
merged to save space, in addition to the optimizations of the tree-structured stack.

Tomita also offers a compact representation of a parse forest (a collection of parse trees),
which is the output of the GLR algorithm. He uses two optimizations [Tom85, p. 758-759] to
avoid an exponential number of trees in the forest: “sub-tree sharing” and “local ambiguity
packing”. Sub-tree sharing involves using only one node pointer for identical sub-trees and is
achieved by pushing pointers to nodes of the parse tree instead of symbols 3 onto the stack; a new
node is only created if an identical node does not exist. Local ambiguity packing refers to trees
which have identical leaf nodes and roots; these are detected by the algorithm as symbols/node
pointers surrounded (left and right) by identical states and merged.

An example of operations on a graph-structured stack is given in Figure A.2. The figure
shows a simple stack, the effect of a shift/reduce conflict with two states being removed and one
added for the reduce operation, and one state being added for the shift operation and lastly
how the stack is merged back together by a common shift operation.

In the case of a non-ambiguous grammar, GLR has the advantage of being as efficient as the
underlying LR parser (except for some minor overhead); the runtime complexity of GLR “for
most natural language grammars” is O(n3) [Tom85, p. 761].

3The LR parser described by Tomita pushes symbols, as well as states, onto the stack. Since symbols can be
left out of LR parser stacks [ASU86, p. 216], his representation is used mainly for explanatory purposes.
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Figure A.2: Operations on a graph-structured stack: (a) simple stack, (b) shift/reduce conflict,
(c) common shift

A.2 Techniques for static evaluation of attribute grammars

A.2.1 Subclasses of attribute grammars

Due to the exponential complexity involved in handling well-defined attribute grammars, several
subclasses of AGs have been searched for and analyzed throughout literature. This subsection
offers an overview of the more important subclasses.

Tree walk-based classification

A wide range of subclasses can be categorized by the operations executed on the parse tree during
the evaluation stage [DJL88, p. 23ff][EF89, p. 69ff].

A visit to a parse tree node involves entering a node, performing a calculation on that node
(such as evaluating an attribute) and finally exiting the node. A sweep is a traversal of the parse
tree such that each subtree is visited exactly once. A pass involves a depth-first traversal of the
parse tree, where nodes are visited in a fixed order – either left-to-right or right-to-left.

The classification also factors in the number of visits to a node or of sweeps or passes per-
formed on the tree, respectively. Furthermore, a differentiation is made between pure and simple
evaluators: pure evaluators are non-deterministic in that they can choose which attributes to
evaluate at runtime; simple evaluators have a pre-defined set of attributes that they evaluate at
a certain point.

For a pure k-visit AG, the evaluator thus visits each node k times, and chooses at runtime
which attributes to evaluate. A pure multi-visit AG is a pure k-visit attribute grammar for which
k ≥ 1 [EF89, p. 846]. k-sweep, k-pass, multi-sweep and multi-pass AGs are defined analogously.

The hierarchy as well as the complexity of the evaluator and of the membership test are given
in literature [EF89, p. 851] [DJL88, p. 26-27,29]. It can be noted that the pure multi-visit class
is equivalent to that of well-defined attribute grammars and that the simple multi-visit class is
equivalent to that of l-ordered attribute grammars (described later on). The membership test is
polynomial for all simple evaluators except simple multi-visit, for which it is NP-complete.
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One-visit attribute grammars

One of the classes with the lowest complexity is that of one-visit attribute grammars [AM91,
p. 99ff]. Given an unattributed parse tree, all attributes can be calculated during one traversal
(sweep) through the tree.

Examples of one-visit attribute grammars are S-attributed grammars and L-attributed
grammars.

S-attributed grammars were first mentioned by Knuth [Knu68]. They only contain syn-
thesized attributes. Both detecting and evaluating an S-attributed grammar is straightforward;
due to the lack of inherited attributes, IS-SETs can contain at most one element, an empty
graph. Scanning the grammar to ensure only synthesized attributes are used can be done in
linear time in the size of the grammar. Evaluating an S-attributed grammar requires at most a
postorder (bottom-up) pass through the parse tree.

Formally, any attribute grammar can be converted to an S-attributed grammar. An intuitive
method of performing the transformation is to synthesize an attributed parse tree containing the
values of all initial synthesized attributes with no dependencies, placeholders for the attributes
that have not been calculated yet and links to the semantic rules and dependencies existing
between attribute instances. The parse tree can then be subjected to dynamic evaluation as
described in Section 2.3.3.

L-attributed grammars [ALSU07, p. 313ff][AM91, p. 100] are grammars that can be eval-
uated in one left-to-right pass of the parse tree. This is a superclass of S-attributed grammars,
as it also allows grammars with inherited attributes. For a given production Xp0 → Xp1 . . . Xpn ,
all attribute occurrences associated with right hand side symbols (a, p, j), where j ≥ 1 may only
depend on occurrences (b, p, k) where k < j.

L-attributed grammars are an important subclass when considering left-to-right LL and LR
parsers, as they can be evaluated efficiently in such cases. An L-attributed grammar backed by
an LL context-free grammar is called an LL-attributed grammar and can be evaluated entirely
during the parsing stage [AM91, p. 189].

Since the LR technique parses input in a bottom-up fashion, information necessary to compute
some of the inherited attributes for L-attributed grammars may not be present. Thus, subclasses
of L-attributed grammars and additional evaluation techniques for LR parsers have been devised
which allow attribution during the parsing stage [AM91, p. 194-201][SIN85]. One example is the
subclass of MLR-attributed grammars [AM91, p. 199]; here, synthesized and inherited attribute
instances are both maintained on the LR stack together with parser states, with the limitation
that inherited attributes must be grouped for all LR items corresponding to a state. Conflicts
can arise if the offset between an attribute’s symbol and the attribute’s parent’s symbol is not
the same for all LR items in a state, or if inherited attributes can be calculated based on different
expressions for different items in a state.

Furthermore, the general problem of grammars of the type:

A → Ax { A1.i := f(A0.i); }

A → y { . . . }

is not resolved in this case, since it cannot be known in advance how many applications of f
are needed.

Checking that an attribute grammar is one-visit can be done in polynomial time[EF89, p. 852].
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Absolutely non-circular grammars

Absolutely non-circular (ANC), also called strongly non-circular (SNC) [DJL88, p. 18ff.][AM91,
p. 49ff.] attribute grammars, are a refinement of well-defined AGs that address the problem that
the number of elements in IS-SET(X) can increase exponentially with the size of the grammar.
They are computationally more expensive than one-visit grammars, but they cover more possible
AGs.

The approach used is to replace the choice of random graphs from IS-SET(X) in Algorithm 2.1
with the single choice of IS(X), a graph fulfilling the function of all graphs in IS-SET(X) – more
precisely, IS(X) contains an edge (a, b) if one of the graphs in IS-SET(X) contains (a, b).

IS(X) can also be defined recursively as:⋃
p∈P
{DGp − 0∗[IS(Xp1), . . . , IS(Xpnp)] | Xp0 = X}

It can be shown that the time needed to construct the IS(X) graphs is polynomial with
respect to the size of the grammar [AM91, p. 51].

IS(X) can be seen as the graph of all possible “i-to-s” dependencies; however, due to the
nature of its construction, IS(X) may also contain edges where no corresponding dependencies
exist in any of the sets (called “spurious dependencies”).

The circularity test must check for each production p whether the graphDGp − 0[IS(Xp1), . . . ,
IS(Xpnp)] contains a cycle. Circular grammars are always detected by the test, although some
non-circular (well-defined) grammars are also falsely identified as circular.

As an example, consider the AG specified by the local dependency graphs in Figure A.3.

S

A

a b c d

A

y

a b c d

A

x

a b c d

DGS → A DGA →y DGA →x

Figure A.3: Local dependency graph attribute specification

The analysis of IS-SET(A) reveals two graphs, one for each production, as outlined in Fig-
ure A.4 (a). In this case, the aggregated graph IS(A) (Figure A.4 (b)) is equal to the union of
both graphs from the IS-SET.

However, overlaying IS(A) onto the dependency graph of production S → A reveals a falsely
identified cycle between c, a, d and b (Figure A.4 (c)). The grammar is thus not absolutely
non-circular.

A possible implementation of an ANC evaluator is using partitions [AM91, p. 55] [Nie83]. A
partition of the attributes of a symbol X is defined as a sequence of disjunct subsets of A(X),
starting with a subset of inherited attributes and continuing with alternating subsets of synthe-
sized and inherited attributes. A partition of a production p is defined as a sequence of (hr, Ar),
where hr is the index of a symbol Xphr

in the production (0 ≤ hr ≤ np) and each Ar is a disjunct
element of a partition of A(Xphr

). An evaluator can make use of DGp−0[IS(Xp1), . . . , IS(Xpnp
)]

to construct partitions for each symbol and production. The evaluator then may, for example,
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Figure A.4: (a) IS-SET(A), (b) IS(A), (c) DGS→A − 0[IS(A)]

be implemented as a set of recursive procedures, one for each partition π of a symbol. Such a
procedure would use an alternation of attribute calculations and calls to procedures that handle
neighbouring nodes to evaluate all attributes in a valid order.

A similar partitioning system is used for both l-ordered attribute grammars and OAG, which
are described below. The partitioning system is discussed in more detail for OAG grammars.

l-ordered attribute grammars

l-ordered attribute grammars are the largest class of attribute grammars that can be statically
evaluated, meaning that for each possible node associated with a symbol, the order in which its
attribute instances are evaluated is always the same. Therefore, all analyses of the grammar and
its symbols can be performed at evaluator construction time.

Formally, this requires the construction of a total order TO(X) for all attributes associated
with symbol X. Attribute instances of nodes labelled X must then be evaluated in the order
specified by it [AM91, p. 61][Nie83, p. 255]. Specifically, the order must be compatible with all
possible dependencies given by IS(X) and SI(X).

Here, SI(X) is defined analogously to IS(X) as a graph containing all edges from graphs in
SI-SET(X). More precisely, SI(X) can be calculated using a fixed point algorithm from SI and
IS graphs based on the following definition [AM91, p. 52]:

SI(Z) = Empty graph with vertices A(Z)

SI(X) = ∪p∈P {DGp − k∗[SI(Xp0), IS(Xp1), . . . , IS(Xp(k−1)),

IS(Xp(k+1)), . . . , IS(Xpnp
)] | 1 ≤ k ≤ np, Xpk = X}

for all other symbols X

To be able to evaluate all possible trees, TO(X) must exist for all productions p such that
DGp[TO(Xp0), . . . , TO(Xpnp)] is cycle free [AM91, p. 61].

In order to construct an evaluator, the set A(X) is split into m(X) disjoint, ordered subsets
〈A1(X), . . . , Am(X)(X)〉 according to TO(X). While performing a visit-based tree-walk, the n-th
visit to a node labelled X allows the calculation of the attributes in An(X). As the total orders
TO(X) for all X ∈ V are required for determining membership, they can also be used to build
the plan for the evaluator.

Whereas absolutely non-circular grammars may have a family of partitions per symbol, only
a single partition per symbol exists in l-ordered grammars.

The membership test for l-ordered attribute grammars was shown to be NP-complete in the
size of the grammar, so for practical reasons another formalism (OAG) was introduced.
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OAG

The OAG formalism [AM91, p.62-64] is based on a graph DS(X) derived from the union of
IS(X) and SI(X), in which for each synthesized attribute a and each inherited attribute b of X
there is either an edge from a to b or from b to a.

DS(X) can be obtained with the aid of a partition:

πX = 〈I1(X), S1(X), . . . , Im(X)(X), Sm(X)(X)〉

of the attributes of X, where Ik(X) ⊆ I(X), Sk(X) ⊆ S(X) and m(X) is the number of
elements in the sequence (or of visits to a node with symbol X). This is similar to the partitions
described before, with the difference that inherited and synthesized attribute sets are split apart.
The partition must fulfill several conditions – a dependency between two attributes a and b
hereby denoting an edge (a, b) in ISSI(X) = IS(X) ∪ SI(X) in this context:

• Inherited attributes in I1(X) may not depend on any synthesized attributes of X.

• Inherited attributes in Ik(X), 1 < k ≤ m(X), may only depend on synthesized attributes
from an earlier Si(X), i < k and may only be dependencies of synthesized attributes from
Sj(X), j ≥ k.

• Synthesized attributes in Sk(X), 1 < k ≤ m(X), may only depend on inherited attributes
from Si(X), i ≤ k and may only be dependencies of inherited attributes from Sj(X), j > k.

• Synthesized attributes in Sm(X) may not be dependencies of any inherited attributes.

The partition can be calculated in reverse order by iteratively selecting from a set of non-
assigned attributes either the synthesized or the inherited attributes with all dependencies met
at the certain stage [AM91, p. 63f].

DS(X) is built from the union of ISSI(X) and the set of edges constructed pairwise from
adjacent sets of the partition: (a, b) is an edge in this set if a ∈ Ik(X) and b ∈ Sk(X) or a ∈ Sk(X)
and b ∈ Ik+1(X). With DS(X) available, the membership test simply involves checking whether
for every production p, DGp[DS(Xp0), . . . , DS(Xpnp)] is cycle free.

Once the DS(X) graphs are known, the construction of an evaluator is possible. A “visit
graph” V Gp is created for each production, where vertices are either attribute occurrences in
DO(p) or vertices vk,i denoting visits to a neighbouring node Xpk for a given visit number
i [AM91, p. 66]. The edges of V Gp stem from DGp[DS(Xp0), . . . , DS(Xpnp

)]. Edges in DGp[. . .]
going from an attribute occurrence (a, p, j) in DO(p) to (b, p, k) in UO(p) or vice versa are
mapped to ((a, p, j), vk,i) and (vk,i, (a, p, j)) respectively in V Gp. The visit index i is determined
by the set Ii(Xpk)∪Si(Xpk) from the partition of Xpk that contains the attribute b. Edges from
attribute occurrences in DO(p) to other attribute occurrences in DO(p) are simply transferred
to V Gp as-is.

The topological sort of V Gp yields a sequence V Sp, which is then split into m(Xp0) subse-
quences, each subset starting with a vertex v0,i, 1 ≤ i ≤ m(Xp0) denoting a parent visit. In
order for the splitting procedure to work, the topological sort must ensure the first vertex is v0,1,
even if it other vertices have no dependencies.

Implementing an OAG evaluator using recursive procedures [AM91, p. 67] involves creating
one such procedure per symbol and subsequence index 1 ≤ i ≤ m(X), where the operations in
the i-th subsequence of the production matching a parse tree node are executed. vk,j vertices are
translated into calls to the procedure matching Xpk and index j; attribute occurrence vertices
are translated into executions of their evaluation rule.
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Example. For AG 2.5, there are no “s-to-i” dependencies, resulting in an SI-SET containing
just the empty graph for each symbol. In this particular case, the ISSI graphs are the union of
the respective IS-SET graphs and are given in Figure A.5.

OAG partitions can be calculated for each symbol in part:

πN = 〈{}, {value}〉
πL = 〈{position}, {value}〉
πB = 〈{position}, {value}〉

From this, it becomes clear that position must be evaluated before value for all L and B.
ISSI equals DS, as the partitions add no additional edges to ISSI.

value

N
position value

L

position value

B

Figure A.5: ISSI (and DS) graphs for AG 2.5

The next step involves creating the visit graphs V Gp and performing a topological sort on each
of them to find the visit sequences, V Sp. The extended dependency graphs, DGp[DS(Xp0), . . . ,
DS(Xpnp

)] and resulting visit graphs V Gp are given in Figure A.6.
For example, in graph (b), the attribute instance B.value, which belongs to UO(p), is mapped

to the corresponding visit node v1,1 in V Gp. The edges of V Gp suggest the resulting sequence
〈v0,1, B.position, v1,1, L0.value〉. This sequence is equivalent to the seeked evaluation order, as
only one parent visit node v0,1 exists.

All resulting sequences are given below:

V SN→L = 〈L.position, v0,1, v1,1, N.value〉

V SL0→B = 〈v0,1, B.position, v1,1, L0.value〉

V SL0→L1B = 〈v0,1, B.position, L1.position, v1,1, v2,1, L0.value〉

V SB→0 = 〈v0,1, B.value〉

V SB→1 = 〈v0,1, B.value〉

The recursive evaluator can now be constructed. As there is a maximum of one visit per
node, the number of resulting functions is also limited to one per node. In this example, each
node node has properties node.child1, . . . , node.childnp denoting the child nodes and further
properties position or value referencing its attribute instances. The evaluator is started by
calling visitN.0(root), where root is the root node:

function visitN.0(node):
if production at node matches N → L:

evaluate node.child1.position
visitL.0(node.child1)
evaluate node.value
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position value
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position value
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L0
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position value
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,
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position value
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v0,1
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(c) L→ LB

B

0

position value

,

B

0

position value

v0,1 B

1

position value

,

B

1

position value

v0,1

(e) B → 0 (f) B → 1

Figure A.6: DGp[DS(Xp0), . . . , DS(Xpnp
)] and V Gp graphs for AG 2.5
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function visitL.0(node):
if production at node matches L→ LB:

evaluate node.child2.position
evaluate node.child1.position
visitL.0(node.child1)
visitB.0(node.child2)
evaluate node.value

if production at node matches L→ B:

evaluate node.child1.position
visitB.0(node.child1)
evaluate node.value

function visitB.0(node):
if production at node matches B → 0 :

evaluate node.value
if production at node matches B → 1 :

evaluate node.value
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Appendix B

Listings

B.1 AG2010: an attribute evaluator benchmark

parser.y

1 %{

2 #include <stdlib.h>

3 #include <string.h>

4 #include <stdio.h>

5 #include "helper.h"

6

7 void check_list(list_t *list , char *what , char *val) {

8 if (! list_contains(list , val)) {

9 fprintf(stderr , "%s ’%s’ undefined\n", what , val);

10 exit (3);

11 }

12 }

13

14 void check_field(list_t *fields , char *val) {

15 check_list(fields , "field", val);

16 }

17

18 void check_variable(list_t *vars , char *val) {

19 check_list(vars , "variable", val);

20 }

21

22

23 void check_var_or_field(list_t *fields , list_t *vars , char *val) {

24 if (! list_contains(vars , val) && !list_contains(fields , val)) {

25 fprintf(stderr , "variable (or field) ’%s’ undefined\n", val);

26 exit (3);

27 }

28 }

29

30 int yyerror () { exit (2); }

31 extern int yylex(void);

32

33 %}

34

35 %token _STRUCT _END _METHOD _VAR _IF _THEN _ELSE _WHILE _DO _RETURN

36 %token _NOT _OR _THIS _SEMICOLON _BRACE _BRACEEND _ASSIGN _DOT _MINUS

37 %token _STAR _LOWER _EQUALS _COMMA _ID _NUM

38

39 %autoinh visible_fields

40 %autoinh visible_vars

41

42 %attributes { long val; } _NUM

43 %attributes { char *val; } _ID

44 %attributes { list_t *fields; } Program Methoddef Structdef Structids

45 %attributes { list_t *vars; } Parids

46 %attributes {
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47 list_t * %autoinh visible_fields;

48 list_t * %autoinh visible_vars;

49 } Statseq Statement Lexpr Expr Term MinusTerm StarTerm OrTerm Exprs ExprList

50 %attributes {

51 list_t * %autoinh visible_fields;

52 list_t * %autoinh visible_vars; char *val;

53 } Defstatement

54

55 %traversal check

56

57 %%

58

59 Program: Program Methoddef _SEMICOLON

60 @i { $$.fields = $1.fields; }

61 @i { $2.fields = $1.fields; /∗ warning : i n h e r i t e d here ∗/ }

62 | Program Structdef _SEMICOLON

63 @m $$.fields {

64 list_t *intersection = list_intersects($1.fields , $2.fields);

65 if (intersection) {

66 fprintf(stderr , "field ’%s’ defined in two structs\n",

67 intersection ->val);

68 exit (3);

69 }

70 $$.fields = list_merge($1.fields , $2.fields);

71 }

72 |

73 @i { $$.fields = 0; }

74 ;

75

76 Structdef: _STRUCT Structids _END

77 @i { $$.fields = $2.fields; }

78 ;

79

80 Structids: /∗ Empty ∗/
81 @i { $$.fields = 0; }

82 | Structids _ID

83 @m $$.fields { if (list_contains($1.fields , $2.val)) {

84 fprintf(stderr , "field ’%s’ redefined\n", $2.val);

85 exit (3);

86 }

87 $$.fields = list_add($1.fields , $2.val ,

88 list_length($1.fields));

89 }

90 ;

91

92 Methoddef: _METHOD _ID /∗ Method d e f i n i t i o n ∗/
93 _BRACE Parids _BRACEEND /∗ Parameter d e f i n i t i o n ∗/
94 Statseq

95 _END

96 @i { $6.visible_fields = $$.fields; /∗ warning : i n h e r i t e d here ∗/ }

97 @i { $6.visible_vars = $4.vars; }

98 ;

99

100 Parids: /∗ Empty ∗/
101 @i { $$.vars = 0; }

102 | Parids _ID

103 @m $$.vars { if (list_contains($1.vars , $2.val)) {

104 fprintf(stderr , "parameter ’%s’ redefined\n", $2.val);

105 exit (3);

106 }

107 $$.vars = list_add($1.vars , $2.val , list_length($1.vars));

108 }

109 ;

110

111 Statseq: /∗ Empty ∗/
112 | Statement _SEMICOLON Statseq /∗ auto inh v i s i b l e v a r s ∗/
113 | Defstatement _SEMICOLON Statseq
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114 @m $3.visible_vars { if (list_contains($$.visible_vars , $1.val)) {

115 fprintf(stderr , "variable ’%s’ redefined\n", $1.val);

116 exit (3);

117 }

118 $3.visible_vars = list_add($$.visible_vars , $1.val , 0);

119 }

120 ;

121

122 Defstatement: _VAR _ID _ASSIGN Expr /∗ Var iab l e d e f i n i t i o n ∗/
123 @i { $$.val = $2.val; }

124 ;

125

126 Statement: Lexpr _ASSIGN Expr /∗ Assignment ∗/
127 | Expr /∗ Command e xp r e s s i on ∗/
128 | _IF Expr _THEN Statseq _END

129 | _IF Expr _THEN Statseq _ELSE Statseq _END

130 | _WHILE Expr _DO Statseq _END /∗ WHILE command ∗/
131 | _RETURN Expr

132 ;

133

134 Lexpr: _ID

135 @check {

136 check_var_or_field($$.visible_vars , $$.visible_fields , $1.val);

137 }

138 | Term _DOT _ID

139 @check {

140 check_field($$.visible_fields , $3.val);

141 }

142 ;

143

144 Expr: Term

145 | _NOT Term

146 | Term MinusTerm

147 | Term StarTerm

148 | Term OrTerm

149 | Term _LOWER Term

150 | Term _EQUALS Term

151 ;

152

153 MinusTerm: MinusTerm _MINUS Term | _MINUS Term;

154 StarTerm: StarTerm _STAR Term | _STAR Term;

155 OrTerm: OrTerm _OR Term | _OR Term;

156

157

158 Term: _BRACE Expr _BRACEEND

159 | _NUM

160 | _MINUS _NUM

161 | _THIS

162 | _ID /∗ Var iab l e / F i e l d read ∗/
163 @check {

164 check_var_or_field($$.visible_fields , $$.visible_vars , $1.val);

165 }

166 | Term _DOT _ID /∗ F i e l d read ∗/
167 @check {

168 check_field($$.visible_fields , $3.val);

169 }

170

171 | _ID _BRACE Exprs _BRACEEND /∗ Method c a l l ∗/
172 | Term _DOT _ID _BRACE Exprs _BRACEEND /∗ Method c a l l ∗/
173 ;

174

175 Exprs: ExprList Expr | ExprList ;

176

177 ExprList: | ExprList Expr _COMMA ;

178

179 %%
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scanner.l

1 %{

2 #include <stdio.h>

3 #include "helper.h"

4 #include "parser.tab.h"

5 %}

6

7 %option noyywrap

8

9 %x comment

10

11 %option attributes

12 %%

13

14 struct return _STRUCT;

15 end return _END;

16 method return _METHOD;

17 var return _VAR;

18 if return _IF;

19 then return _THEN;

20 else return _ELSE;

21 while return _WHILE;

22 do return _DO;

23 return return _RETURN;

24 not return _NOT;

25 or return _OR;

26 this return _THIS;

27

28 ";" return _SEMICOLON;

29 "(" return _BRACE;

30 ")" return _BRACEEND;

31 ":=" return _ASSIGN;

32 "." return _DOT;

33 "-" return _MINUS;

34 "*" return _STAR;

35 "<" return _LOWER;

36 "=" return _EQUALS;

37 "," return _COMMA;

38

39 [a-zA-Z_][a-zA-Z0 -9_]* { $_ID.val = strdup(yytext); return _ID; }

40 0x[0-9a-fA-F]+ { $_NUM.val = strtol(yytext , NULL , 16); return _NUM; }

41 [0-9]+ { $_NUM.val = strtol(yytext , NULL , 10); return _NUM; }

42

43 "/*" BEGIN(comment);

44 <comment >"*/" BEGIN (0);

45 <comment ><<EOF >> exit (1);

46 <comment >.

47

48 <*>[\n\r\t ]

49

50 . exit (1);

51

52 %%

53

54 int main() {

55 int ret = yyparse ();

56 return ret;

57 }

helper.h

1 #ifndef HELPER_H

2 #define HELPER_H

3

4 typedef struct list {

5 char *val;
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6 int pos;

7 struct list *next;

8 } list_t;

9

10 list_t *list_add(list_t *, char *, int);

11 int list_length(list_t *);

12 list_t *list_contains(list_t *, char *);

13 list_t *list_merge(list_t *, list_t *);

14 list_t *list_intersects(list_t *, list_t *);

15

16 #endif

helper.c

1 #include <stdlib.h>

2 #include <string.h>

3 #include "helper.h"

4

5 list_t *list_add(list_t *in, char *v, int p) {

6 list_t *l = malloc(sizeof(list_t));

7 l->val = v;

8 l->pos = p;

9 l->next = in;

10 return l;

11 }

12

13 int list_length(list_t *in) {

14 int i;

15 for (i = 0; in; in = in ->next , i++);

16 return i;

17 }

18

19 list_t *list_contains(list_t *in, char *v) {

20 while (in) {

21 if (! strcmp(v,in->val))

22 return in;

23 in = in->next;

24 }

25 return in;

26 }

27

28 list_t *list_merge(list_t *one , list_t *two) {

29 /∗ a new l i s t w i l l be a l l o c a t e d ∗/
30 list_t *l = 0;

31 for (; one; l = list_add(l, one ->val , one ->pos), one = one ->next);

32 for (; two; l = list_add(l, two ->val , two ->pos), two = two ->next);

33 return l;

34 }

35

36 list_t *list_intersects(list_t *one , list_t *two) {

37 while (one) {

38 list_t *two_i;

39 for (two_i = two; two_i; two_i = two_i ->next) {

40 if (! strcmp(one ->val , two_i ->val)) {

41 return one;

42 }

43 }

44 one = one ->next;

45 }

46 return 0;

47 }

99



Example input (352 lines, 3850 parse tree nodes)

method RMme1r ()

end;

3 method i( Wj jK9 ngDNJ1 E7)

return not 632;

Wj or (not this);

return not Wj;

end;

method KLx1()

var L3 := this or 9;

L3 := 162;

L3 := 494 or 0xAa1809;

not L3;

13 var PYjF1 := L3 or 0x90Edb7 or

-0x4b28 or L3;

return L3 < (0x1b * L3 * this *

97736);

PYjF1 - 0xCbE;

PYjF1 := -0xC=this;

L3 := not 321;

var V := 860129;

var A0H2 := 0x4d9dBC < this;

return this * this * 0xE0B * 17;

23 var r10 := -29 * 99;

end;

method Nu_oSx ()

return 99 - this;

while -0xB or this do

not -0x14;

end;

var dVHhP := this=0 xBd8ca;

var SW1b := 8357;

dVHhP * -6675600;

33 SW1b := -0xceE;

SW1b := SW1b * this;

SW1b := not this;

var xBBF3R := 0 * this;

var Myd := not xBBF3R;

end;

method DfNYh()

return 0536196 < 0x53E;

end;

method xExk( kA esg dnE hN2pD8 Y6W)

43 return this or esg or this;

return -0x2ea * Y6W * 0x5BD;

0xAD6 * Y6W;

return (hN2pD8) - dnE - -0xBDDe

- this;

hN2pD8 := not kA;

-51251 - this - -0xB97 - this;

return 7632444= -8096;

80=this;

var lY := -0xE9E or 2545;

53 esg := -0xcd0C < 7637472;

end;

method y0M()

while -0xF8d or this do

this;

this < -0128;

var RDf := -0x29EFc;

while (not 0xA62)=0xdFCb do

RDf := RDf * -009349 * RDf *

074484 * 0xa * this;

63 RDf or 1425084 or -0xe258 or

this or RDf;

907266 or 34;

var Giuz := RDf or RDf;

return this=this;

not Giuz;

Giuz := Giuz;

return not RDf;

this or -0x9f8E3e;

RDf := -401;

73 var WRWf := -0x3503a;

end;

var tpD2 := this=-0x7B54E;

return 0x07E1d;

return 886;

end;

var Clzqb := 4=this;

var s80gDY := -66789 < -0x8;

not this;

return s80gDY =0 xFEca1;

83 return 0xDD3 * Clzqb;

var g3rU0 := not this;

while s80gDY - g3rU0 do

return this * g3rU0;

Clzqb * -0x45;

while s80gDY * 52 do

return this * Clzqb * -875;

not -0xa58;

var VeE := 0501902 or 0xe6 or

this or this or this or

93 Clzqb or -0xDa or Clzqb;

g3rU0 < this;

s80gDY := -0x3B0fe < s80gDY;

VeE := not 31232;

-060 < 0x27c;

VeE;

return -0x6e - this - this;

return this - VeE - 0xf;

var x := -63 * s80gDY * this;

return -6699 or -0x4;

103 this - this;

var K4Hl3o := -4069344 *

(-0x93=0 x4fE5);

s80gDY := this < this;

if g3rU0=this then

this=-0x599ba;

var t := this - -213186 -

this - this - -3521 -

this - this;

this * K4Hl3o;

113 -0x0 or x or this;

t := s80gDY;

VeE := not s80gDY;

else

var W8OUVJ := g3rU0;

W8OUVJ := s80gDY < this;

var wsDg := 0xE49 < this;

-751 * -88826 * VeE;

0 - -893;

var W1z3J2 := this or 0x1d

123 or 0013913;

var xR := g3rU0;

return this - 41668 -

-0xF82C11 - -0x4;

end;

end;

not this;

while this - -0x7b do

0xCa2 or 0x7ee or -118586 or 946;

g3rU0 - 0x4 - this;

133 s80gDY := (263= -0 x0fBa1)=-0xAa;

return Clzqb or -08222 or 4;

Clzqb := -860 - 0x2a1D7

- (Clzqb < this) - 2 - g3rU0

- (not g3rU0);

end;

return 7091935 or g3rU0 or -6;

var HiL := Clzqb - 0637;

HiL := 0x3F or -0x8;

this - this - s80gDY;

143 var t := this < s80gDY;

return -0xcbe3;

return this or 91240 or this or 7

or this or -3 or -81708;

while 0x7B054 or (this < 0xB) do

t := -070 < -0xE8;

var arj := HiL - -0x0cE88;

var Pmv := t or this;
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end;

var RPF1E := this=g3rU0;

153 end;

var R2nPD6 := Clzqb < Clzqb;

var R_M1g_ := not R2nPD6;

end;

method hWA0mp ()

var U := 454=9889980;

U := this or this or 948506;

U := this * U * this * 0xB31;

U := -0xBb or this or 0024;

return 0x120E1c < 5;

163 U := this;

var RBOge := -2207468=this;

var J_JFL := this < this;

return this or -7652;

J_JFL := J_JFL < -0xBE332;

-0xC * this * this * -0x3D;

return 7465 - 217383;

var dWMVmP := -7421 - 4846 - J_JFL

- U - RBOge;

while -677001= dWMVmP do

173 997 < -0xaeEC;

return -0x6 * -0xf3D081;

this=this;

J_JFL := U - -0x1Cd7 - this -

this - RBOge - this

- this;

-0x15 * 0xcF16fA * -372;

return (this * this * this)=2;

U := J_JFL * this;

not 312;

183 var H := dWMVmP or this;

J_JFL := this - -73 - RBOge - this;

end;

U := 747;

var I := 0xD < 0x668a9;

(this * this) or -43 or I or -8219;

I := -0xB=0 xdf294d;

var s := -0xA * this * this * 87;

dWMVmP := this or this or J_JFL;

var q := I * -984996;

193 return dWMVmP - 0x5c;

U := this < -0x55;

var vdC7p := RBOge;

0x9 or (this=s) or this or -46021;

if 0x9a or -0x4fCbA1 or this then

var A6 := this;

var B4 := s < -0xC;

return not q;

not this;

dWMVmP := (this < this) * -1722

203 * I * 0xa * this *

-0xC * ( -6208591 < -5295456);

return 0xd2 =6683541;

else

return this - J_JFL;

0x6 =34306;

0xe < this;

return this * vdC7p * this

* -0xAcC * J_JFL;

var lGYyn := this;

213 var J := -9369 * this * -1293889;

q < -1014178;

end;

-6884392 - this;

if -6 < -0x4c then

var jkP := -0xEb - 0xB;

if -0xa36fc or U then

this;

end;

return s * 106 * J_JFL;

223 return this or 0xF;

vdC7p := I;

jkP := 872618 - 0x8 - this - (043);

else

var fy53G := not -0x846c1b;

var Su := 0x49 - 9801 - this;

return this - J_JFL;

var HSY1 := not this;

end;

this or -4686;

233 RBOge := this < 2346;

vdC7p := not this;

end;

method ut( dSx0lA HJE)

HJE := not HJE;

var WrsQ := this;

return (6555= -476626);

dSx0lA := WrsQ - -0x1C;

var P3 := WrsQ or dSx0lA;

HJE := -0x0=91;

243 end;

method So( UZr MGskiq)

var wJpkG9 := 0xB0bf99 - this;

wJpkG9 := wJpkG9 =0xa4;

wJpkG9 := 0x38F74C=UZr;

if -0xf25E - MGskiq then

MGskiq := this or UZr;

return this or MGskiq or this;

MGskiq := (8533 or 0xc1 or UZr)

< 0x4;

253 this < UZr;

return 0x6FCe * (0 xa65579 *

-0xa834F);

var vTZERS := -0x1eBB3 < this;

UZr := not -91909;

var lWr := not 0xab5f;

0xeac3E < this;

MGskiq := this or -42680;

end;

if wJpkG9 then

263 0x51333;

-0x29 =327;

if not this then

-21895 or 0xfEfc;

this;

MGskiq or this or wJpkG9 or

-9746 or -477;

return not MGskiq;

return -748376 or this;

return (this or this) or wJpkG9

273 or -835770 or (-2263

- wJpkG9) or 041122 or 98;

this;

if MGskiq or 9 then

var t := -18812 * 030;

end;

wJpkG9 := this < (this * MGskiq);

not wJpkG9;

UZr := 0xfcBf1D;

return this - this - -0xEe9

283 - 0xBd;

return wJpkG9 < 0x145;

0x0F < this;

-0888 - 50;

var EsWitV := not MGskiq;

return 49269 < this;

else

MGskiq := -846348 * this;

end;

wJpkG9 := this;

293 else

var omlL := 8 * UZr * 77;

return 78602 - omlL - 56513 - this;

var n := not UZr;

return MGskiq or ((086 * 44) or

this);

omlL - this;

end;

wJpkG9 := MGskiq or 0xFD93DC;

UZr := not 0xaCA;

303 var aL := -0xCFeb0 or this;

aL := UZr - aL;

end;

method Sl2P( RUfG5 wdg9T2 vU)
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var gw1 := this * 0xAe7;

9263601=(6 * vU);

return this=wdg9T2;

not -0xF;

end;

method FUoP()

313 var Iv := 4436428;

return Iv < -65;

this < this;

end;

method j()

return -9625 - 156;

end;

method _NUy()

return this=this;

3925265 or 7847448;

323 -0x2B * -0x9d;

not (this =438603);

var e := this - -0xbFfAf9;

return e < 0x2f;

not e;

var Y := this= -498748;

this * this;

var wX1k := 0xcc=this;

Y := 914653 or -847484;

80755 - this - e;

333 return not -7160197;

return -019958 < wX1k;

this - 0x7Cf - 0xA7cb3e;

var UoQ := Y=20;

var aoNRo := 0x1BC4b < wX1k;

return 653118;

UoQ := e * 0;

Y := 83 < 0x8AaB8;

return 71 or this or aoNRo or

0x4B354;

343 return not -432971;

end;

method D()

end;

method vRP( GPSEFb CVgd SKy1t)

var uxXc9 := (CVgd or -0x0E5E22 or

SKy1t or CVgd or this

or SKy1t or this) < this;

return not -4;

end;
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