
Seperate device-specific code from device-class code

Kontakt: e0326024@student.tuwien.ac.at

Drivers contain 3 to 7 times more bugs per LOC than any other kernel component [1]

The Linux driver tree is huge, featuring over 7.4 Million SLOC!

Drivers execute in privileged mode => every device driver has the potential to crash the
entire system.

The Device Driver Reliablity Problem

Why are Device Drivers buggy?

Thesis Objectives

1. Improve the Reliability of Linux Device Drivers, without changing the
 way drivers are written (we do not want to port 7.4 MSLOC).

2. Identify Key Problems in Driver Development

3. Provide compiler and language support for essential programming aspects

1. Behavior of devices poorly described by informal, incomplete and inconsistent
 specifications

Making Drivers Robust with Language Extensions

A typical NIC driver has over 20 entry points!

Parallel code paths induce many side-effects
and interdependencies

Race conditions and deadlocks constitute 19% of all driver faults [3]

2. My Focus: Drivers implemented with Highly Complex Programming Model

Driver code is highly concurrent

Hotplug and Powermgmt-Events, Interrupts, I/O Requests,...

One seperate execution trace for each event!

Multiple requests occur at the same time

Experimental Results

We can identify two Root Causes

References
[1] A. Chou et al., An Empirical Study of Operating System Errors, Proc. 18th ACM Symposium on Operating Systems Principles, 2001
[2] Y. Padioleau et al., Understanding Collateral Evolution in Linux Device Drivers, In Proc. of EuroSys 2006
[3] L. Ryzhyk et al., Dingo: Taming device drivers, Proc. of EuroSys 2009
[4] Zhenim Li et al., CP-Miner: A Tool for Finding Copy-paste and Related Bugs in Operating System Code
 IEEE Transactions on Software Engineering, 2004

1. Concurrency model is too complex

2. Hardware I/O is error prone

Blocking operations in interrupts lead to deadlocks!

Introducing CiD (C for Drivers)

A subset of C with built-in support for concurrency, hardware I/O and code reuse

1. Support for Concurrency

2. Support for Hardware I/O

Introducing descriptor types ("portable bitfields") and register files (see thesis)

3. Code Templates

Consistency checks on descriptor and register-file layouts
 Are all bits accounted for? Are there overlapping regions?
Bit arithmetic for accessing individual fields

CiD Compiler performs:

The CiD Compiler assists the programmer with detection of data-flow Races

3. No separation between OS-specific and device-specific logic

Automatic byte order conversion on field access

Built-in support for atomic expressions

Built-in support for locking - No Hassle with lock types and instances

bit→
↓byte

7 6 5 4 3 2 1 0

0 Operation code = 2Ah

1 LUN DPO FUA EBP Rsrvd RelAdr

2–5 LBA

6 Reserved

7–8 Transfer length

9 Control

descriptor SCSI_Write10 {

 0 : unsigned int(8) op_code= 0x2A;

 1 : unsigned int(3) LUN: 7..5;

 bit DPO: 4;

 bit FUA: 3;

 bit EBP: 2;

 _ : 1; /* Reserved */

 bit RelAdr: 0;

 5..2: unsigned int(32) LBA;

 6 : _; /* Reserved */

 8..7: unsigned int(16) TransferLength;

 9: unsigned int(8) Control;

}

1. Setup PCI Device
2. Claim PCI Address Space
3. Initialize DMA

request int PCINET.probe(…)

{

 return setup_device();

}
$:code$

4. Register Network Device

request interrupt irq_handler(...) {

 synchronized {

 foo(shared_data);

 }

}

spinlock_t lock;

irqreturn_t irq_handler (...) {

 spin_lock(&lock);

 foo(shared_data);

 spin_unlock(&lock);

}

int open_count<atomic>;

open_count = open_count + 1;

atomic_t open_count;

atomic_inc(&open_count);

io location: (224/0xe0,225/0xe1)(1 conflict)rx_frags(3 conflicts)

vlgrp(2 conflicts)

ethtool_get_rx_csumcp_start_nic

cp_init_hwopen_nicresumetx_timeout_handler

cp_stop_nicvlan_rx_register ethtool_set_rx_csum

rx_poll

cp_rx_skb

ethtool_get_stats

entry point

unsynchronized access or function call

safe access

driver function

I/O code consists of low-level bit arithmetic

C compiler does not check consistency on hardware I/O operations

Read Suspend Interrupt

Resume

Write

Driver Module

Minor programming slips/typos break I/O code

API evolutions break drivers [2]

Drivers contain up to 20% copy&pasted code [4]

2 Linux Drivers have been ported to CiD ...

All locks are correctly inferred and balanced

Race condition detection very accurate for NIC driver ...

Code size of NIC driver reduced by 14% ...
but no reduction for mass storage driver achieved

but compiler has a hard time with obscure mass storage code

Currently, register-oriented devices (8139C+) are best supported by CiD,
but message-oriented drivers (mass storage) need support for
asynchronous functions and coordination patterns.

8139C+ NIC Driver USB Mass Storage
Driver

Concurrency and Synchronization

Conflicting Access Patterns
Inferred

600 512

Race Condition Reports
(of synchronized driver code)

40 110

Inferred atomic ops N/A - none in driver 8

Critical sections / Locks inferred 18 / 1 14 / 3

Hardware I/O

Superfluous Byte Order Conv. 0 3

Code Statistics

Code Reduction 14% 0%

Master- /Diplomstudium:
Software Engineering and Internet Computing

Diplomarbeitspräsentation

Language Support for
Linux Device Driver Programming

Günter Anton Khyo

Technische Universität Wien
Institut für Computersprachen

Arbeitsbereich: Programmiersprachen und Übersetzer
BetreuerIn: Ao.Univ.-Prof. Dr. M. Anton Ertl

