Generation of a QEMU-Based penVADL Instruction Set Simulator from a Processor Description in OpenVADL

Johannes Zottele, Matthias Raschhofer, Benedikt Huber, and Andreas Krall

Technische Universität Wien, Vienna, Austria

OpenVADL

OpenVADL is an open-source implementation of the Vienna Architecture Description Language (VADL).

From a VADL specification, it can generate various tools and artifacts, including an assembler, linker, compiler, and **instruction set simulator (ISS)**. Artifact generation based on architecture synthesis is still in an early

VIAM Transformation and Optimization

The VIAM is OpenVADL's intermediate representation, modeling instruction behavior as a multigraph that integrates a **control flow and dependency graph**. To convert a VADL instruction into TCG operations, this graph is transformed and optimized into a TCG-specific control flow graph suitable for direct C code generation.

Key transformations include:

- Normalization to the QEMU target size
- Side-effect scheduling
- TCG expression scheduling

QEMU Generation

The ISS generator builds on QEMU, an open-source machine emulator that uses **Dynamic Binary Translation** (DBT) to emulate guest architectures.

OpenVADL generates the guest frontend, which translates guest instructions into **TCG operations** –QEMU's architecture-independent intermediate representation (IR). These are then compiled by the host backend into native host instructions.

Runtime Performance Evaluation

The Embench benchmark suite was used to evaluate the runtime performance of the generated QEMU against the upstream version (baseline 1). Results show a runtime reduction of up to 44% (RISC-V crc32).

q_ld_i64 x11,loc3

movq (%rdi),%rll

Further optimizations are expected to yield similar performance gains for AArch64.

RISC-V 64 (IM) Embench - QEMU Relative (lower is better)

