
Generation of a QEMU based instruction set
simulator from a processor description in

OpenVADL

Johannes Zottele[0009−0001−5328−9181], Matthias
Raschhofer[0009−0006−0445−3738], Benedikt Huber[0009−0005−7059−3555], and

Andreas Krall[0009−0002−7668−6259]

Technische Universität Wien, Vienna, Austria

Abstract. QEMU (Quick EMUlator) is a generic and open source ma-
chine emulator and virtualizer which employs Dynamic Binary Trans-
lation (DBT) to emulate a guest architecture on a host architecture.
OpenVADL is an open source implementation of the Vienna Architec-
ture Description Language (VADL), a processor description language
developed for rapid design space exploration in the area of processor de-
sign. OpenVADL automatically generates various essential artifacts. One
such artifact is the Instruction Set Simulator (ISS), which enables the
execution of programs compiled for the described processor on different
host systems. To achieve high-performance simulation with broad plat-
form support, OpenVADL’s ISS generator produces a QEMU frontend,
seamlessly integrating into the QEMU system. This integration lever-
ages QEMU’s DBT, along with built-in features such as GDB debugging.
Optimized generation of QEMU’s TCG intermediate representation en-
sures competitive performance, even when compared to manually written
and optimized frontends. Benchmark results show that the OpenVADL-
generated QEMU based ISS achieves a speedup of up to 1.77 compared
to the official handwritten QEMU frontend for the RISC-V RV64IM in-
struction set architecture.

Keywords: Processor description language · QEMU generator

1 Introduction

This article describes how OpenVADL automatically generates a QEMU [3] fron-
tend from a concise Vienna Architecture Description Language (VADL) proces-
sor specification.

A primary goal of VADL is to make design space exploration in the area of
processor design convenient and efficient. For meaningful experimentation and
evaluation of a new processor design a functional Instruction Set Simulator (ISS)
is an absolute necessity. Manually constructing an ISS from a given specification
is tedious, error prone and it is difficult to guarantee consistency with the spec-
ification. To avoid these problems OpenVADL automatically generates the ISS
from a VADL processor specification.

Andreas Krall
© 2025 by Johannes Zottele et al. licensed under CC BY 4.0.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

This preprint has not undergone peer review or any post-submission improvements or corrections.
The Accepted Short Version of Record of this contribution is published in
International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XXV),
and is available online at https://doi.org/[insert DOI]

2

In particular, OpenVADL generates a frontend for the well established QEMU
emulator and virtualizer. QEMU is designed with retargetability and extensibil-
ity in mind. So the generated frontend integrates well with the remaining QEMU
system. This way OpenVADL also benefits from optimizations already imple-
mented in the QEMU backend. QEMU uses Dynamic Binary Translation (DBT)
in order to achieve efficient simulation.

OpenVADL translates a VADL specification into OpenVADL’s Intermediate
Representation (IR) which is common to all of its generators, the VADL Interme-
diate Architecture Model (VIAM). Subsequently the ISS generator translates the
VIAM into QEMU’s IR called TCG. This TCG representation of the specified
architecture with its instructions constitutes the QEMU frontend. OpenVADL
generates an efficient decode tree for instruction decoding which is integrated in
the generated ISS, but can also be used by other OpenVADL artifacts. To the
best of our knowledge, OpenVADL is the only system capable of generating a
QEMU frontend from a high level Processor Description Language (PDL).

The evaluation of the generated ISS with the Embench benchmark suite
shows competitive performance results, that outperform the handwritten QEMU
frontend for the RISC-V architecture in all evaluated cases.

2 The Vienna Architecture Description Language

Listing 1.1 shows a complete Instruction Set Architecture (ISA) specification
of all RISC-V instructions with immediate operands. In line 3 a constant for
the register size is defined. Lines 5 to 9 declare user defined types. VADL sup-
ports bit vector types. The basic type is Bits. There exist two subtypes repre-
senting signed (SInt) and unsigned (UInt) two’s complement integers. Line 12
demonstrates the definition of a register file. Annotations can be used to detail
a definition as the specification of a zero register demonstrates (see line 11).
An implicitly updated program counter is required in every ISA specification
(line 14). A format definition is used to specify bitfields with named and typed
member fields (line 16 to 23).

Usually, many instruction definitions are quite similar. VADL supports type
safe syntactic macro templates to avoid copying and modifying specifications. A
macro definition starts with the keyword model followed by the typed arguments
and the result type of the macro. There exist syntactic types like Id (identifier),
BinOp (binary operator), Bin (binary constant) or IsaDefs (ISA definitions). An
instantiation of a macro or the substitution of a macro argument are indicated
by the dollar sign.

An instruction defines the behavior of an instruction (line 27). The
encoding sets the fields in an instruction word which are constant for the given
instruction (line 29). The assembly specifies the assembly language syntax
for the instruction with a string expression (line 30). By packing these three
definitions into a macro, we can specify an instruction with immediate operands
in one single line. This macro is invoked six times for all RISC-V instructions
with immediate operands (lines 33 to 38).

3

1 i n s t r u c t i o n set a r ch i t e c t u r e RV32I = {
2
3 constant S i z e = 32 // a r c h i t e c t u r e s i z e i s 32 b i t s
4
5 us ing Byte = Bi t s< 8 > // 8 b i t Byte
6 us ing I n s t = Bi t s< 32 > // i n s t r u c t i o n word type
7 us ing Regs = Bi t s<S ize> // r e g i s t e r word type
8 us ing I ndex = Bi t s< 5 > // 5 b i t r e g i s t e r i nd e x type f o r 32 r e g i s t e r s
9 us ing Addr = Regs // add r e s s type i s equa l to the r e g i s t e r type

10
11 [z e r o : X(0)] // r e g i s t e r w i th i ndex 0 a lways i s z e r o
12 r e g i s t e r X : Index −> Regs // i n t e g e r r e g i s t e r f i l e w i th 32 r e g i s t e r s
13 memory MEM : Addr −> Byte // byte add r e s s ed memory
14 program counter PC : Addr // PC po i n t s to the s t a r t o f an i n s t r u c t i o n
15
16 format I t y p e : I n s t = // immediate i n s t r u c t i o n format
17 { imm : B i t s <12> // [3 1 . . 2 0] 12 b i t immediate v a l u e
18 , r s 1 : I ndex // [1 9 . . 1 5] s ou r c e r e g i s t e r i nd e x
19 , f un c t 3 : B i t s <3> // [1 4 . . 1 2] 3 b i t f u n c t i o n code
20 , rd : I ndex // [1 1 . . 7] d e s t i n a t i o n r e g i s t e r i nd e x
21 , opcode : B i t s <7> // [6 . . 0] 7 b i t o p e r a t i o n code
22 , immS = imm as SInt<Size> // s i g n extended immediate v a l u e
23 }
24
25 // macro f o r immediate i n s t r u c t i o n s w i th name , ope ra to r , t ype and f u n c t i o n code
26 model I t y p e I n s t r (name : Id , op : BinOp , t ype : Id , f un c t 3 : Bin) : I saDefs = {
27 i n s t r u c t i o n $name : I t y p e =
28 X(rd) := (X(r s 1) as $type $op immS as $type) as Regs
29 encoding $name = {opcode = 0b001 ’0011 , f unc t3 = $ func t3 }
30 assembly $name = (mnemonic , " " , r e g i s t e r (rd) , " , " , r e g i s t e r (r s 1) , " , " , decimal (imm))
31 }
32
33 $ I t y p e I n s t r (ADDI ; + ; S I n t ; 0b000) // add immediate
34 $ I t y p e I n s t r (ANDI ; & ; S I n t ; 0b111) // and immediate
35 $ I t y p e I n s t r (ORI ; | ; S I n t ; 0b110) // or immediate
36 $ I t y p e I n s t r (XORI ; ^ ; S I n t ; 0b100) // e x c l u s i v e or immediate
37 $ I t y p e I n s t r (SLTI ; < ; S I n t ; 0b010) // s e t l e s s than immediate
38 $ I t y p e I n s t r (SLTIU ; < ; UInt ; 0b011) // s e t l e s s than immediate uns i gned
39 }

Listing 1.1. ISA specification of RISC-V instructions with immediate operands.

This example only touches the surface of the rich and complex language. A
detailed description of VADL and its original implementation is contained in [5].
An overview of the open source implementation OpenVADL is presented in [6].

3 OpenVADL Overview

Figure 1 gives an overview of the OpenVADL architecture. The frontend trans-
lates a VADL processor specification into the VIAM. The architecture synthe-
sis maps all parts of an instruction’s behavior to the correct Microarchitecture
(MiA) elements.

Architecture synthesis, assembler and linker generation, compiler generation,
hardware generation and the generation of a cycle approximate instruction set
simulator are described in detail in [5]. The current article focuses on the details
regarding the generation of the QEMU based ISS.

4

VADL
Specification Frontend VIAM

Architecture
Synthesis

Cycle-
Aproximate
Simulator

CompilerAssembler
& Linker

QEMU
Simulator

Hardware

Fig. 1. Overview of the OpenVADL architecture. Generated artifacts are in yellow.

3.1 VADL Intermediate Architecture Model (VIAM)

The VIAM is OpenVADL’s IR, divided into two parts. The first is an easily
accessible hierarchical data structure containing all declarative definitions of a
VADL specification, such as format, instruction, and encoding. The second is
a multigraph combining a Control Flow Graph (CFG) and a dependency graph,
representing the behavioral aspects of VADL, such as instruction semantics.

start

instr end

write<X>

smull: Bits<128>

slice(127..64): Bits<64>

read<X>: Bits<64> read<X>: Bits<64>

field<rd>: Bits<5>

field<rs1>: Bits<5> field<rs2>: Bits<5>

Fig. 2. VIAM behavior graph of the RISC-V MULH instruction with a minimal CFG.
Red arrows represent control flow edges, while black arrows indicate dependencies.

The CFG in a VIAM behavior graph consists of at least a start and an end
node (see Figure 2), and may include if-else nodes to represent diverging control
flow. Each branch is enclosed by a branch start and a branch end node.

In VADL’s instruction behavior, all reads semantically occur before all writes.
This means a value written to a resource (register or memory) during an instruc-
tion cannot be read within the same instruction. Consequently, the order of side
effects (i.e., writes) does not need to be captured in the behavior graph and is

5

not part of the CFG. Instead, side effects are modeled as dependencies of branch
end nodes. For instance, in Figure 2, the write to register X is a dependency of
the instr end node. All expressions—including register and memory reads—are
part of the dependency graph and appear only once in the graph.

4 QEMU Background

QEMU uses DBT to accelerate guest program execution. This involves splitting
guest code into Translation Blocks (TBs), which are instruction sequences that
execute as a unit and contain no external jumps, interrupts or state changes. As
shown in Figure 3, each instruction in a TB is translated by the guest frontend
into QEMU’s IR of Tiny Code Generator (TCG) operations. These operations
are then compiled into native host instructions by the host backend. The result-
ing native code is executed directly until the TB ends.

The separation between frontend and backend makes QEMU highly extensi-
ble: supporting a new guest architecture only requires implementing the corre-
sponding frontend.

RISC-V
ld x11, 8(x10)

TCG IR
add_i64 loc3,x10,8
q_ld_i64 x11,loc3

x86_64
leaq 8(%r10),%rdi
movq (%rdi),%r11

Fig. 3. The TCG translation process involves the guest frontend (e.g., RISC-V) con-
verting instructions into TCG IR, which is then translated by the host backend (e.g.,
x86_64) into native host instructions for execution.

TCG operations form a quadruple code IR that operates on strongly-typed
TCG variables representing input and output operands. These variables are cat-
egorized as constant, temporary, or global: constant variables hold read-only
immediate values, temporary variables exist only within a TB and are discarded
afterward, and global variables persist across the simulation, representing CPU
state like registers.

The main QEMU emulation flow is driven by the main execution loop. Given
the current Program Counter (PC) and CPU TB state, it performs a TB lookup
in the TB cache to check if a translated TB for this combination already exists.
A TB can only be reused if it was translated with the same CPU TB state, which
is computed at the start of translation and must remain unchanged throughout
the TB. This state typically includes properties like the privilege mode active
during translation.

If the TB is found in the cache, it can be entered directly; otherwise, it must
first be translated. When a TB finishes execution, control returns to the main
loop, which performs another TB lookup.

Since entering, exiting, and looking up TBs is costly, QEMU uses direct block
chaining to improve performance. This allows the current TB to jump directly

6

to the next TB without returning to the main loop. Internally, a target TB is
assigned to a jump slot; if the instruction later jumps to the same slot, control
is transferred directly. This optimization is only possible when the target PC
is predictable and consistent across executions—e.g., for direct jumps based on
the current PC and a fixed offset. If the new PC depends on values that are not
TB-constant, chaining cannot be applied.

5 QEMU Generator

The OpenVADL ISS generator produces a QEMU frontend from a VADL spec-
ification, which is directly integrated into the QEMU system. This integration
enables the use of guest-agnostic features already present in QEMU, simplifying
the extension of the generated ISS’s feature set. Figure 4 provides an overview
of the QEMU ISS generation process.

VIAM
TCG

Transfor-
mation

Lowered
VIAM

Decoder
Generation VDT

C-Code
Generation

QEMU
Frontend

QEMU System

Guest
Program

executes on

Fig. 4. Overview of the QEMU frontend generation.

5.1 QEMU Guest Generation

The entry point for QEMU frontend generation is the VADL processor defi-
nition, which specifies the simulated ISA, as shown in Listing 1.2. The start
address property defines the reset vector where ISS execution begins.

1 [h t i f]
2 processo r Sp ike implements RV64IM {
3 s t a r t = 0x80000000
4 }

Listing 1.2. Processor definition with HTIF support.

7

A QEMU frontend defines the CPU state, machine definition, and instruction
translation.

The CPU state primarily consists of registers defined in the ISA and can be
directly extracted from the VIAM during C code generation. It may also include
explicitly declared properties, such as privilege mode, which form the CPU TB
state needed for TCG operation translation.

The machine model specifies the emulated hardware platform, including
memory regions, peripherals, and initialization routines. Currently, the frontend
generates RAM starting at the start address and omits peripheral devices.
By declaring the processor definition with the [htif] annotation, the machine
supports the Berkeley Host-Target Interface (HTIF), a simple protocol from
the RISC-V Spike simulator for host-simulation communication. HTIF maps
memory addresses to callbacks that interpret commands, enabling features like
controlled exits from full-system emulation—useful for self-verifying tests on the
ISS.

The core of ISS generation lies in creating instruction translation functions.
Each ISA instruction requires a corresponding function that translates it into a
sequence of TCG operations. By transforming and optimizing the instruction’s
VIAM graph, it is lowered into a form suitable for generating TCG translation
code in C. The key steps of this process are outlined in the following sections.

To distinguish between different execution phases, the following terms are
used:

– Generation time: the phase in which the QEMU frontend is generated by
the OpenVADL compiler

– Translation time: the phase during QEMU execution where the frontend
generates TCG operations

– Runtime/Execution time: the phase in which the translated native in-
structions are executed

Operation Decomposition In VADL, types are unconstrained in size, while
QEMU operations and variables are restricted to 32 or 64 bits. When an ISA
specification defines types exceeding 64 bits, they cannot be directly translated
into TCG IR. Instead, these operations must be decomposed into smaller sub-
operations operating on 64 bits or less. This decomposition is required even
on 64-bit architectures like RISC-V, as shown in Figure 2, which depicts the
VIAM graph for the MULH instruction. The instruction performs a signed 64-bit
multiplication yielding a 128-bit result. To handle this, the multiplication and
the slice extracting the upper 64 bits are replaced with a custom IssMulh node,
eliminating the oversized type.

Normalization At this stage, all operations are restricted to the QEMU target
size (32 or 64 bits) or smaller. To ensure correctness when executing VADL
operations on narrower types, these operations must be normalized to the target
size. This involves normalizing operands and results by inserting IssExtract

8

nodes that extend or truncate values—using either sign- or zero-extension of the
lower bits to match the target size.

For example, to execute VADL::asr(Bits<50>, UInt<5>) (arithmetic shift
right) using a 64-bit TCG operation, the first operand must be sign-extended
from 50 to 64 bits, while the second operand must be truncated to 5 bits.

While this normalization guarantees correctness, it may introduce over-
head in cases where operand widths do not affect the result. For instance,
VADL::add(Bits<50>, Bits<50>) requires only the result to be truncated
to 50 bits; the operand widths are irrelevant. A subsequent optimization pass
removes such redundant IssExtract nodes and merges chained extracts into a
single one to reduce overhead.

Side Effect Scheduling Side effects in the VIAM behavior graph are modeled
as dependencies of the branch’s end node. This means their execution order is
unspecified, but all must be executed for a given execution path. Although PC
modifications are regular side effects in the VIAM, they are emitted as jump
instruction sequences in TCG IR. Thus, other side effects must be scheduled
before PC changes to ensure execution during simulation.

PC modifications are added as dependencies to a new InstrExit node, which
is scheduled just before the branch’s end node in the control flow. All other side
effects are inserted directly after the corresponding branch start node of the
branch end node they depend on.

Safe Resource Read In VADL instruction behavior, all reads semantically
occur before all writes. To enforce this, all potentially conflicting reads must
be scheduled before the corresponding writes. As register indices and memory
addresses are not known at generation time, reads to these resources must be
conservatively assumed to conflict with all writes to the same resource.

TCG Expression Scheduling It is necessary to distinguish between expres-
sions evaluated at TCG translation time and those at instruction execution time.
Runtime expressions—such as those involving CPU state or memory (e.g., reg-
ister reads)—must be lowered to TCG operations and scheduled. In contrast,
expressions relying only on immediate values (e.g., format fields) or constant
TB state (e.g., the current instruction’s PC) are resolved at translation time.
Their dependency trees are directly translatable to C expressions and require
no scheduling. After this step, all TCG-relevant dependency nodes are correctly
scheduled.

TCG Branch Lowering In the VIAM behavior graph, diverging control flow
is represented with if-else control nodes. In TCG, it is modeled using jump-like
operations targeting labels in the emitted operation sequence. If the condition
was previously scheduled and marked as TCG operations, the if-else control flow
is translated into a linear sequence of jumps and labels.

9

If the condition wasn’t scheduled, the if-else remains and models a C-level if-
else. Only the branch selected at translation time is emitted as TCG operations,
minimizing execution time of the instruction.

TCG Operation Lowering All scheduled dependency nodes in the instruc-
tion behavior are lowered to control nodes representing TCG operations. Each
TCG operation node has one predecessor and one successor. TCG variables used
as inputs or outputs are modeled as dependency nodes of these operations, as
illustrated in Figure 5.

start tcg_add tcg_mov instr end

var<regfile,X>

field<rs1>

var<const>

field<immS>

var<tmp> var<regfile,X>

field<rd>

dest dest

Fig. 5. Lowered VIAM behavior graph of the RISC-V ADDI instruction.

The resulting CFG is in Static Single Assignment (SSA) form. This means
that every intermediate result is stored in separate variables and no variable is
reassigned.

Lowering of InstrExit nodes is optimized for efficient jumps between TBs.
If the PC update depends on values unknown at translation time, a TCG TB
lookup is emitted. This exits the current TB and returns to the main execution
loop, where the CPU TB state is evaluated and a new TB is looked up—necessary
because the update PC may vary between executions of the instruction.

If the new PC is fully known at translation time (i.e., depends only on im-
mediates or the constant TB state), it is guaranteed to be the same across
executions. In this case, QEMU’s jump slot optimization is applied to directly
chain TB jumps, avoiding entering the main loop.

TCG Variable Allocation TCG variables used by previously lowered opera-
tions must be obtained before use. Temporaries and constants are allocated via
TCG functions. Registers are accessed through generated getters that enforce
register file constraints—e.g., zero registers (Figure 1.1, line 12). If a source
register matches a constraint, a constant TCG variable is returned instead of
accessing the actual register. For destination registers, a temporary variable is
returned to prevent direct writes to constrained registers.

C Code Generation Each instruction’s behavior graph is translated into a C
function named trans_<mnemonic>, invoked by the decoder during the TCG
translation loop. C code generation is straightforward, as the lowered VIAM

10

graph maps closely to the function body: if-else nodes become C if-else state-
ments, expression trees become C expressions, and TCG control nodes are trans-
lated to TCG operation function calls. Figure 1.3 shows the generated translation
function of the RISC-V 64 ADDI instruction. Since TCG and host-side optimiza-
tions handle temporary variable elimination, no extra pass to remove them is
needed.

1 s t a t i c bool t r ans_add i (D i s a sCon tex t ∗ ctx , arg_addi ∗a) {
2 TCGv_i64 r eg f i l e_x_rd_des t = dest_x (ctx , a−>rd) ;
3 TCGv_i64 r e g f i l e_x_r s 1 = get_x (ctx , a−>r s1) ;
4 TCGv_i64 const_immS_n3 = tcg_constant_i64 (a−>immS) ;
5 TCGv_i64 tmp_n4_0 = tcg_temp_new_i64 () ;
6 tcg_gen_add_i64 (tmp_n4_0 , r eg f i l e_x_r s1 , const_immS_n3) ;
7 tcg_gen_mov_i64 (reg f i l e_x_rd_des t , tmp_n4_0) ;
8 re tu rn t rue ;
9 }

Listing 1.3. Generated translation function of the RISC-V 64 ADDI instruction

When configuring QEMU, a new guest is available that corresponds to the
used specification. By building QEMU with this new guest, the user obtains a
working QEMU executable called qemu-system-<isa-name>. This binary can
be used to run bare-metal programs compiled for the ISA of the VADL specified
processor by executing qemu-system-<isa-name> -bios <prog>.

5.2 GDB Stub Generation

QEMU includes a GDB stub for debugging programs running on QEMU with
GDB. While most features are guest-agnostic (e.g., single-step execution), fron-
tends must provide register information—such as name, size, and type—and
implement read/write access functions for those registers.

The ISS generator produces register information using names from the
Application Binary Interface (ABI) definition if attached to the processor
definition; otherwise, it falls back to the register names in the ISA definition. It
also generates register access functions that read and modify the CPU state as
needed.

5.3 Decoder Generation

To be able to provide an efficient instruction decoder to all of its backend genera-
tors, not only the QEMU based ISS, OpenVADL offers a custom implementation
for decode tree generation. It constructs an abstraction of the decode procedure,
coined the VADL Decode Tree (VDT), as part of its intermediate representation.
The responsibility of the VDT is to model the decode decision procedure, and

11

to provide all necessary information to be able to directly translate it to C-code
(in the case of the ISS) to decode binary instruction words, extract the format
fields specified in VADL to a structured representation, and hand it to the TCG
translation operations.

In addition to the advantages provided by DBT, fast instruction set simu-
lation requires rapid decision procedures for decoding instructions. Commonly,
decoders are modeled as decision trees (sometimes also Directed Acyclic Graphs
(DAGs)), where the inner nodes of the tree represent a decision based on certain
bits in the input instruction word. The leafs of the decode tree hold the instruc-
tions to be matched. The cost of decoding a single instruction consists of the
length of the decision path, the cost of the decision operations along the path
and some constant overhead for field extraction. It is thus desirable to construct
a shallow tree (while keeping the overall node count manageable) and restrict
the decision functions to primitive operations.

Generating the VDT is based on constructing encoding patterns from the
instructions specified in VADL. Each instruction in VADL references a format,
which defines the fields in the instruction encoding. An additional encoding
definition specifies constant bits (usually the opcode), which are used to identify
the instruction during the decoding step. From this specification, OpenVADL
derives a bit pattern, indicating which bits in the encoding are fixed and which
are unknown ahead of time. The pattern and the task of pattern matching can
thus be efficiently implemented using bitmasks and primitive bitwise operations.

The current VDT generation algorithm 1 is largely based on the procedure
initially described by Henrik Theiling [11]. It starts with a set of bit patterns
and their associated instructions and keeps track of the bits that have yet to
be tested using the mask parameter. Initially this is a fully set bit mask, but
upon recursion the already tested bits are removed to propagate the state of the
decoding path.

First, the algorithm selects the bits to partition the entry set, by collect-
ing bits that are fixed in all entries. By selecting the maximum set of (possibly
disjoint) constant parts of the instruction word to split the input set, the algo-
rithm ensures that the function is decisive, while making sure that the matching
function can be performed efficiently.

After possibly terminating, or computing a fallback node in the presence of
subsumed instructions, the algorithm partitions the entry set by the selected
significant bits. Each of these partitions is then handled recursively and will be
transformed to its own decision sub-tree.

Finally, the partitioned child nodes and the optional fallback node are then
combined to a new inner decision node of the decode tree.

After constructing the VDT, it can be used to materialize the decoder for
several of OpenVADL’s backends. For the ISS this entails generating equivalent
C-code to model the decode procedure. The decision nodes are compiled to
nested switch statements, selecting the bits to test at each inner decision node
and switching over the possible partitions in the instruction set. Once a leaf
node has been reached, OpenVADL additionally calls a previously generated C-

12

Algorithm 1 Decode tree generation in OpenVADL
1: Input: mask ← all_significant()
2: Input: insns← Set of tuples (BitPattern, Instruction)
3: Output: VDTNode
4: function generate_vdt(mask, insns)
5: m← mask
6: for all (bitPattern,_) ∈ insns do
7: m← m ∧ significant(bitPattern)
8: end for
9: fallback ← None

10: if m = 0 then
11: if len(insns) = 1 then
12: return vdt_leaf(insns[0])
13: else
14: (fallback, subsumed, new_mask)← find_fallback(mask, insns)
15: insns← subsumed
16: m← new_mask
17: end if
18: end if
19: partitions← partition(m, insns)
20: children← {}
21: for all (bitPattern, p_insns) ∈ partitions do
22: new_mask ← mask ∧ ¬m
23: children[bitPattern]← generate_vdt(new_mask, p_insns)
24: end for
25: return vdt_decision(mask, children, fallback)
26: end function

function to extract the instruction’s format fields to a structured model and calls
the appropriate TCG translation procedure.

6 Evaluation

To evaluate the runtime performance of the generated QEMU frontend, a com-
parison was made between the QEMU generated from the RISC-V RV64IM
VADL specification and the upstream QEMU riscv64 frontend. The Embench
[2] benchmark suite was used, as it provides a diverse set of bare-metal bench-
marks. All benchmarks were executed on both an AArch64 Apple Silicon system
(Figure 7) and an x86-64 system (Figure 6).

All results are shown as speedup relative to the upstream riscv64 frontend
(baseline at 1). To assess the impact of specific optimizations, all benchmarks
were also executed using generated frontends with selected optimizations dis-
abled. The two most significant optimizations are included in the results.

Figures 6 and 7 show that the generated QEMU is at least as fast as
the upstream version. This is because, aside from additional TCG mov op-

13

ah
a-

m
on

t6
4

cr
c3

2

cu
bi

c

ed
n

hu
ffb

en
ch

m
at

m
ul

t-
in

t

m
d5

su
m

m
in

ve
r

nb
od

y

ne
tt

le
-a

es

ne
tt

le
-s

ha
25

6

ns
ic

hn
eu

pi
co

jp
eg

pr
im

ec
ou

nt

qr
du

in
o

sg
lib

-c
om

bi
ne

d

sl
re st

st
at

em
at

e

ta
rfi

nd ud

w
ik

is
or

t
m

ea
n

0

1

2

1

all opts skipped args skipped jump-slot

Fig. 6. Speedup of generated QEMU relative to upstream on x86-64 (higher is better)

ah
a-

m
on

t6
4

cr
c3

2

cu
bi

c

ed
n

hu
ffb

en
ch

m
at

m
ul

t-
in

t

m
d5

su
m

m
in

ve
r

nb
od

y

ne
tt

le
-a

es

ne
tt

le
-s

ha
25

6

ns
ic

hn
eu

pi
co

jp
eg

pr
im

ec
ou

nt

qr
du

in
o

sg
lib

-c
om

bi
ne

d

sl
re st

st
at

em
at

e

ta
rfi

nd ud

w
ik

is
or

t
m

ea
n

0

0.5

1

1.5

1

all opts skipped args skipped jump-slot

Fig. 7. Speedup of generated QEMU relative to upstream on AArch64 (higher is better)

erations—which are optimized away by the host backend—the generated
instruction translation functions emit the same number of TCG operations.

Additionally, the results show that the generated QEMU achieves a speedup
of up to 1.77 in some benchmarks on x86-64. This is due to the simplicity of
CPU TB state calculation in the generated frontend, compared to the upstream
riscv64 implementation, which handles many more RISC-V extensions than
RV64IM.

Performance analysis using the Linux perf tool [1] shows that benchmarks
like edn spend almost no time in the TB state calculation function, whereas
others like crc32 invoke it frequently. For example, on upstream QEMU, crc32

14

spends 47% of its execution time in cpu_get_tb_cpu_state. This is due to
tight loops executing JALR instructions, which update the program counter with
a register value. As described in Section 5.1, such dynamic updates—unknown
at translation time—cause a jump to the main loop and a TCG TB lookup,
requiring recomputation of the CPU TB state.

Regarding optimizations, the most impactful is the jump slot optimization
(TB chaining), labeled as skipped jump-slot. The optimization of built-in
arguments that do not require normalization (see Section 5.1) also shows notable
impact in some benchmarks, such as mdsum, and is labeled as skipped args.

base simplified no-extraction
0

0.5

1

1.5

1

OpenVADL QEMU Reduced

Fig. 8. Speedup of the decoder relative to upstream QEMU (higher is better)

To evaluate the performance of the OpenVADL generated decoder we com-
pare it to the version provided by the upstream QEMU frontend. The evaluation
was performed on an AArch64 Apple Silicon system using micro-benchmarks
over a uniformly distributed set of RISC-V RV64IM instructions. Since the up-
stream decoder always includes instructions for additional RSIC-V extensions,
the evaluation is additionally against a QEMU generated decoder with an in-
struction set reduced to the 64 bit IM extension.

The base version compares the unmodified decoders as generated by Open-
VADL and QEMU respectively. The significant speedup of the VDT can be
exclusively explained with the difference in implementations for field extraction
upon successful classification of the instruction. Removing costly verification
checks in the QEMU version and eliminating constant field extraction (e.g. op-
codes) in the VDT implementation results in the benchmark simplified. Here
the additional overhead for decoding a larger instruction set becomes evident,
while showcasing that the structurally equivalent decode trees of the VDT vs.
reduced QEMU perform equally well. Finally we compare a version without field
extraction (no-extraction), to exclusively evaluate the decision procedure.

7 Related Work

Computer architecture simulation is a well researched area. An overview about
the methodology as well as a discussion on trade-offs between performance and
accuracy is presented in [12] and [13].

15

Many PDLs are used as input for ISS generators. A comparison of the gen-
erated simulators is presented in [5]. QEMU itself is introduced in [3].

The ISS described in [4] uses the LLVM [7] just-in-time (JIT) compiler to
generate the code for the host architecture. As opposed to QEMU, the dynamic
translation is not restricted to basic blocks but extended to regions consisting of
consecutive basic blocks. The simulator is capable of cycle accurate execution.
Currently OpenVADL only supports the generation a purely functional ISS. The
main drawback of their system is the high compilation time imposed by the
LLVM JIT compiler.

CrossDBT is another emulator generator based on the LLVM JIT compiler
[8]. An interpreter is used to decode the guest machine code. In contrast to Open-
VADL, the processor description is not done in a PDL but in C++. Furthermore,
CrossDBT only supports user mode emulation.

Pydgin [9] uses the RPython translation toolchain to generate an ISS from
an architecture specification written as Python classes. The intent of RPython is
to automatically generate a JIT compiler for dynamic programming languages.
Pydgin leverages the RPython generated meta-tracing JIT compiler for its gen-
erated ISS, thus achieving similar performance to dedicated DBT frameworks.
In contrast to OpenVADL the architecture description is done in a an embedded
Python Domain Specific Language (DSL) allowing meta programming capabili-
ties. In OpenVADL meta programming is supported by VADL’s macro system.

OpenVADL’s decode tree generator is based on [11]. The article describes a
technique to generate decode decision trees for mostly regular ISA encodings.
While it does have limited support for overlapping instruction patterns in case
of subsumed encodings, it is not capable of handling fully irregular patterns. To
improve OpenVADL’s capabilities of generating efficient decode decision trees
for irregular encodings, we introduced some ideas from [10]. The handling of
irregular encodings is currently a work in progress.

8 Conclusion

We presented the details of the algorithms to generate the guest specific frontend
for a QEMU based instruction set simulator from a concise processor specifica-
tion in VADL. A detailed evaluation shows the effects of the different opti-
mizations on two different host architectures. The benchmark results show that
the OpenVADL-generated QEMU based ISS achieves a speedup of up to 1.77
compared to the official handwritten QEMU frontend for the RISC-V RV64IM
instruction set architecture. Finally, OpenVADL is open source and available at
openvadl.org.

References

1. perf(1) - Linux manual page, https://man7.org/linux/man-pages/man1/perf.1.
html, [Online; accessed 3-March-2025]

https://openvadl.org
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html

16

2. Embench: A modern embedded benchmark suite (2024), https://www.embench.
org/, [Online; accessed 15-January-2024]

3. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: USENIX Annual
Technical Conference, FREENIX Track. pp. 41–46. USENIX (2005), https://www.
usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf

4. Brandner, F., Fellnhofer, A., Krall, A., Riegler, D.: Fast and Accurate Simulation
using the LLVM Compiler Framework. In: Proceedings of the 1st Workshop on
Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO.
vol. 9, pp. 1–6 (2009), https://www.complang.tuwien.ac.at/andi/papers/rapido_
09.pdf

5. Freitag, F., Halder, L., Himmelbauer, S., Hochrainer, C., Huber, B., Kasper, B.,
Mischkulnig, N., Nestler, M., Paulweber, P., Per, K., Raschhofer, M., Ripar, A.,
Schwarzinger, T., Zottele, J., Krall, A.: The Vienna Architecture Description Lan-
guage (2025). https://doi.org/10.48550/arXiv.2402.09087

6. Freitag, F., Halder, L., Huber, B., Kasper, B., Nestler, M., Per, K., Raschhofer, M.,
Ripar, A., Zottele, J., Krall, A.: OpenVADL: An open source implementation of
the Vienna Architecture Description Language. In: Vialle, S., Suarez, E., Pionteck,
T. (eds.) ARCS 2025 – 38th GI/ITG International Conference on Architecture of
Computing Systems. Springer Nature Switzerland (2025)

7. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion. p. 75. CGO ’04, IEEE Computer Society, USA (2004). https://doi.org/10.
1109/CGO.2004.1281665

8. Li, W., Luo, X., Zhang, Y., Meng, Q., Ren, F.: CrossDBT: An LLVM-based user-
level dynamic binary translation emulator. In: Cano, J., Trinder, P. (eds.) Euro-
Par 2022: Parallel Processing. pp. 3–18. Springer International Publishing, Cham
(2022). https://doi.org/10.1007/978-3-031-12597-3_1

9. Lockhart, D., Ilbeyi, B., Batten, C.: Pydgin: Generating Fast Instruction Set Sim-
ulators from Simple Architecture Descriptions with Meta-Tracing JIT Compilers.
In: 2015 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). pp. 256–267. IEEE (2015). https://doi.org/10.1109/ISPASS.
2015.7095811

10. Okuda, K., Takeyama, H.: Decision tree generation for decoding irregular in-
structions. In: 2016 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). pp. 1592–1597. EDAA (2016), https://past.date-conference.com/
proceedings-archive/2016/pdf/0066.pdf

11. Theiling, H.: Generating decision trees for decoding binaries. In: Proceedings of the
2001 ACM SIGPLAN workshop on Optimization of middleware and distributed
systems. pp. 112–120. ACM (2001). https://doi.org/10.1145/384198.384213

12. Yi, J.J., Kodakara, S.V., Sendag, R., Lilja, D.J., Hawkins, D.M.: Characterizing
and comparing prevailing simulation techniques. In: 11th International Symposium
on High-Performance Computer Architecture. pp. 266–277 (2005). https://doi.org/
10.1109/HPCA.2005.8

13. Yi, J.J., Lilja, D.J.: Simulation of computer architectures: simulators, benchmarks,
methodologies, and recommendations. IEEE Transactions on Computers 55(3),
268–280 (2006). https://doi.org/10.1109/TC.2006.44

https://www.embench.org/
https://www.embench.org/
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.complang.tuwien.ac.at/andi/papers/rapido_09.pdf
https://www.complang.tuwien.ac.at/andi/papers/rapido_09.pdf
https://doi.org/10.48550/arXiv.2402.09087
https://doi.org/10.48550/arXiv.2402.09087
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-031-12597-3_1
https://doi.org/10.1007/978-3-031-12597-3_1
https://doi.org/10.1109/ISPASS.2015.7095811
https://doi.org/10.1109/ISPASS.2015.7095811
https://doi.org/10.1109/ISPASS.2015.7095811
https://doi.org/10.1109/ISPASS.2015.7095811
https://past.date-conference.com/proceedings-archive/2016/pdf/0066.pdf
https://past.date-conference.com/proceedings-archive/2016/pdf/0066.pdf
https://doi.org/10.1145/384198.384213
https://doi.org/10.1145/384198.384213
https://doi.org/10.1109/HPCA.2005.8
https://doi.org/10.1109/HPCA.2005.8
https://doi.org/10.1109/HPCA.2005.8
https://doi.org/10.1109/HPCA.2005.8
https://doi.org/10.1109/TC.2006.44
https://doi.org/10.1109/TC.2006.44

	Generation of a QEMU based instruction set simulator from a processor description in OpenVADL

