
The XSB System

Version 3.3.x

Volume 1: Programmer’s Manual

xsb

Terrance Swift David S. Warren

Konstantinos Sagonas

Juliana Freire

Prasad Rao

Baoqiu Cui

Ernie Johnson

Luis de Castro

Rui F. Marques

Diptikalyan Saha

Steve Dawson

Michael Kifer

July 4, 2013

Credits

Day-to-day care and feeding of XSB including bug fixes, ports, and configuration
management is currently done by David Warren and Terrance Swift with the
help of Michael Kifer. In the past Kostis Sagonas, Prasad Rao, Steve Dawson,
Juliana Freire, Ernie Johnson, Baoqiu Cui, Bart Demoen and Luis F. Castro
have provided tremendous help.

In Version 3.3, the core engine development of the SLG-WAM has been mainly
implemented by Terrance Swift, Kostis Sagonas, Prasad Rao, Juliana Freire,
Ernie Johnson, Luis Castro and Rui Marques. The breakdown, very roughly,
was that Terrance Swift wrote the initial tabling engine, the SLG-WAM, and its
built-ins; and leads the current development of the tabling subsystem. Prasad
Rao reimplemented the engine’s tabling subsystem to use tries for variant-based
table access and Ernie Johnson extended and refactored these routines in a num-
ber of ways, including adding call subsumption. Kostis Sagonas implemented
most of tabled negation. Juliana Freire revised the table scheduling mechanism
starting from Version 1.5.0 to create the batched and local scheduling that is cur-
rently used. Baoqiu Cui revised the data structures used to maintain delay lists,
and added attributed variables to the engine. Luis Castro rewrote the emulator
to use jump tables and wrote a heap-garbage collector for the SLG-WAM. Rui
Marques was responsible for the concurrency control algorithms used for shared
tables, and mainly responsible for making the XSB engine multi-threaded. The
incremental table maintenance subsystem was designed and implemented by
Diptikalyan Saha.

Other engine work includes the following. Memory expansion code for WAM
stacks was written by Ernie Johnson, Bart Demoen and David S. Warren. Heap
garbage collection was written by Luis de Castro, Kostis Sagonas and Bart
Demoen. Atom space garbage collection was written by David Warren; table
garbage collection was written by Terrance Swift based in part on space recla-
mation code written by Prasad Rao. Rui Marques rewrote much of the engine to
make it compliant with 64-bit architectures. Assert and retract code was based
on code written by Jiyang Xu; it significantly revised by David S. Warren, who
added alternative, multiple, and star indexing and by Terrance Swift who im-
plemented dynamic clause garbage collection. Trie assert/retract code, and trie
interning code was written by Prasad Rao, as was most code for reclaiming table
space. The current version of findall/3 was re-written from scratch by Bart
Demoen, as was XSB’s throw and catch mechanism. 64-bit floats were added
by Charles Rojo. Walter Wilson has written several of XSB’s builtin predicates.

In terms of core system Prolog code, Kostis Sagonas was responsible for HiLog
compilation and associated built-ins as well as coding or revising many standard
predicates. Steve Dawson implemented Unification Factoring. The revision of

2

XSB’s I/O into ISO-compatible streams was done by Michael Kifer and Terrance
Swift. The auto_table and suppl_table directives were written by Kostis
Sagonas. The DCG expansion module was written by Kostis Sagonas for non-
tabled code and by Baoqiu Cui, Terrance Swift and David Warren for tabled
code. The handling of the multifile directive was written by Baoqiu Cui. C.R.
Ramakrishnan wrote the mode analyzer for XSB. Michael Kifer implemented the
storage module. The multi-threaded API was written by Terrance Swift and
Rui Marques.

Michael Kifer has been in charge of XSB’s installation procedures, rewriting
parts of the XSB code to make XSB configurable with GNU’s Autoconf, im-
plementing XSB’s package system, and integrated GPP with XSB’s compiler.
GPP, the source code preprocessor used by XSB, was written by Denis Auroux,
who also wrote the GPP manual reproduced in Appendix A.

The starting point of XSB (in 1990) was PSB-Prolog 2.0 by Jiyang Xu. PSB-
Prolog in its turn was based on SB-Prolog, primarily designed and written by
Saumya Debray, David S. Warren, and Jiyang Xu. Thanks are also due to
Weidong Chen for his work on Prolog clause indexing for SB-Prolog, to Richard
O’Keefe, who contributed the Prolog code for the Prolog reader and the C code
for the tokenizer, and to Ciao Prolog whose write_term/[2,3] we use.

... Now what did I forget this time ?

Contents

1 Introduction 1

1.1 Using This Manual . 6

2 Getting Started with XSB 7

2.1 Installing XSB under UNIX . 7

2.1.1 Possible Installation Problems . 11

2.2 Installing XSB under Windows . 12

2.2.1 Using Cygnus Software’s CygWin32 12

2.2.2 Using Microsoft Visual C++ . 12

2.3 Invoking XSB . 15

2.4 Compiling XSB programs . 16

2.5 Sample XSB Programs . 16

2.6 Exiting XSB . 17

3 System Description 18

3.1 Entering and Exiting XSB from the Command Line 18

3.2 The System and its Directories . 19

3.3 How XSB Finds Files: Source File Designators 20

3.4 The Module System of XSB . 21

3.5 Standard Predicates in XSB . 28

3.6 The Dynamic Loader and its Search Path 28

3.6.1 Changing the Default Search Path and the Packaging System 28

3.6.2 Dynamically loading predicates in the interpreter 31

i

CONTENTS ii

3.7 Command Line Arguments . 31

3.8 Memory Management . 36

3.9 Compiling, Consulting, and Loading . 37

3.9.1 Static Code . 37

3.9.2 Dynamic Code . 39

3.9.3 The multifile directive . 39

3.10 The Compiler . 40

3.10.1 Invoking the Compiler . 40

3.10.2 Compiler Options . 42

3.10.3 Specialization . 48

3.10.4 Compiler Directives . 50

3.10.5 Inline Predicates . 56

3.11 A Note on ISO Compatibility . 57

4 Syntax 59

4.1 Terms . 59

4.1.1 Integers . 59

4.1.2 Floating-point Numbers . 60

4.1.3 Atoms . 60

4.1.4 Variables . 61

4.1.5 Compound Terms . 61

4.1.6 Lists . 63

4.2 From HiLog to Prolog . 64

4.3 Operators . 66

5 Using Tabling in XSB: A Tutorial Introduction 70

5.1 Tabling in the Context of a Prolog System 70

5.2 Definite Programs . 71

5.2.1 Call Variance vs. Call Subsumption 75

5.2.2 Table Scheduling Strategies . 77

5.2.3 Interaction Between Prolog Constructs and Tabling 79

CONTENTS iii

5.2.4 Potential Pitfalls in Tabling . 82

5.3 Normal Programs . 84

5.3.1 Stratified Normal Programs . 84

5.3.2 Non-stratified Programs . 87

5.3.3 On Beyond Zebra: Implementing Other Semantics for Non-stratified Programs 91

5.4 Answer Subsumption . 93

5.4.1 Types of Answer Subsumption . 93

5.4.2 Examples of Answer Subsumption 95

5.4.3 Term-Sets . 98

5.5 Tabling for Termination . 101

5.5.1 Subgoal Abstraction . 102

5.5.2 Bounded Rationality through Radial Restraint 104

5.6 Incremental Table Maintenance . 106

5.6.1 Examples . 106

5.6.2 Incremental Tabling using Interned Tries 111

5.6.3 View Consistency . 112

5.6.4 Summary and Implementation Status 113

5.6.5 Predicates for Incremental Table Maintenance 113

5.7 Compatability of Tabling Modes and Predicate Attributes 119

6 Standard and General Predicates 122

6.1 Input and Output . 122

6.1.1 I/O Stream Implementation . 123

6.1.2 ISO Streams . 124

6.1.3 DEC-IO Style File Handling . 131

6.1.4 Character I/O . 133

6.1.5 Term I/O . 137

6.1.6 Special I/O . 145

6.2 Interactions with the Operating System . 151

6.2.1 The path_sysop/2 interface . 153

CONTENTS iv

6.3 Evaluating Arithmetic Expressions through is/2 155

6.3.1 Evaluable Functors for Arithmetic Expressions 156

6.4 Convenience . 159

6.5 Negation and Control . 160

6.6 Unification and Comparison of Terms . 163

6.6.1 Sorting of Terms . 169

6.7 Meta-Logical . 170

6.8 Cyclic Terms . 183

6.8.1 Unification with and without Occurs Check 183

6.8.2 Cyclic Terms . 184

6.9 Manipulation of Atomic Terms . 185

6.10 All Solutions and Aggregate Predicates . 197

6.11 Meta-Predicates . 202

6.12 Information about the System State . 207

6.13 Execution State . 223

6.14 Asserting, Retracting, and Other Database Modifications 230

6.14.1 Reading Dynamic Code from Files 240

6.14.2 The storage Module: Associative Arrays and Backtrackable Updates 243

6.15 Tabling Declarations and Builtins . 245

6.15.1 Declaring and Modifying Tabled Predicates 247

6.15.2 Predicates for Table Inspection . 250

6.15.3 Deleting Tables and Table Components 265

7 Multi-Threaded Programming in XSB 273

7.1 Getting Started with Multi-Threading . 273

7.2 Communication among Threads . 275

7.3 Thread Statuses: Joinable and Detached Threads 278

7.4 Prolog Message Queues . 279

7.5 Thread Cancellation and Signalling . 281

7.6 Performance and other Considerations . 282

CONTENTS v

7.7 Examples of Multi-Threaded Programs in XSB 283

7.8 Configuring the Multi-threaded Engine under Windows 285

7.9 Predicates for Multi-Threading . 285

7.9.1 Predicates for Thread Synchronization and Communication 293

8 Storing Facts in Tries 300

8.1 Examples of Using Tries . 302

8.2 Space Management for Tries . 303

8.3 Predicates for Tries . 304

8.4 Low-level Trie Manipulation Utilities . 310

8.4.1 A Low-Level API for Interned Tries 310

9 Hooks 313

9.1 Adding and Removing Hooks . 313

9.2 Hooks Supported by XSB . 314

10 Debugging and Profiling 315

10.1 Prolog-style Tracing and Debugging . 315

10.2 Low-Level Tracing . 319

10.3 Analyzing the Execution of Tabled Programs 320

10.3.1 Tracing a tabled evaluation through forest logging 321

10.3.2 Analyzing the log; seeing the forest through the trees 325

10.3.3 Discussion . 332

10.3.4 Predicates for Forest Logging . 332

11 Definite Clause Grammars 334

11.1 General Description . 334

11.2 Translation of Definite Clause Grammar rules 335

11.2.1 Definite Clause Grammars and Tabling 337

11.3 Definite Clause Grammar predicates . 339

11.4 Two differences with other Prologs . 342

CONTENTS vi

12 Exception Handling 344

12.1 The Mechanics of Exception Handling . 344

12.1.1 Exception Handling in Non-Tabled Evaluations 344

12.1.2 Exception Handling in Tabled Evaluation 347

12.2 Representation of ISO Errors . 350

12.3 Predicates to Throw and Handle Errors . 351

12.3.1 Predicates to Throw Errors . 351

12.3.2 Predicates to Handle Errors . 353

12.4 Convenience Predicates . 354

12.5 Backtraces . 355

13 Foreign Language Interface 357

13.1 Foreign Language Modules . 358

13.2 Lower-Level Foreign Language Interface . 359

13.2.1 Context Parameters . 362

13.2.2 Exchanging Basic Data Types . 363

13.2.3 Exchanging Complex Data Types . 364

13.3 Foreign Modules That Call XSB Predicates 374

13.4 Foreign Modules That Link Dynamically with Other Libraries 375

13.5 Higher-Level Foreign Language Interface . 376

13.5.1 Declaration of high level foreign predicates 376

13.6 Compiling Foreign Modules on Windows and under Cygwin 379

13.7 Functions for Use in Foreign Code . 380

14 Embedding XSB in a Process 383

14.1 Calling XSB from C . 384

14.2 Examples of Calling XSB . 385

14.2.1 The XSB API for the Sequential Engine Only 385

14.2.2 The General XSB API . 389

14.2.3 Managing Multiple XSB Threads through the API 391

14.2.4 Calling Multiple XSB Threads using Multiple C Threads 393

CONTENTS vii

14.3 A C API for XSB . 394

14.3.1 Initializing and Closing XSB . 394

14.3.2 Passing Commands to XSB . 397

14.3.3 Querying XSB . 398

14.3.4 Obtaining Information about Errors 402

14.3.5 Thread Management from Calling Programs 403

14.4 The Variable-length String Data Type . 403

14.5 Passing Data into an XSB Module . 405

14.6 Creating an XSB Module that Can be Called from C 406

15 Restrictions and Current Known Bugs 408

15.1 Current Restrictions . 408

15.2 Known Bugs . 409

A GPP - Generic Preprocessor 411

A.1 Description . 411

A.2 Syntax . 412

A.3 Options . 412

A.4 Syntax Specification . 415

A.5 Evaluation Rules . 419

A.6 Meta-macros . 420

A.7 Examples . 424

A.8 Advanced Examples . 429

A.9 Author . 431

Chapter 1

Introduction

XSB is a research-oriented, commercial-grade Logic Programming system for Unix and
Windows-based platforms. In addition to providing nearly all functionality of ISO-Prolog,
XSB includes the following features:

• Evaluation of queries according to the Well-Founded Semantics [80] through full SLG
resolution (tabling with negation). XSB’s tabling implementation supports incremen-
tal tabling, as well as call and answer subsumption.

• A fully multi-threaded engine with thread-shared static code, and that allows dynamic
code and tables to be thread-shared or thread-private. This engine fully supports the
draft ISO standard for multi-threading [36].

• Constraint handling for tabled programs based on an engine-level implementation of
annotated variables and various costraint packages, including clpqr for handling real
constraints, and bounds a simple finite domain constraint library.

• A package for Constraint Handling Rules [30] which can be used to implement user-
written constraint libraries.

• A variety of indexing techniques for asserted code including variable-depth indexing
on several alternate arguments, fixed-depth indexing on combined arguments, trie-
indexing.

• A set of mature packages, to extend XSB to evaluate F-logic [40] through the FLORA-
2 package (distributed separately from XSB), to model check concurrent systems
through the XMC system, to manage ontologies through the Cold Dead Fish package,
to support literate programming through the xsbdoc package, and to support answer
set programming through the XASP package among other features.

• A number of interfaces to other software systems, such a C, Java, Perl, ODBC, SMod-
els [54], and Oracle.

1

CHAPTER 1. INTRODUCTION 2

• Fast loading of large files by the load_dync predicate, and by other means.

• A compiled HiLog implementation;

• Backtrackable updates through XSB’s storage module that support the semantics of
transaction logic [6].

• Extensive pattern matching packages, and interfaces to libwww routines, all of which
are especially useful for Web applications.

• A novel transformation technique called unification factoring that can improve pro-
gram speed and indexing for compiled code;

• Macro substitution for Prolog files via the xpp preprocessor (included with the XSB
distribution).

• Preprocessors and Interpreters so that XSB can be used to evaluate programs that
are based on advanced formalisms, such as extended logic programs (according to the
Well-Founded Semantics [2]); Generalized Annotated Programs [41].

• Source code availability for portability and extensibility under the GNU General Pub-
lic Library License.

Though XSB can be used as a Prolog system, we avoid referring to XSB as such, because
of the availability of SLG resolution and the handling of HiLog terms. These facilities,
while seemingly simple, significantly extend its capabilities beyond those of a typical Prolog
system. We feel that these capabilities justify viewing XSB as a new paradigm for Logic
Programming. We briefly discuss some of these features; others are discussed in Volumes 1
and 2 of the XSB manual, as well as the manuals for various XSB packages such as FLORA,
XMC, Cold Dead Fish, xsbdoc, and XASP.

Well-Founded Semantics To understand the implications of SLG resolution [15], recall
that Prolog is based on a depth-first search through trees that are built using program clause
resolution (SLD). As such, Prolog is susceptible to getting lost in an infinite branch of a
search tree, where it may loop infinitely. SLG evaluation, available in XSB, can correctly
evaluate many such logic programs. To take the simplest of examples, any query to the
program:

:- table ancestor/2.

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

ancestor(X,Y) :- parent(X,Y).

will terminate in XSB, since ancestor/2 is compiled as a tabled predicate; Prolog systems,
however, would go into an infinite loop. The user can declare that SLG resolution is to

CHAPTER 1. INTRODUCTION 3

be used for a predicate by using table declarations, as here. Alternately, an auto_table

compiler directive can be used to direct the system to invoke a simple static analysis to
decide what predicates to table (see Section 3.10.4). This power to solve recursive queries has
proven very useful in a number of areas, including deductive databases, language processing
[42, 43], program analysis [21, 16, 7], model checking [57] and diagnosis [31]. For efficiency,
we have implemented SLG at the abstract machine level so that tabled predicates will be
executed with the speed of compiled Prolog. We finally note that for definite programs SLG
resolution is similar to other tabling methods such as OLDT resolution [78] (see Chapter 5
for details).

Example 1.0.1 The use of tabling also makes possible the evaluation of programs with
non-stratified negation through its implementation of the well-founded semantics [80]. When
logic programming rules have negation, paradoxes become possible. As an example consider
one of Russell’s paradoxes — the barber in a town shaves every person who does not shave
himself — written as a logic program.

:- table shaves/2.

shaves(barber,Person):- person(Person), tnot(shaves(Person,Person)).

person(barber).

person(mayor).

Logically speaking, the meaning of this program should be that the barber shaves the mayor,
but the case of the barber is trickier. If we conclude that the barber does not shave himself
our meaning does not reflect the first rule in the program. If we conclude that the barber does
shave himself, we have reached that conclusion using information beyond what is provided
in the program. The well-founded semantics, does not treat shaves(barber,barber) as
either true or false, but as undefined. Prolog, of course, would enter an infinite loop.
XSB’s treatment of negation is discussed further in Chapter 5.

Multi-threading From Version 3.0 onward, XSB has been thoroughly revised to support
multi-threading using POSIX or Windows threads. Detached XSB threads can be created
to execute specific tasks, and these threads will exit when the query succeeds (or fails, or
throws an exception) and all thread memory reclaimed. While a thread’s execution state
is, of course, private, it shares many resources with other threads, such as static code and
I/O streams. Dynamic code and tables can be either thread-shared or thread-provate by
default or by explicit declaration.

Constraint Support XSB supports logic-based constraint handling at a low level through
attributed variables and associated packages (e.g. setarg/3. In addition, constraints may

CHAPTER 1. INTRODUCTION 4

be handled through Constraint Handling Rules. Constraint logic programs that use at-
tributed variables may be tabled; those that use Constraint Handling Rules may be ef-
ficiently tabled if the CHRd package is used. Constraint programming in XSB is mainly
covered in Volume 2.

Indexing Methods Data oriented applications may require indices other than Prolog’s
first argument indexing. XSB offers a variety of indexing techniques for asserted code.
Clauses can be indexed on a group of arguments or on alternative arguments. For instance,
the executable directive index(p/4,[3,2+1]) specifies indexes on the (outer functor symbol
of) the third argument or on a combination of (the outer function symbol of) the second
and first arguments. If data is expected to be structured within function symbols and is in
unit clauses, the directive i ndex(p/4,trie) constructs an indexing trie of the p/4 clauses
using a depth-first, left-to-right traversal through each clause. Representing data in this
way allows discrimination of information nested arbitrarily deep within clauses. Advantages
of both kinds of indexing can be combined via star-indexing. Star-indexing indicates that
up to the first 5 fields in an argument will be used for indexing (the ordering of the fields
is via a depth-first traversal). For instance, index(p/4,[*(4),3,2+1]) acts as above, but
looks within 4th argument of p/4 before examining the outer functor of argument 3 (and
finally examining the outer functors of arguments 2 and 1 together. Using such indexing,
XSB routinely performs efficiently intensive analyses of in-memory knowledge bases with
millions of highly structured facts. Indexing techniques for asserted code are covered in
Section 6.14.

Interfaces A number of interfaces are available to link XSB to other systems. In UNIX
systems XSB can be directly linked into C programs; in Windows-based system XSB can
be linked into C programs through a DLL interface. On either class of operating system, C
functions can be made callable from XSB either directly within a process, or using a socket
library. XSB can also inter-communicate with Java through the InterProlog interface 1 or
using YJXSB. Within Interprolog, XSB and Java can be linked either through Java’s JNI
interface, or through sockets. XSB can access external data in a variety of ways: through
an ODBC interface, through an Oracle interface, or through a variety of mechanisms to
read data from flat files. These interfaces are all described in Volume 2 of this manual.

Fast Loading of Code A further goal of XSB is to provide in implementation engine for
both logic programming and for data-oriented applications such as in-memory deductive
database queries and data mining [63]. One prerequisite for this functionality is the ability
to load a large amount of data very quickly. We have taken care to code in C a compiler for
asserted clauses. The result is that the speed of asserting and retracting code is faster in XSB
than in any other Prolog system of which we are aware, even when some of the sophisticated

1InterProlog is available at www.declarativa.com/InterProlog/default.htm.

www.declarativa.com/InterProlog/default.htm

CHAPTER 1. INTRODUCTION 5

indexing mechanisms described above are employed. At the same time, because asserted
code is compiled into SLG-WAM code, the speed of executing asserted code in XSB is faster
than that of many other Prologs as well. We note however, that XSB does not follow the
ISO-semantics of assert [46].

HiLog XSB also supports HiLog programming [13, 66]. HiLog allows a form of higher-
order programming, in which predicate “symbols” can be variable or structured. For exam-
ple, definition and execution of generic predicates like this generic transitive closure relation
are allowed:

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- R(X,Z), closure(R)(Z,Y).

where closure(R)/2 is (syntactically) a second-order predicate which, given any relation
R, returns its transitive closure relation closure(R). XSB supports reading and writing of
HiLog terms, converting them to or from internal format as necessary (see Section 4.2).
Special meta-logical standard predicates (see Section 6.7) are also provided for inspection
and handling of HiLog terms. Unlike earlier versions of XSB (prior to version 1.3.1) the cur-
rent version automatically provides full compilation of HiLog predicates. As a result, most
uses of HiLog execute at essentially the speed of compiled Prolog. For more information
about the compilation scheme for HiLog employed in XSB see [66].

HiLog can also be used with tabling, so that the program above can also be written as:

:- hilog closure.

:- table apply/3.

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- closure(R)(X,Z), R(Z,Y).

as long as the underlying relations (the predicate symbols to which R will be unified) are also
declared as Hilog. For example, if a/2 were a binary relation to which the closure predicate
would be applied, then the declaration :- hilog a. would also need to be included.

Unification Factoring For compiled code, XSB offers unification factoring, which ex-
tends clause indexing methods found in functional programming into the logic programming
framework. Briefly, unification factoring can offer not only complete indexing through non-
deterministic indexing automata, but can also factor elementary unification operations.
The general technique is described in [20], and the XSB directives needed to use it are
covered in Section 3.10.

XSB Packages Based on these features, a number of sophisticated packages have been
implemented using XSB. For instance, XSB supports a sophisticated object-oriented inter-
face called Flora. Flora (http://flora.sourceforge.net) is available as an XSB package

http://flora.sourceforge.net

CHAPTER 1. INTRODUCTION 6

and is described in its own manual, available from the same site from which XSB was down-
loaded. Another package, XMC http://www.cs.sunnysb.edu/~lmc depends on XSB to
perform sophisticated model-checking of concurrent systems. Within the XSB project, the
Cold Dead Fish package supports maintenance of, and reasoning over ontologies; xsbdoc
supports literate programming in XSB, and XASP provides an interface to Smodels to sup-
port Answer Set programming. XSB packages also support Perl-style pattern matching and
POSIX-style pattern matching. In addition, experimental preprocessing libraries currently
supported are Extended logic programs (under the well-founded semantics), and Annotated
Logic Programs. These latter libraries are described in Volume 2 of this manual.

1.1 Using This Manual

We adopt some standard notational conventions, such as the name/arity convention for
describing predicates and functors, + to denote input arguments, - to denote output ar-
guments, ? for arguments that may be either input or output and # for arguments that
are both input and output (can be changed by the procedure). See Section 3.10.4 for more
details. . Also, the manual uses UNIX syntax for files and directories except when it
specifically addresses other operating systems such as Windows.

Finally, we note that XSB is under continuous development, and this document —
intended to be the user manual— reflects the current status (Version 3.3) of our system.
While we have taken great effort to create a robust and efficient system, we would like to
emphasize that XSB is also a research system and is to some degree experimental. When
the research features of XSB — tabling, HiLog, and Indexing Techniques — are discussed in
this manual, we also cite documents where they are fully explained. All of these documents
can be found without difficulty on the web.

While some of Version 3.3 is subject to change in future releases, we will try to be as
upward-compatible as possible. We would also like to hear from experienced users of our
system about features they would like us to include. We do try to accommodate serious
users of XSB whenever we can. Finally, we must mention that the use of undocumented
features is not supported, and at the user’s own risk.

http://www.cs.sunnysb.edu/~lmc

Chapter 2

Getting Started with XSB

This section describes the steps needed to install XSB under UNIX and under Windows.

2.1 Installing XSB under UNIX

If you are installing on a UNIX platform, the version of XSB that you received may not
include all the object code files so that an installation will be necessary. The easiest way to
install XSB is to use the following procedure.

1. Decide in which directory in your file system you want to install XSB and copy or
move XSB there.

2. Make sure that after you have obtained XSB, you have uncompressed it by following
the instructions found in the file README.

3. Note that after you uncompress and untar the XSB tar file, a subdirectory XSB will be
created in the current directory. All XSB files will be located in that subdirectory. In
the rest of this manual, we use $XSB_DIR to refer to this subdirectory. Note the orig-
inal directory structure of XSB must be maintained, namely, the directory $XSB_DIR

should contain all the subdirectories and files that came with the distribution. In par-
ticular, the following directories are required for XSB to work: emu, syslib, cmplib,
lib, packages, build, and etc.

4. Change directory to $XSB_DIR/build and then run these commands:

configure

makexsb

This is it!

7

CHAPTER 2. GETTING STARTED WITH XSB 8

In addition, it is now possible to install XSB in a shared directory (e.g., /usr/local)
for everyone to use. In this situation, you should use the following sequence of com-
mands:

configure –prefix=$SHARED_XSB

makexsb

makexsb install

where $SHARED_XSB denotes the shared directory where XSB is installed. In all cases,
XSB can be run using the script

$XSB_DIR/bin/xsb

However, if XSB is installed in a central location, the script for general use is:

<central-installation-directory>/<xsb-version>/bin/xsb

Important: The XSB executable determines the location of the libraries it needs based
on the full path name by which it was invoked. The “smart script” bin/xsb also uses its
full path name to determine the location of the various scripts that it needs in order to
figure out the configuration of your machine. Therefore, there are certain limitations on
how XSB can be invoked.

Here are some legal ways to invoke XSB:

1. invoking the smart script bin/xsb or the XSB executable using their absolute or
relative path name.

2. using an alias for bin/xsb or the executable.

3. creating a new shell script that invokes either bin/xsb or the XSB executable using
their full path names.

Here are some ways that are guaranteed to not work in some or all cases:

1. creating a hard link to either bin/xsb or the executable and using it to invoke XSB.
(Symbolic links should be ok.)

2. changing the relative position of either bin/xsb or the XSB executable with respect
to the rest of the XSB directory tree.

The configuration script allows many different options to be specified. A full listing can
be obtained by typing $XSB_DIR/build/configure –help.

CHAPTER 2. GETTING STARTED WITH XSB 9

Type of Machine. The configuration script automatically detects your machine and OS
type, and builds XSB accordingly. On 64-bit platforms, the default compilation of
XSB will reflect the default for the C compiler (e.g. gcc) on that platform. More-
over, you can build XSB for different architectures while using the same tree and the
same installation directory provided, of course, that these machines are sharing this
directory, say using NFS or Samba. All you will have to do is to login to a different
machine with a different architecture or OS type, and repeat the above sequence of
commands – or configure with different parameters.

The configuration files for different architectures reside in different directories, and
there is no danger of an architecture conflict. In fact, you can keep using the same
./bin/xsb script regardless of the architecture. It will detect your configuration and
will use the right files for the right architecture!

If XSB is being built on a machine running Windows in which Cygwin is installed,
Cygwin and Windows are treated as separate operating systems, as their APIs are
completely different. If no previous configuration has been made, the configure script
will attempt to use gcc and other Unix facilities, and therefore will compile the system
under Cygwin. If this behavior is not desired, the option –with-wind (equivalently,
–with-os=wind) uses a Window compiler and API. If a user wants to ensure the
Cygwin compiler is used (say after a previous configuration for Windows), the option
-without-wind can be used. See Section 2.2.2 for more details.

Choice of the C Compiler and compiler-related options On Unix systems, XSB is
developed and tested mainly using gcc. Accordingly, the configure script will at-
tempt to use gcc, if it is available. Otherwise, it will revert to cc or acc. Some ver-
sions of gcc are broken for particular platforms or gcc may not have been installed;
in which case you would have to give configure an additional directive –with-cc (or
–with-acc). If you must use some special compiler, use –with-cc=your-own-compiler.
You can also use the –with-optimization option to change the default C compiler op-
timization level. (or –disable-optimization to disable all compiler optimizations).
–enable-debug is mainly a devlopment option that allows XSB to be debugged using
gdb – there are many other compiler-based options options. Type configure –help

to see them all. Also see the file $XSB_DIR/INSTALL for more details.

Word Size XSB’s configuration script checks whether the default compilation mode of a
platform is 32- or 64-bits, and will build a version of XSB accoringly. Some platforms,
however, support both 32-bit and 64-bit compilation. On such a platform, a user
can explicitly specify the type of compilation using the options with-bits32 and
with-bits64.

XSB and Site-specific Information Using the option –prefix=PREFIX installs architecture-
independent files in the directory PREFIX, e.g. /usr/local, which can be useful if
XSB is to be shared at a site. Using the option –site-prefix=DIR installs site-
specific libraries in DIR/site. Other options indicate directories in which to search

CHAPTER 2. GETTING STARTED WITH XSB 10

for site-specific static and dynamic libraries, and for include files.

Multi-threading Version 3.0 of XSB was the first version that supports multi-threading.
On some platforms, the multi-threaded engine is slightly slower than the single-
threaded engine, mostly due to its need for concurrency control. To obtain the benefits
of multiple threads on a platform that supports either POSIX or Windows threads (i.e.
nearly all platforms) users must configure XSB with the directive enable-mt (see Sec-
tion 7.8 for instructions specific to Windows. The multi-threaded engine works with
other configuration options, multi-threading can be compiled with batched or local
scheduling, with the ODBC or Interprolog interfaces, and so on.

Interfaces Certain interfaces must be designated at configuration time, including those to
Oracle, ODBC, Smodels, Tck/Tk, and Libwww. However, the XSB-calling-C interface
interface does not need to be specified at configuration time. If you wish to use the
InterProlog Java interface that is based on JNI, you must specify this at configuration
time; otherwise if you wish to use the sockets-based Interprolog interface, it does not
need to be specified at configuration time. See Volume 2 and the InterProlog site
www.declarativa.com for details of specific interfaces

While the XSB configuration mechanism can detect most include and library paths,
use of certain interfaces may require information about particular directories. In
particular the –with-static-libraries option might be needed if compiling with
support for statically linked packages (such as Oracle) or if your standard C libraries
are in odd places. Alternately, dynamic libraries on odd places may need to be
specified at configuration time using the –with-dynamic-libraries option. and
finally, the –with-includes option might be needed if your standard header files (or
your jni.h file) are in odd places, or if XSB is compiled with ODBC support. Type
configure –help for more details.

Type of Scheduling Strategy. The ordering of operations within a tabled evaluation can
drastically affect its performance. XSB provides two scheduling strategies: Batched
Evaluation and Local Evaluation. Local Evaluation ensures that, whenever possible,
subgoals are fully evaluated before there answers are returned, and provides supe-
rior behavior for programs in which tabled negation is used. Batched Evaluation
evaluates queries to reduce the time to the first answer of a query. Both evaluation
methods can be useful for different programs. Since Version 2.4, Local Evaluation
has been the default evaluation method for XSB. Batched Evaluation can be chosen
via the –enable-batched-scheduling configure option. Detailed explanations of the
scheduling strategies can be found in [27], and further experimentation in [11].

Other options are of interest to advanced users who wish to experiment with XSB, or
to use XSB for large-scale projects. In general, however users need not concern themselves
with these options.

CHAPTER 2. GETTING STARTED WITH XSB 11

2.1.1 Possible Installation Problems

Lack of Space for Optimized Compilation of C Code When making the optimized
version of the emulator, the temporary space available to the C compiler for intermediate
files is sometimes not sufficient. For example on one of our SPARCstations that had very
little /tmp space the "-O4" option could not be used for the compilation of files emuloop.c,
and tries.c, without changing the default tmp directory and increasing the swap space.
Depending on your C compiler, the amount and nature of /tmp and swap space of your
machine you may or may not encounter problems. If you are using the SUN C compiler,
and have disk space in one of your directories, say dir, add the following option to the
entries of any files that cannot be compiled:

-temp=dir

If you are using the GNU C compiler, consult its manual pages to find out how you can
change the default tmp directory or how you can use pipes to avoid the use of temporary
space during compiling. Usually changing the default directory can be done by declar-
ing/modifying the TMPDIR environment variable as follows:

setenv TMPDIR dir

Missing XSB Object Files When an object (*.xwam) file is missing from the lib direc-
tories you can normally run the make command in that directory to restore it (instructions
for doing so are given in Chapter 2). However, to restore an object file in the directories
syslib and cmplib, one needs to have a separate Prolog compiler accessible (such as a sep-
arate copy of XSB), because the XSB compiler uses most of the files in these two directories
and hence will not function when some of them are missing. For this reason, distributed
versions normally include all the object files in syslib and cmplib.

XSB on 64-bit platforms XSB has been fully tested on 64-bit Debian Linux, 64-bit
and Mac OS X. However, the sockets library may have problems in Version 3.3. If this
limitation prove a problem, please contact xsb-development@lists.sourceforge.net 1.

Typically, if the 64-bit system generates 32-bit code by default, XSB will run just as
in 32-bit mode (including 64-bit floats). 64-bit compilation can be forced for XSB by
configuring with the option –with-bits64, and in a similar manner 32-bit compilation can
be forced with the option –with-bits32. Users who employ either option should be aware
of issues that may arise when linking XSB to external C code.

• When XSB calls C code the C file must have been compiled with the same memory
option as XSB. This is done automatically if the C file is compiled via a call from

164-bit XSB was broken in a recent releases prior to Version 3.1 because for a time the developers did
not have access to a 64-bit machine.

CHAPTER 2. GETTING STARTED WITH XSB 12

XSB’s compiler, but must be handled by the user otherwise. For instance, if XSB
were configured –with-bits32 on a 64-bit machine defaulting to 64-bits, then C files
called by XSB require the -m32 option in gcc (if not compiled by XSB).

• The appropriate memory option must be used when embedding XSB into a C or Java
process. For instance, if a XSB is to be linked into a 32-bit application on a 64-
bit platform defaulting to 64-bits, XSB must be configured –with-bits32, and the
linking of xsb.o/so to the calling program must specify -m32.

2.2 Installing XSB under Windows

2.2.1 Using Cygnus Software’s CygWin32

This is easy: just follow the Unix instructions. This is the preferred way to run XSB under
Windows, because this ensures that all features of XSB are available.

2.2.2 Using Microsoft Visual C++

1. XSB will unpack into a subdirectory named xsb. Assuming that you have XSB.ZIP

in the $XSB_DIR directory, you can issue the command

unzip386 xsb.zip

which will install XSB in the subdirectory xsb.

2. If you decide to move XSB to some other place, make sure that the entire directory
tree is moved — XSB executable looks for the files it needs relatively to its current
position in the file system.

You can compile XSB under Microsoft Visual C++ compiler by following these steps:

1. Download the free of charge Microsoft Visual C++ Express Edition from

http://www.microsoft.com/express/vc/

By default, this program is installed in C:\Program Files\Microsoft Visual Studio

10.0, and we shall assume this directory below (at the time of this writing, the latest
version was 10.0, but the version number may change).

2. Go to Start Menu then Control Panel then System (depending on your version of
Windows, the System panel might not be directly inside Control Panel, but one or
two levels below. Then click “Change Settings,” select the “Advanced” tab, and then

CHAPTER 2. GETTING STARTED WITH XSB 13

click the “Environment Variables” button. In the panel that is now selected, choose
the PATH variable and click Edit. At the end of the string that represents the value
of PATH, add

;C:\Program Files\Microsoft Visual Studio 10.0\VC\BIN

On a 64-bit machine, add both of these:

;C:\Program Files\Microsoft SDKs\Windows\v7.1\bin

;C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\BIN

Note: to compile XSB as 64 bit application you must install Microsoft Windows
SDK found at http://msdn.microsoft.com/en-us/windows/bb980924.aspx. The
version numbers, v7.1 and 10.0, may vary, of course.

Visual C++ has a command file called vcvars32.bat, which you should find and drag
into the command window (and press Return). This will set all the necessary environ-
ment variables. On a 64 bit machine, this command file is called vcvarsx86_amd64.bat

or vcvarsx86_ia64.bat — whichever is appropriate for your configuration. In Visual
Studio Express 9.0, these files are in

C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\BIN\vcvars32.bat

C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\BIN\ia64\vcvarsx86_ia64.bat

C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\BIN\amd64\vcvarsx86_amd64.bat

At some point, Microsoft eliminated vcvarsx86_* in Visual Studio 10.0 and intro-
duced SetEnv.cmd instead, requiring the users to download Microsoft Windows SDK.
This command file is usually found in

C:\Program Files\Microsoft SDKs\Windows\v7.1\bin\SetEnv.cmd

As far as we know, SetEnv.cmd is the only file from the entire SDK that is necessary
to build XSB as a 64-bit application. For 32 bit applications, the file

C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\BIN\vcvars32.bat

is still there and installation does not require the Windows SDK.

3. cd $XSB_DIR\build

4. On a 32 bit machine, type:
makexsb ["CFG=opt"] ["ORACLE=yes"] ["MY_LIBRARY_DIRS=libs"] ["MY_INCLUDE_DIRS=opts"]

• The items in square brackets are optional and usually are not necessary.

http://msdn.microsoft.com/en-us/windows/bb980924.aspx

CHAPTER 2. GETTING STARTED WITH XSB 14

• The options for CFG are: release (default) or debug. The latter is used when you
want to compile XSB with debugging enabled.

• The ORACLE parameter (default is “no”) compiles XSB with native support for
Oracle DBMS. If ORACLE is specified, you must also specify the necessary Oracle
libraries using the parameter SITE_LIBS. Native Oracle support is rarely used
and ODBC is the recommended way to connect to databases.

• MY_LIBRARY_DIRS is used to specify the external libraries and libs there has the
form /LIBPATH:"libdir1" /LIBPATH:"libdir2"

• MY_INCLUDE_DIRS is used to specify additional directories for included files. Here
opts has the form /I"incdir1" /I"incdir2"

Instead of specifying the options on command line, it might be more convenient,
however, to create the file

XSB\build\windows\custom_settings.mak

and put the options there. For instance,

XSB_INTERPROLOG=yes

MY_INCLUDE_DIRS=/I"C:\Program Files\Java\jdk1.6.0_26\include" \

/I"C:\Program Files\Java\jdk1.6.0_26\include\win32"

MY_LIBRARY_DIRS=/LIBPATH:"C:\pthreads\pthreadVC1.lib" /libpath:"C:\oracle"

ORACLE=yes

5. The above command will compile XSB as requested and will put the XSB executable
and its DLL in:

$XSB_DIR\config\x86-pc-windows\bin\xsb.exe

$XSB_DIR\config\x86-pc-windows\bin\xsb.dll

6. On a 64 bit machine, use makexsb64 instead of makexsb. The compiled code will be
installed in

$XSB_DIR\config\x64-pc-windows\bin\xsb.exe

$XSB_DIR\config\x64-pc-windows\bin\xsb.dll

The custom_settings.mak file must be in

XSB\build\windows64\custom_settings.mak

Make sure you do not misspell the name of that file or else none of the specified options
will take effect!

Note: if you compiled XSB with one set of parameters and then want to recompile with
a different set, it is recommended that you run

CHAPTER 2. GETTING STARTED WITH XSB 15

makexsb clean

in between the compilations (or makexsb64 clean in the 64-bit case). This also applies to
recompilations for 32/64 bits.

2.3 Invoking XSB

Under Unix, XSB can be invoked by the command:

$XSB_DIR/bin/xsb

if you have installed XSB in your private directory. If XSB is installed in a shared directory
(e.g., $SHARED_XSB for the entire site (UNIX only), then you should use

$SHARED_XSB/bin/xsb

In both cases, you will find yourself in the top level interpreter. As mentioned above, this
script automatically detects the system configuration you are running on and will use the
right files and executables. (Of course, XSB should have been built for that architecture
earlier.)

Under Windows, you should invoke XSB by typing:

$XSB_DIR\bin\xsb

This script tries to find the XSB executable and invoke it. If, for some reason, it fails to do
so, the user should call the executable directly.

$XSB_DIR\config\x86-pc-windows\bin\xsb.exe

You may want to make an alias such as xsb to the above commands, for convenience,
or you might want to put the directory where the XSB command is found in the $PATH

environment variable. However, you should not make hard links to this script or to the
XSB executable. If you invoke XSB via such a hard link, XSB will likely be confused and
will not find its libraries. That said, you can create other scripts and call the above script
from there.

ISO“standard” Prolog predicates are supported by XSB, in addition to many other
predicates: so those of you who consider yourselves champion entomologists, can try to test
them for bugs now. Details are in Chapter 6.

CHAPTER 2. GETTING STARTED WITH XSB 16

2.4 Compiling XSB programs

One way to compile a program from a file, such as myfile.P in the current directory and
load it into memory, is to type the query:

[my_file].

where my_file is the name of the file. Chapter 3 contains a full discussion of the compiling
and consulting.

If you are eccentric (or you don’t know how to use an editor) you can also compile and
load predicates input directly from the terminal by using the command:

[user].

A CTRL-d or the atom end_of_file followed by a period terminates the input stream.

2.5 Sample XSB Programs

There are several sample XSB source programs in the directory: $XSB_DIR/examples illus-
trating a number of standard features, as well as a number of non-standardized or XSB-
specific features including plain tabling, incremental tabling, tabling with negation, at-
tributed variables, annotated programs, constraint handling rules, XSB embedded in a C
program, XSB calling C functions, sockets, and various semantic web appliation

Hence, a sample session might look like (the actual times shown below may vary and
some extra information is given using comments after the % character):

my_favourite_prompt> cd $XSB_DIR/examples

my_favourite_prompt> $XSB_DIR/bin/xsb

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word size: 32]

| ?- [queens].

[queens loaded]

yes

| ?- demo.

% output from queens program

Time used: 0.4810 sec

yes

| ?- statistics.

CHAPTER 2. GETTING STARTED WITH XSB 17

memory (total) 1906488 bytes: 203452 in use, 1703036 free

permanent space 202552 bytes

glob/loc space 786432 bytes: 432 in use, 786000 free

global 240 bytes

local 192 bytes

trail/cp space 786432 bytes: 468 in use, 785964 free

trail 132 bytes

choice point 336 bytes

SLG subgoal space 0 bytes: 0 in use, 0 free

SLG unific. space 65536 bytes: 0 in use, 65536 free

SLG completion 65536 bytes: 0 in use, 65536 free

SLG trie space 0 bytes: 0 in use, 0 free

(call+ret. trie 0 bytes, trie hash tables 0 bytes)

0 subgoals currently in tables

0 subgoal check/insert attempts inserted 0 subgoals in the tables

0 answer check/insert attempts inserted 0 answers in the tables

Time: 0.610 sec. cputime, 18.048 sec. elapsetime

yes

| ?- halt. % I had enough !!!

End XSB (cputime 1.19 secs, elapsetime 270.25 secs)

my_favourite_prompt>

2.6 Exiting XSB

If you want to exit XSB, issue the command halt. or simply type CTRL-d at the XSB
prompt. To exit XSB while it is executing queries, strike CTRL-c a number of times.

Chapter 3

System Description

Throughout this chapter, we use $XSB_DIR to refer to the directory in which XSB was
installed.

3.1 Entering and Exiting XSB from the Command Line

After the system has been installed, the emulator’s executable code appears in the file:

$XSB_DIR/bin/xsb

If, after being built, XSB is later installed at a central location, $SHARED_XSB, the emulators
executable code appears in

$SHARED_XSB/bin/xsb

Either of these commands invokes XSB’s top-level interpreter, which is the most common
way of using XSB.

XSB can also directly execute object code files from the command line interface. Suppose
you have a top-level routine go in a file foo.P that you would like to run from the UNIX
or Windows command line. As long as foo.P contains a directive, e.g. :- go., and foo.P

has been compiled to an object file (foo.xwam), then

$XSB_DIR/bin/xsb foo

18

CHAPTER 3. SYSTEM DESCRIPTION 19

will execute go (and any other directives), loading the appropriate files as needed 1. In fact
the command $XSB_DIR/bin/xsb is equivalent to the command:

$XSB_DIR/bin/xsb -B $XSB_DIR/syslib/loader.xwam

There is one other way to execute XSB from a command line. Using the -e command-line
option any goal can be can be executed, up to 1024 characters. For instance

$XSB_DIR/bin/xsb -e "writeln(’hello world’),halt."

writes “hello world” and exits XSB. Within the 1024 character limit, any query or command
can be executed, including consulting files, so this method is actually quite general foot-
noteVarious options can suppress XSB’s startup and end messages, as discussed below..

There are several ways to exit XSB. A user may issue the command halt. or end_of_file.,
or simply type CTRL-d at the XSB prompt. To interrupt XSB while it is executing a query,
strike CTRL-c.

3.2 The System and its Directories

When installed, the XSB system resides in a single directory that contains several subdi-
rectories. For completeness, we review the information in all subdirectories. Normally, only
the documentation and files in the Prolog subdirectories, particularly examples, lib, and
packages will be of interest to users.

1. bin contains scripts that call XSB executables for various configurations.

2. build contains XSB configuration scripts. You may already be familiar with the
build directory, which is used to build XSB.

3. config contains executables and other files specific to particular configurations.

4. docs contains the user manuals and other documentation, including the technical
documentation manual for developers.

5. emu contains the C source code for the XSB emulator, for I/O and for various inter-
faces.

6. etc contains miscellaneous files used by XSB.

1In XSB, all extensions except ’.pl’ — (default ’.P’, ’.H’, ’.xwam’, ’.D’ (output by mode inferencing), and
’.A’ (assembly dump) — are defined in C and Prolog code using macros in $XSB_DIR/emu/extensions_xsb.h

and can be changed by a user if desired. Of course, such a step should not be taken lightly, as it can cause
severe compatibility problems.

CHAPTER 3. SYSTEM DESCRIPTION 20

7. examples contains some examples for Prolog, tabling, HiLog and various interfaces.

8. cmplib contains Prolog source and object code for the compiler.

9. gpp contains a copy of the Gnu pre-processor used to preprocess Prolog files.

10. lib contains Prolog source and object code for extended libraries.

11. packages The directory packages contains the various applications, such as FLORA,
the XMC model checker and many others. These applications are written in XSB and
can be quite useful, but are not part of the XSB system per se.

12. Prolog_includes contains include files for the Prolog libraries, which are prepro-
cessed using GPP.

13. syslib contains Prolog source and object code for core XSB libraries.

All Prolog source programs are written in XSB, and all object (byte code) files contain SLG-
WAM instructions that can be executed by the emulator. These byte-coded instructions
are machine-independent, so usually no installation procedure is needed for the byte code
files.

If you are distributing an application based on XSB and need to cut down space, the
packages, examples and docs directories are not usually needed (unless of course you are
using one of the packages in your application). lib may not be needed, (most core system
files are in syslib) nor are Prolog source files necessary. Unless your application needs to
rebuild XSB, the emu and build directories do not need to be distributed.

3.3 How XSB Finds Files: Source File Designators

Three files are associated with Prolog source code in XSB 2.

• A single source file, whose name is the base file name plus an optional extension suffix
.P or .pl.

• An object (byte-code) file, whose name consists of the base file name plus the suffix
.xwam.

• An optional header file, whose name is the base file name plus the suffix “.H”. When
used, the header file normally contains file-level declarations and directives while the
source file usually contains the actual definitions of the predicates defined in that
module. However, such information can be equivalently put into the .P (or .pl file.

2Other types of files may be associated with foreign code — see Volume 2.

CHAPTER 3. SYSTEM DESCRIPTION 21

Most of the XSB system predicates for compiling, consulting, and loading code, such as
consult/[1,2], compile/[1,2], load_dyn/1 and others are somewhat flexible in how they
designate the file of interest. Each of these predicates take as input a source file designator
which can be a base file name, a source file name; or the relative or absolute paths to a base
or source file name. Unfortunately, the exact semantics of a file designator differs among
system predicates in Version 3.3, as well as among platforms.

In general, however, when given a source file designator, system predicates perform name
resolution. There are two steps to name resolution: determining the proper directory prefix
and determining the proper file extension. When FileName is absolute (i.e. it contains a
path from the file to the root of the file system) determining the proper directory prefix is
straightforward. If FileName is relative, i.e. it contains a ’/’ in Unix or ’/’ in Windows,
FileName is expanded to a directory prefix in an OS-dependent way, resolving symbols like
’.’, ’..’ and ’˜’ when applicable. However, the user may also enter a name without
any directory prefix. In this case, XSB tries to determine the directory prefix using a set
of diretories it knows about: those directories in the dynamic loader path (see Section 3.6).
As it searches through directory prefixes, different forms of the file name may be checked.
If the source file designator has no extension the loader first checks for a file in the directory
with the .P extension, (or .c for foreign modules) before searching for a file without the
extension, and finally for a file with a .pl extension. Note that since directories in the
dynamic loader path are searched in a predetermined order (see Section 3.6), if the same
file name appears in more than one of these directories, the first one encountered will be
used.

3.4 The Module System of XSB

XSB has been designed as a module-oriented Prolog system. Modules provide a small step
towards logic programming “in the large” that facilitates the construction of large programs
or projects from components that are developed, compiled and tested separately. Also,
module systems support the principle of information hiding and can provide a basis for
data abstraction. The module system of XSB is file based – one module per file – and flat –
modules cannot be nested. In addition, XSB’s module system is to some extent atom-based,
where any symbol in a module can be imported, exported or be a local symbol, as opposed
to the predicate-based ones where this can be done only for predicate symbols 3. As we
will discuss, this leads to certain differences of XSB’s module system from those of some
other Prologs, and to certain incompatabilities with the ISO standard for modules (which
is not supported by most Prologs). At the same time, XSB’s module system has enough
commonalities with those of other Prologs to be able to support Prolog commons libraries.

3Operator symbols can be exported as any other symbols, but their precedence must be redeclared in the
importing module.

CHAPTER 3. SYSTEM DESCRIPTION 22

Module Syntax By default, files are not treated as modules. In order for a file to be
treated as a module, it must contain one or more module/2 or export/1 declarations, which
specify that a set of symbols appearing in that module is visible and therefore can be used
by any other module. In XSB, the module name must be equal to the base file name in which
the module is defined. Any file (either module or not) may also contain use_module/2 or
import/1 declarations, which allow symbols defined in and exported by other modules to
be used in the current module. In addition, a module can also contain local declarations,
which specify that a set of symbols is visible by this module only, and therefore cannot be
accessed by any other module. Module declarations can appear anywhere in the source or
header files and have the following forms:

:- export sym1, ..., syml.

:- import sym1, ..., symn from module.

:- import sym from module as sym′.

:- local sym1, ..., symm.

where symi has the form functor/arity, and module is a Prolog atom representing a module
name.

In XSB, the declaration

:- module(filename,[sym1, ..., syml.]).

can be seen as syntactic sugar for

:- export sym1, ..., syml.

as long as the filename is the same as the name of the file in which it was contained.
Similarly,

:- use_module(module,[sym1, ..., syml.]).

is treated as semantically equivalent to

:- import sym1, ..., symn from module.

Accordingly, use_module/2 and module/1 can be used interchangibly with import/2 and
export/1. However the declaration

:- use_module(module).

which is often used in other Prolog systems, is not equivalent to an XSB import statement,
as each XSB import statement must explicitly declare a list of predicates that are used from
each module. Such a declaration will raise a compilation error.

The declaration

:- import sym from module as sym′.

allows a predicate to be imported from a module, but renamed as sym′ within the importing

CHAPTER 3. SYSTEM DESCRIPTION 23

module. Such a feature is useful when porting a library written for another Prolog (e.g. a
constraint library) to XSB.

For modules, the base file name is stored in its byte code file, so that renaming a byte-
code file for a mule may cause problems, as the renaming will not affect the information
within the byte-code file. However, byte code files generated for non-modules can be safely
renamed.

Module Semantics In XSB’s atom-based module system, the name of each predicate
and function symbol p/n is identified as if it were prefixed with its module name (i.e. base
file name). Hence the occurrence of p/n in two different modules, m1 and m2 are distinct
symbols that can be denoted as m1:p/n and m2:p/n.

Normally, only exported symbols can be imported; if a non-exported symbol p/2 is
imported from a module m1 by module m2 an environment conflict warning will be issued as
soon as m1 and m2 are loaded in the same session – i.e. the conflict is detected at run-time.
When a non-module file is loaded, its predicates and symbols are loaded into the module
usermod, which is the working module of the XSB command-line interpreter and C-calling
XSB interface. Dynamically asserted code is also loaded into usermod by default. Currently
the following set of rules is used to determine the module prefix of a symbol:

• A predicate symbol p/n is defined in a module m if m contains a clause with head p/n

or a dynamic declaration for p/n. Any predicate symbol p/n defined in a module m,
whether exported or not, can be called by prepending the module prefix using the
:/2 functor, e.g. m:p(A,...). For brevity, we call this an explicit module call to p/n.
The following example illustrates these principles.

CHAPTER 3. SYSTEM DESCRIPTION 24

Exported and Non-Exported Predicates

m1

:- export p/2.

exported(a,b).

local(c,d).

| ?- exported(X,Y).

X = a

Y = b

yes

| ?- local(X,Y).

/* Existence Error */

| ?- m1:local(X,Y).

X = c

Y = d

yes

• Every predicate symbol defined in a module is assumed by default to be local to a
module unless it is declared otherwise by an export or import declaration. Symbols
that are local to a given module are not visible to other modules except through
explicit module calls. The following example shows how different declarations for
dynamic predicates within a module may be global (usermod) or local. Calls to
statically defined predicates behave similarly.

CHAPTER 3. SYSTEM DESCRIPTION 25

Visibility of Dynamic Predicates

m1 m2

:- export p1/2, p2/2, p3/2, p4/2.

:- dynamic d1/2.

:- import d2/2 from usermod.

p10:- a1.

p1(X,Y):- assert(d1(X,Y)).

p2(X,Y):- d1(X,Y).

p2(X,Y):- assert(d2(X,Y)).

p3(X,Y):- d2(X,Y).

| ?- [m1].

[m1 loaded]

yes

| ?- p1(a,b).

yes

| ?- p2(X,Y).

X = a

Y = b

yes

| ?- d1(X,Y).

/* Existence Error */

| ?- m1:d1(X,Y).

X = a

Y = b

yes

| ?- p3(1,2).

yes

| ?- p4(X,Y).

X = 1

Y = 2

yes

| ?- d2(X,Y).

X = 1

Y = 2

yes

• Functors that occur as literals in the bodies of clauses, are treated as predicate sym-
bols.

CHAPTER 3. SYSTEM DESCRIPTION 26

– Standard predicates are taken to be a part of usermod, and are implicitly im-
ported into user-defined modules. Standard predicates include ISO predicates
along with many other XSB predicates for tabling, indexing and other func-
tions. The current listing of standard predicates can be found in the index of
this manual under Standard predicates.

– Other predicates are taken to be local to the module in which they occur.

• Functors that do not occur as literals in the body of clauses in a module are taken
to be structure symbols. These symbols are assumed to be global and do not require
an explicit module call to be used, unless declared otherwise through a local/1

declaration. In addition, terms that are dynamically created by standard predicates
such as read/1, functor/3, ’=..’/2, etc) are taken to be structure symbols and
are contained in usermod.

• All atoms are assumed to be global and do not require an explicit module call to be
used. This can occasionally lead to unexpected results if a token is used both as an
atom and a 0-ary function symbol. In the following table, the query ?- p10 will call
a1/0, while ?- p11. will throw an existence error.

Atoms and 0-ary Predicates

m1 m2

:- export p10/0, p11/0.

:- import a1/0 from m2.

p10:- a1.

p11:- atom_chars(A1,[a,’1’]),

call(A1).

:- export a1/0.

a1:- writeln(found_a1).

For clarity, we state a few consequences of these rules.

• In Version 3.3, a module cannot export predicate symbols that are imported from
other modules. This happens because an import declaration is considered a request
for permission to use a symbol from a module where its definition and an export

declaration appear.

• The implicit module for a particular symbol appearing in a module must be uniquely
determined. As a consequence, a symbol of a specific functor/arity cannot be de-
clared as both exported and local, or (as just discussed) both exported and imported
from another module, or declared to be imported from more than one module, etc.
These types of environment conflicts are detected at compile-time and abort the com-
pilation.

CHAPTER 3. SYSTEM DESCRIPTION 27

• If a module m1 imports a predicate p/n from a module m2, but m2 does not export p/n,
nothing is detected at the time of compilation. As discussed above, if p/n is defined
in m2 a runtime warning about an environment conflict will be issued. However, if
p/n is not defined in m2, a runtime existence error will be thrown 4.

• Only one definition of a symbol p/n can appear in a module, without being explic-
itly associated with a module using the :/2 functor. Accordingly only one default
definition of p/n can be loaded into the interpreter’s module (usermod). An attempt
to load a module that redefines p/n results in a warning to the user and the newly
loaded symbol redefines the definition of the previously loaded one.

Usage inference and the module system The import and export statements of a
module M are used by the compiler for inferring usage of predicates. At compilation time,
if a predicate P/N occurs as callable in the body of a clause defined in M , but P is neither
defined in M nor imported into M from some other module, a warning is issued that P/N
is undefined. Here “occurs as callable” means that P/N is found as a literal in the body of
a clause, or within a system meta-predicate, such as assert/1, findall/3, etc. Currently,
occurrences of a term inside user-defined meta-predicates are not considered as callable by
XSB’s usage inference algorithm. Alternatively, if P/N is defined in M , it is used if P/N
is exported by M , or if P/N occurs as callable in a clause for a predicate that is used in
M . The compiler issues warnings about all unused predicates in a module. On the other
hand, since all modules are compiled separately, the usage inference algorithm has no way
of checking whether a predicate imported from a given module is actually exported by that
module.

Usage inference can be highly useful during code development for ensuring that all
predicates are defined within a set of files, for eliminating dead code, etc. In addition,
import and export declarations are used by the xsbdoc documentation system to generate
manuals for code 5. For these reasons, it is sometimes the case that usage inference is
desired even in situations where a given file is not ready to be made into a module, or it
is not appropriate for the file to be a module for some other reason. In such a case the
directives document_export/1 and document_import/1 can be used, and have the same
syntax as export/1 and import/1, respectively. These directives affect only usage inference
and xsbdoc. A file is treated as a module if and only if it includes an export/1 statement,
and only import/1 statements affect dynamic loading and name resolution for predicates.

4This behavior can be altered through the Prolog flag unknown.
5Further information on xsbdoc can be found in $XSB_DIR/packages/xsbdoc.

CHAPTER 3. SYSTEM DESCRIPTION 28

3.5 Standard Predicates in XSB

Whenever XSB is invoked, a large set of standard predicates are defined and can be called
from the interpreter or other interface 6. These predicates include the various ISO predi-
cates [34], along with predicates for tabling, I/O, for interaction with the operating system,
for HiLog, and for much other functionality. Standard predicates are listed in this manual
under the index heading Standard predicates and at an implementation level are declared
in the file $XSB_DIR/syslib/std_xsb.P. If a user wishes to redefine a standard predicate,
she has several choices. First, the appropriate fact in $XSB_DIR/syslib/std_xsb.P should
be commented out. Once this is done, a user may define the predicate as any other user
predicate. Alternately, the compiler option allow_redefinition can be used to allow the
compiler to redefine a standard predicate (Section 3.10.2). If a user wants to make a new
definition or new predicate standard, the safest course is to put the predicate into a module
in the lib directory, and add or modify an associated fact in $XSB_DIR/syslib/std_xsb.P.

3.6 The Dynamic Loader and its Search Path

XSB differs from some other Prolog system in its ability to dynamically load modules.
In XSB, the loading of user modules and Prolog libraries (such as the XSB compiler) is
delayed until predicates in them are actually needed, saving program space for large Prolog
applications. Dynamic loading is done by default, unlike other systems where it is not the
default for non-system libraries.

When a predicate imported from another module (see Section 3.4) is called during
execution, the dynamic loader is invoked automatically if the module is not yet loaded into
the system, The default action of the dynamic loader is to search for the byte code file
of the module first in the system library directories (in the order lib, syslib, and then
cmplib), and finally in the current working directory. If the module is found in one of these
directories, then it will be loaded (on a first-found basis). Otherwise, an error message will
be displayed on the current error stream reporting that the module was not found. Because
system modules are dynamically loaded, the time it takes to compile a file is slightly longer
the first time the compiler is invoked in a session than for subsequent compilations.

3.6.1 Changing the Default Search Path and the Packaging System

library_directory(+Path)

The default search path of the dynamic loader is based on the dynamic predicate library_directory/1

so it can easily be changed. For instance, to make sure a user’s home directory is loaded,
6Such predicates are sometimes called “built-ins” in other Prologs.

CHAPTER 3. SYSTEM DESCRIPTION 29

the goal assert(library_directory(’ /’)) needs to be executed from the command line
or from within a program. If you always want XSB to search particular directories, the eas-
iest way is to have a file named .xsb/xsbrc.P in the user’s home directory. User-supplied
library directories are searched by the dynamic loader before searching the default library di-
rectories. The .xsb/xsbrc.P file, which is automatically consulted by the XSB interpreter,
might look like the following:

:- assert(library_directory(’~/’)).

:- assert(library_directory(’/usr/lib/sbprolog’)).

After loading the module of the above example the user’s home directory is searched first,
then "/usr/lib/sbprolog/", and finally XSB’s system library directories (lib, syslib,
cmplib) as well as the current working directory. XSB also uses library_directory/1 for
internal purposes. For instance, before the user’s .xsb/xsbrc.P is consulted, XSB puts
the packages directory and the directory .xsb/config/$CONFIGURATION on the library
search path. The directory .xsb/config/$CONFIGURATION is used to store user libraries
that are machine or OS dependent. ($CONFIGURATION for a machine is something that
looks like sparc-sun-solaris2.6 or pc-linux-gnu, and is selected by XSB automatically
at run time). If a user wished, say, to search the current working directory before her home
directory, she could simply add

:- asserta(library_directory(’./’)).

to her .xsb/xsbrc.P file (or anywhere else). The file .xsb/xsbrc.P is not limited to setting
the library search path. In fact, arbitrary Prolog code can go there so that XSB can be
initialized in any manner desired.

We emphasize that in the presence of a .xsb/xsbrc.P file it is the user’s responsibility
to avoid module name clashes with modules in XSB’s system library directories. Such name
clashes can cause unexpected behavior as system code may try to load a user’s predicates.
The list of module names in XSB’s system library directories can be found by looking
through the directories $XSB_DIR/{syslib,cmplib,lib}.

Apart from the user libraries, XSB now has a simple packaging system. A package is
an application consisting of one or more files that are organized in a subdirectory of one of
the XSB system or user libraries. The system directory $XSB_DIR/packages has a number
examples of such packages, many of which are documented in Volume 2 of this manual,
or contain their own manuals. Packages are convenient as a means of organizing large
XSB applications, and for simplifying user interaction with such applications. User-level
packaging is implemented through the predicate

bootstrap_userpackage(+LibraryDir, +PackageDir, +PackageName).

which must be imported from the packaging module.

CHAPTER 3. SYSTEM DESCRIPTION 30

To illustrate, suppose you wanted to create a package, foobar, inside your own library,
my_lib. Here is a sequence of steps you can follow:

1. Make sure that my_lib is on the library search path by putting an appropriate assert
statement in your xsbrc.P.

2. Make a subdirectory ~/my_lib/foobar and organize all the package files there. Des-
ignate one file, say, foo.P, as the entry point, i.e., the application file that must be
loaded first.

3. Create the interface program ~/my_lib/foobar.P with the following content:

:- bootstrap_userpackage(’~/my_lib’, ’foobar’, foobar), [foo].

The interface program and the package directory do not need to have the same name,
but it is convenient to follow the above naming schema.

4. Now, if you need to invoke the foobar application, you can simply type [foobar].

at the XSB prompt. This is because both and ~/my_lib/foobar have already been
automatically added to the library search path.

5. If your application files export many predicates, you can simplify the use of your
package by having ~/my_lib/foobar.P import all these predicates, renaming them,
and then exporting them. This provides a uniform interface to the foobar module,
since all the package predicates are can now be imported from just one module,
foobar.

In addition to adding the appropriate directory to the library search path, the bootstrap_userpackage/3

predicate also adds information to the predicate package_configuration/3, so that other
applications could query the information about loaded packages.

Packages can also be unloaded using the predicate unload_package/1. For instance,

:- unload_package(foobar).

removes the directory ~/my_lib/foobar from the library search path and deletes the asso-
ciated information from package_configuration/3.

Finally, if you have developed and tested a package that you think is generally useful and
you would like to distribute it with XSB, please contact xsb-development@sourceforge.net.

CHAPTER 3. SYSTEM DESCRIPTION 31

3.6.2 Dynamically loading predicates in the interpreter

Modules are usually loaded into an environment when they are consulted (see Section 3.9).
Specific predicates from a module can also be imported into the run-time environment
through the standard predicate import PredList from Module. Here, PredList can ei-
ther be a Prolog list or a comma list. (The import/1 can also be used as a directive in a
source module (see Section 3.4).

We provide a sample session for compiling, dynamically loading, and querying a user-
defined module named quick_sort. For this example we assume that quick_sort.P is a
file in the current working directory, and contains the definitions of the predicates concat/3

and qsort/2, both of which are exported.

| ?- compile(quick_sort).

[Compiling ./quick_sort]

[quick_sort compiled, cpu time used: 1.439 seconds]

yes

| ?- import concat/3, qsort/2 from quick_sort.

yes

| ?- concat([1,3], [2], L), qsort(L, S).

L = [1,3,2]

S = [1,2,3]

yes.

The standard predicate import/1 does not load the module containing the imported
predicates, but simply informs the system where it can find the definition of the predicate
when (and if) the predicate is called.

3.7 Command Line Arguments

There are several command line options for the emulator. The general synopsis obtained
by the command $XSB_DIR/bin/xsb –help is:

xsb [flags] [-l]

xsb [flags] module

xsb [flags] -B boot_module [-D cmd_loop_driver] [-t]

xsb [flags] -B module.suffix -d

xsb [-h | -v | --help | --version]

module:

Module to execute after XSB starts up.

CHAPTER 3. SYSTEM DESCRIPTION 32

Module should have no suffixes, and either be an absolute pathname

the file module.xwam must be on the library search path.

boot_module:

This is a developer’s option.

The -B flags tells XSB which bootstrapping module to use instead

of the standard loader. The loader must be specified using its

full pathname, and boot_module.xwam must exist.

module_to_disassemble:

This is a developer’s option.

The -d flag tells XSB to act as a disassembler.

The -B flag specifies the module to disassemble.

cmd_loop_driver:

The top-level command loop driver to be used instead of the

standard one. Usually needed when XSB is run as a server.

-B : specify the boot module to use in lieu of the standard loader

-D : Sets top-level command loop driver to replace the default

-t : trace execution at the SLG-WAM instruction level

(for this to work, build XSB with the --debug option)

-d : disassemble the loader and exit

-v, --version : print the version and configuration information about XSB

-h, --help : print this help message

Flags:

-e goal : evaluate goal when XSB starts up

-p : enable Prolog profiling through use of profile_call/1

-l : the interpreter prints unbound variables using letters

--nobanner : don’t show the XSB banner on startup

--quietload : don’t show the ‘module loaded’ messages

--noprompt : don’t show prompt (for non-interactive use)

-S : set default tabling method to call-subsumption

--max_subgoal_depth N : set maximum tabled subgoal depth to N (default is maximum integer)

--max_subgoal_action A : set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)

--max_tries N : allow up to N tries for interning terms

--max_threads N : maintain information for up to N threads (MT engine only)

--max_mqueues N : allow up to N message queues (MT engine only)

--shared_predicates : make predicates thread-shared by default

-g gc_type : choose heap garbage collection ("indirection","none" or "copying")

-c N [unit] : initially allocate N units (default KB) for the trail/choice-point stack

-m N [unit] : initially allocate N units (default KB) for the local/global stack

-o N [unit] : initially allocate N units (default KB) for the SLG completion stack

-r : turn off automatic stack expansion

-T : print a trace of each called predicate

unit: k/K memory in kilobytes; m/M in megabytes; g/G in gigabytes

Command-line Options These options tend to be most useful for developers.

CHAPTER 3. SYSTEM DESCRIPTION 33

-t Traces through code at SLG-WAM instruction level. This option is intended for devel-
opers and is not fully supported. It is also not available when the system is being
used at the non-debug mode (see Section 10).

-D Tells XSB to use a top-level command loop driver specified here instead of the standard
XSB interpreter. This is most useful when XSB is used as a server.

-d Produces a disassembled dump of byte_code_file to stdout and exits.

Flags The order in which flags appear makes no difference.

General Flags

-e goal Pass goal to XSB at startup. This goal is evaluated right before the first
prompt is issued. For instance, xsb -e "write(Hello!’), nl."’ will print a heart-
warming message when XSB starts up.

-p Enables the engine to collect information that can be used for profiling. See
Volume 2 of this manual for details.

-l Forces the interpreter to print unbound variables as letters, as opposed to the
default setting which prints variables as memory locations prefixed with an un-
derscore. For example, starting XSB’s interpreter with this option will print the
following:

| ?- Y = X, Z = 3, W = foo(X,Z).

Y = A

X = A

Z = 3

W = foo(A,3)

as opposed to something like the following:

| ?- Y = X, Z = 3, W = foo(X,Z).

Y = _h118

X = _h118

Z = 3

W = foo(_h118,3);

–nobanner Start XSB without showing the startup banner. Useful in batch scripts
and for interprocess communication (when XSB is launched as a subprocess).
For instance,

xsb -e "writeln(’hello world’),halt."

[xsb_configuration loaded]

CHAPTER 3. SYSTEM DESCRIPTION 34

[sysinitrc loaded]

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word size:

Evaluating command line goal:

| ?- writeln(’hello world’),halt.

| ?- hello world

End XSB (cputime 0.02 secs, elapsetime 0.02 secs)

Prints out quite a bit of verbiage. Using the –nobanner option reduces this
verbiage somewhat.

xsb --nobanner -e "writeln(’hello world’),halt."

[xsb_configuration loaded]

[sysinitrc loaded]

Evaluating command line goal:

| ?- writeln(’hello world’),halt.

| ?- hello world

–quietload Do not tell when a new module gets loaded. Again, is quseful in non-
interactive activities and for interprocess communication. Continuing our exam-
ple:

xsb --quietload --nobanner -e "writeln(’hello world’),halt."

| ?-

| ?- hello world

–noprompt Do not show the XSB prompt. This is useful only in batch mode and
in interprocess communication when you do not want the prompt to clutter the
picture. Putting all this together, we finally get:

xsb --noprompt --quietload --nobanner -e "writeln(’hello world’),halt."

hello world

So that XSB can be used to write reasonable scripts.

–max_threads N Allows XSB to maintain information for up to N threads. This
means that XSB can currently run N threads that are active, or that are inactive,
non-detached, and not yet joined. Has no effect if the engine has been configured
without multi-threading.

CHAPTER 3. SYSTEM DESCRIPTION 35

-S Indicates that tabled predicates are to be evaluated using subsumption-based
tabling as a default for tabled predicates whose tabling method is not specified by
using table Predspec as subsumptive or table Predspec as variant(see Sec-
tion 6.15.1). If this option is not specified, variant-based tabling will be used as
the default tabling method by XSB.

–shared_predicates In the multi-threaded engine, makes all predicates thread-shared
by default; has no effect in the single-threaded engine.

-T Generates a trace at entry to each called predicate (both system and user-defined).
This option is available mainly for people who want to modify and/or extend
XSB, and it is not the normal way to trace XSB programs. For the latter, the
standard predicates trace/0 or debug/0 should be used (see Chapter 10). Note:
This option is not available when the system is being used at the non-tracing
mode (see Section 10).

–max_subgoal_depth N : set maximum tabled subgoal depth to N (default is maxi-
mum integer). This flag sets the depth of a subgoal upon which an action may
be taken (such as throwing an error, abstracting, or issuing a warning.

–max_subgoal_action A : set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)

Memory Management Flags

-g gc_type Chooses the heap garbage collection strategy that is employed; choice
of the strategy is between the default indirection; copying, which is not fully
supported; or none. See [10] for a description of the indirection garbage collector,
and [23] for the copying garbage collector.

-c size [units] Allocates initial size units of space to the trail/choice-point stack
area. The trail stack grows upward from the bottom of the region, and the
choice point stack grows downward from the top of the region. If units is not
provided or is k or K, the size is allocated in kilobytes; if m or M in megabytes;
and if g or G in gigabytes. Because this region is expanded automatically, this
option is rarely needed. If this option is not speficied the default initial size is
768 KBytes.

-m size [units] Allocates initial size units of space to the local/global stack area.
The global stack grows upward from the bottom of the region, and the local
stack grows downward from the top of the region. If units is not provided or is
k or K, the size is allocated in kilobytes; if m or M in megabytes; and if g or G in
gigabytes. Because this region is expanded automatically, this option is rarely
needed. If this option is not specified the default initial size is 768 KBytes.

-o size [units] Allocates initial size units of space to the completion stack area.
If units is not provided or is k or K, the size is allocated in kilobytes; if m or
M in megabytes; and if g or G in gigabytes. Because this region is expanded
automatically, this option is rarely needed. If this option is not specified the
default initial size is 768 KBytes.

CHAPTER 3. SYSTEM DESCRIPTION 36

-r Turns off automatic stack expansion. This can occasionally be useful for isolating
memory management problems.

3.8 Memory Management

All execution stacks are automatically expanded in Version 3.3, including the local stack/heap
region, the trail/choice point region, and the completion stack region. Execution stacks in-
crease their size until it is not possible to do so with available system memory. At that
point XSB tries to find the maximal amount of space that will still fit in system memory.
For the main thread, each of these regions begin with an initial value set by the user at the
command-line or with a default value (see Section 3.7). When a thread is created within
an XSB process, the size of the thread’s execution stacks may be set by thread_create/3,
otherwise the default values indicated in Section 3.7 are used. Once XSB is running, these
default values may be modified using the appropriate Prolog flags (see Section 6.12). In
addition, whenever a thread exits, memory specific to that thread is reclaimed.

Heap garbage collection is automatically included in XSB [10, 23]. (To change the
algorithm used for heap garbage collection or to turn it off altogether, see the predicate
garbage_collection/1 or Section 3.7 for command-line options). In Version 3.3 the default
behavior is indirect garbage collection. Starting with Version 3.0, heap garbage collection
may automatically invokes garbage collection of XSB’s “string” table, which stores Prolog’s
atomic constants. Expansion and garbage collection of execution stacks can occur when
multiple threads are active; however atom garbage collection will not be invoked if there is
more than one active XSB thread.

The program area (the area into which XSB byte-code is loaded) is also dynamically
expanded as needed. For dynamic code (created using assert/1, or standard predicates
such as load_dyn/1 and load_dync/1) index size is also automatically reconfigured. Space
reclaimed for dynamic code depends on several factors. If there is only one active thread,
space is reclaimed for retracted clauses and abolished predicates as long as (1) there are
no choice points that may backtrack into the retracted or abolished code, and (2) if the
dynamic predicate is tabled, all of its tables are completed. Otherwise, the code is marked
for later garbage collection. If more than one thread is active, private predicates behave as
just described, however space reclamation for shared predicates will be delayed until there
is a single active thread. See Section 6.14 for details.

Space for tables is dynamically allocated as needed and reclaimed through use of abolish_all_tables/0,
abolish_table_pred/1, abolish_table_call/1 and other predicates. As with dynamic
code, space for tables may be reclaimed immediately or marked for later garbage collection
depending on whether choice points may backtrack into the abolished tables, on the number
of active threads, etc. Tabling also includes various stacks used to copy information into or
out of tables, most of which are dynamically allocated and expanded. These stacks may be
thread-private or shared among threads: space for thread-private stacks is reclaimed when

CHAPTER 3. SYSTEM DESCRIPTION 37

a thread exits. See Section 6.15.3 for details.

Perhaps more than a standard Prolog system, XSB is used to evaluate queries in knowl-
edge representation languages that have a higher level of declarativity than Prolog and
as a result may consume a great deal of space. If XSB needs memory that is unobtain-
able from the operating sytsem, it will usually abort with a resource error, and become
ready for a new query from its command line or API. In such a case, a user or program
can use statistics/[0,1,2] to investigate whether and how XSB is consuming memory.
Other options to bounding memory include the use of bounded_call/4 or the use of the
max_memory flag. Use of the max_memory flag is recommended in cases where XSB is em-
bedded in a C program through the C/XSB interface, or is embedded in or communicating
with a java program through Interprolog. In such a case, XSB will abort with a resource
error whenever a memory allocation would exceed the user-defined threshold 7.

3.9 Compiling, Consulting, and Loading

Like other Prologs, XSB provides for both statically compiled code and dynamically asserted
code. Static compiled code may be more optimized than asserted code, particularly for
clauses that have large bodies, but certain types of indexing, such as trie and star indexing
are (currently) available only for dynamically asserted predicates (see index/2).

3.9.1 Static Code

In XSB, there is no difference between compiled and consulted static code: “compiling” in
XSB means creation of a file containing SLG-WAM byte-code; “consulting” means loading
such a byte-code file, after compiling it (if the source file was altered later than the object
file).

consult(+Files,+OptionList)

consult(+Files)

[+Files]

The standard predicate consult/[1,2] is the most convenient method for entering
static source code rules into XSB’s database 8. Files is either s source file designator
(see Section 3.3) or a list of source file designators, and Options is a list of options
to be passed to XSB’s compiler if the file needs to be compiled (see Section 3.10).
consult(Files) is defined as consult(Files,[]), as is [Files].

Consulting a file File (module) conceptually consists of the following five steps which
are described in detail in the following paragraphs.

7In rare cases, XSB will exit if the inability to allocate more memory will leave it in an inconsistent state
(e.g. if XSB cannot allocate needed memory during heap garbage collection).

8In XSB, reconsult/[1,2] is defined to have the same actions as consult/[1,2].

CHAPTER 3. SYSTEM DESCRIPTION 38

Name Resolution: determine the file that File designates, including directory and
drive location and extension, as discussed in Section 3.3.

Compilation: if the source file or header has changed later than the object file (or
if there is no byte-code file) compile the file using compile/2 with the options
specified, creating a byte-code file. This strategy is used whether the source file
is Prolog, C, or C++.

Loading: load the byte-code file into memory.

Importing: if the file is a module, import any exported predicates of that module
to usermod.

Query Execution: execute any queries that the file may contain, i.e. any terms
with principal functor ’?-’/1, or with the principal functor ’:-’/1 and that are
not directives like the ones described in Section 3.10. The queries are executed
in the order in which they appear in the source file.

Error conditions for consult(+File,+Options) are as follows:

• File is not instantiated

– instantiation_error

• File is not an atom

– type_error(atom,File)

• File does not exist in the current set of library directories

– existence_error(file,File)

• File has an object code extension (e.g. .xwam)

– permission_error(compile,file,File)

• File has been loaded previously in the session and there is more than one active
thread.

– misc_error

Error conditions of compiler options are determined by compile/2 which consult/[1,2]

calls.

In addition, ensure_loaded/[1,2] acts much like consult/[1,2]

ensure_loaded(+FileName) ISO
This predicate checks to see whether the object file for FileName is newer than the
source code and header files for FileName, and compiles FileName if not. If FileName

is loaded into memory, ensure_loaded/1 does not reload it, unlike consult/1 which
will always reload. In addition, ensure_loaded/2 can be used to load a file with
dynamic code. It is fully documented in Section 6.14.1.

CHAPTER 3. SYSTEM DESCRIPTION 39

3.9.2 Dynamic Code

In XSB, most source code file can also be “consulted” dynamically via the predicates
load_dyn/[1,2], load_dync/[1,2] and ensure_loaded/2. These predicates act as consult/2

in that if a given file File has already been dynamically loaded, old versions of predicates
defined in File will be retracted and their new definitions made to correspond to those in
File (except for predicates in which a multifile/1 declaration is present in File). Dy-
namic loading can be performed using XSB’s reader of canonical terms (which does not
include operators, but does allow list and comma-list notation) via load_dync/2; dynamic
loading using XSB’s general reader for Hilog terms is performed via load_dyn/2.

The predicates mentioned above are described more fully in Chapter 6. Here, we simply
compare the tradeoffs of static and dynamic loading.

• Advantages for Dynamic Loading

– For large files, containing 104 − 107 clauses, dynamic loading is much faster than
XSB’s compiler, especially when the canonical reader is used.

– Dynamically loaded files have advantages of dynamic code including star-, trie,
compound, and alternate indexes, as well as being modifiable via assert and
retract.

• Advantages for Static Compilation

– Although dynamically loaded predicates are compiled into SLG-WAM code, com-
piled static clauses are more optimized than dynamically predicates, particularly
when the clauses have large bodies or when arithmetic is used. For facts and
pure binary predicates (those containing a single literal in their body) however,
static and dynamic byte code is essentially the same.

– Dynamic loading does not allow module/export declarations, mode declarations,
or unification factoring. It does however, allow files to import predicates, allows
tabling and dynamic declarations (except for auto_table and suppl_table, and
operator declarations (when a canonical read is not used).

3.9.3 The multifile directive

The default action upon loading a file or module is to delete all previous byte-code for
predicates defined in the file. If this is not the desired behavior, the user may add to the
file a declaration

:- multifile Predicate_List .

where Predicate_List is a list of predicates in functor/arity form. The effect of this
declaration is to delete only those clauses of predicate/arity that were defined in the file

CHAPTER 3. SYSTEM DESCRIPTION 40

itself. If a predicate P is to be treated as multifile, the multifile/1 directive for P must
appear in all files that contain clause definitions for P . If P is dynamic, this means that
the multifile declaration for P must appear in files defining P whether they are compiled
and consulted, or dynamically loaded via load_dyn/[1,2] or load_dync/[1,2].

3.10 The Compiler

The XSB compiler translates XSB source files into byte-code object files. It is written en-
tirely in Prolog. Both the sources and the byte code for the compiler can be found in the
XSB system directory cmplib. Prior to compiling, XSB filters the programs through GPP,
a preprocessor written by Denis Auroux (auroux@math.polytechnique.fr). This preproces-
sor maintains high degree of compatibility with the C preprocessor, but is more suitable for
processing Prolog programs. The preprocessor is invoked with the compiler option xpp_on

as described below. The various features of GPP are described in Appendix A.

XSB also allows the programmer to use preprocessors other than GPP. However, the
modules that come with XSB distribution require GPP. This is explained below (see xpp_on/1

compiler option).

The following sections describe the various aspects of the compiler in more detail.

3.10.1 Invoking the Compiler

In addition to invoking the compiler through consult/[1,2], the compiler can be in-
voked directly at the interpreter level (or in a program) through the Prolog predicates
compile/[1,2].

compile(+Files,+OptionList)

compile(+Files)

compile/2 compiles all files specified, using the compiler options specified in OptionList

(see Section 3.10.2 below for the precise details.) Files is either an absolute or rel-
ative filename, or a ground list of absolute or relative file names; and OptionList

is a ground list of compiler options. Since options can be set globally via the predi-
cate set_global_compiler_options/1, each option in OptionsList can optionally
be prefixed by + or -, indicating that the option is to be turned on, or off, respectively.
(No prefix turns the option on.)

| ?- compile(Files).

is just a notational shorthand for the query:

| ?- compile(Files, []).

For a given, File to be compiled, the source file name corresponding to File is ob-
tained by concatenating a directory prefix and the extension .P, .pl or other filenames

CHAPTER 3. SYSTEM DESCRIPTION 41

as discussed in Section 3.3. The directory prefix must be in the dynamic loader path
(see Section 3.6). Note that these directories are searched in a predetermined order
(see Section 3.6), so if a module with the same name appears in more than one of the
directories searched, the compiler will compile the first one it encounters. In such a
case, the user can override the search order by providing an absolute path name. If
File contains no extension, an attempt is made to compile the file File.P, File.pl,
or other extensions before trying compiling the file with name File.

We recommend use of the extension .P for Prolog source file to avoid ambiguity.
Optionally, users can also provide a header file for a module (denoted by the module
name suffixed by .H). In such a case, the XSB compiler will first read the header file (if
it exists), and then the source file. Currently the compiler makes no special treatment
of header files. They are simply included in the beginning of the corresponding source
files, and code can, in principle, be placed in either.

The result of the compilation (an SLG-WAM object code file) is stored in (〈filename〉.xwam),
but compile/[1,2] does not load the object file it creates. (The standard predicate
consult/[1,2] loads the object file into the system, after recompiling the source file if
needed.) The object file created is always written into the directory where the source
file resides: the user must therefore have write permission in that directory to avoid
an error.

If desired, when compiling a module (file), clauses and directives can be transformed
as they are read. This is indeed the case for definite clause grammar rules (see
Chapter 11), but it can also be done for clauses of any form by providing a definition
for predicate term_expansion/2 (see Section 11.3).

Predicates compile/[1,2] can also be used to compile foreign language modules. In
this case, the names of the source files should have the extension .c and a .P file must
not exist. A header file (with extension .H) must be present for a foreign language
module (see the chapter Foreign Language Interface in Volume 2).

Error Cases In the cases below, File refers to an element of Files if Files is a list
and otherwise refers to Files itself.

• Files is a variable, or a list containing a variable element.

– instantiation_error.

• File is a neither an atom nor a list of atoms.

– type_error(atom_or_list_of_atoms,File)

• File does not exist in the current set of library directories

– existence_error(file,File)

• File has an object code extension (e.g. .xwam)

– permission_error(compile,file,File)

CHAPTER 3. SYSTEM DESCRIPTION 42

• File has been loaded previously in the session and there is more than one active
thread.

– misc_error

• OptionList is a partial list or contains an option that is a variable

– instantiation_error

• OptionList is neither a list nor a partial list

– type_error(list,OptionsList)

• OptionList contains an option, Option not described in Section 3.10.2

– domain_error(xsb_compiler_option,Option)

3.10.2 Compiler Options

Compiler options can be set in three ways: from a global list of options (set_global_compiler_options/1),
from the compilation command (compile/2 and consult/2), and from a directive in the
file to be compiled (see compiler directive compiler_options/1).

set_global_compiler_options(+OptionsList)

OptionsList is a list of compiler options (described below). Each can optionally be
prefixed by + or -, indicating that the option is to be turned on, or off, respectively.
(No prefix turns the option on.) This evaluable predicate sets the global compiler op-
tions in the way indicated. These options will be used in any subsequent compilation,
unless they are reset by another call to this predicate, overridden by options provided
in the compile invocation, or overridden by options in the file to be compiled.

The following options are currently recognized by the compiler:

singleton_warnings_off Does not print out any warnings for singleton variables during
compilation. This option can be useful for compiling XSB programs that have been
generated by some other program.

optimize When specified, the compiler tries to optimize the object code. In Version 3.3,
this option optimizes predicate calls, among other features, so execution may be con-
siderably faster for recursive loops. However, due to the nature of the optimizations,
the user may not be able to trace all calls to predicates in the program. As expected,
the compilation phase will also be slightly longer. For these reasons, the use of the
optimize option may not be suitable for the development phase, but is recommended
once the code has been debugged.

allow_redefinition By default the compiler refuses to compile a file that contains clauses
that would redefine a standard predicate (unless the sysmod option is in effect.) By
specifying this option, the user can direct the compiler to quietly allow redefinition of
standard predicates.

CHAPTER 3. SYSTEM DESCRIPTION 43

xpp_on Filter the program through a preprocessor before sending it to the XSB compiler.
By default (and for the XSB code itself), XSB uses GPP, a preprocessor developed by
Denis Auroux (auroux@math.polytechnique.fr) that has high degree of compatibility
with the C preprocessor, but is more suitable for Prolog syntax. In this case, the
source code can include the usual C preprocessor directives, such as #define, #ifdef,
and #include. This option can be specified both as a parameter to compile/2 and as
part of the compiler_options/1 directive inside the source file. See Appendix A for
more details on GPP.

When an #include "file" statement is encountered, XSB directs the GPP prepro-
cessor to search for the files to include in the directories $XSB_DIR/emu and $XSB_DIR/prolog_includes.
However, additional directories can be added to this search path by asserting into the
predicate gpp_include_dir/1, which must be imported from module parse 9.

Note that when compiling XSB programs, GPP searches the current directory and
the directory of the parent file that contains the include-directive last. If you want
additional directories to be searched, then the following statements must be executed:

:- import gpp_include_dir/1 from parse.

:- assert(gpp_include_dir(’some-other-dir’)).

If you want Gpp to search directories in a different order, gpp_options/1 can be used
(see below).

Note: if you assert something into this predicate then you must also retractall(gpp_include_dir(_))

after that or else subsequent Prolog compilations might not work correctly.

XSB predefines the constant XSB_PROLOG, which can be used for conditional compila-
tion. For instance, you can write portable program to run under XSB and and other
prologs that support C-style preprocessing and use conditional compilation to account
for the differences:

#ifdef XSB_PROLOG

XSB-specific stuff

#else

other Prolog’s stuff

#endif

common stuff

gpp_options This dynamic predicate must be imported from module parse. If some atom
is asserted into gpp_options then this atom is assumed to be the list of command line
options to be used by the preprocessor (only the first asserted atom is ever considered).

9For compatability, XSB also supports the ISO predicate include/1 which also allows extra files to be
included during compilation.

CHAPTER 3. SYSTEM DESCRIPTION 44

If this predicate is empty, then the default list of options is used (which is ’-P -m

-nostdinc -nocurinc’, meaning: use Prolog mode and do not search the standard C
directories and the directory of the parent file that contains the include-instruction).

As mentioned earlier, when XSB invokes Gpp, it uses the option -nocurinc so that
Gpp will not search the directory of the parent file. If a particular application requires
that the parent file directory must be searched, then this can be accomplished by
executing assert(gpp_options(’-P -m -nostdinc’)).

Note: if you assert something into this predicate then you must also retractall(gpp_options(_))

after that or else subsequent Prolog compilations might not work correctly.

xpp_dump This causes XSB to dump the output from the GPP preprocessor into a file. If the
file being compiled is named file.P then the dump file is named file.P_gpp. This
option can be included in the list of options in the compiler_options/1 directive,
but usually it is used for debugging, as part of the compile/2 predicate. If xpp_dump

is specified directly in the file using compiler_options/1 directive, then it should not
follow the gpp_on option in the list (or else it will be ignored).

Note: multiple occurrences of xpp_on and xpp_dump options are allowed, but only
the first one takes effect—all the rest are ignored!

xpp_on/N and xpp_dump/N

XSB also allows one to filter program files through a series of external preprocessors
in addition to or instead of GPP. This can be specified with the unary versions of
xpp_on and xpp_dump:

xpp_on(spec1,...,specN)

xpp_dump(spec1,...,specN)

Each spec1, ..., specN is a preprocessor specification of the form preprocessor_name

or preprocessor_name(options). The preprocessor name is an atom or a function
symbol and options must be an atom. If preprocessor_name is gpp, then the GPP
preprocessor will be invoked. Note that gpp can appear anywhere in the aforesaid
sequence of specs (or not appear at all), so it is possible to preprocess XSB files before
and/or after (or instead of) GPP. Note that xpp_on(gpp) and xpp_dump(gpp) are
equivalent to the earlier 0-ary compiler options xpp_on and xpp_dump, respectively.

To use a preprocessor other than GPP two things must be done:

• A 4-ary Prolog predicate must be provided, which takes three input arguments
and produces a syntactically correct shell (Unix or Windows) command for in-
voking the preprocessor in its fourth argument. The preprocessor must be taking
its input either from the standard input or from a file and send the post-processed
result to the standard output. The arguments to the shell-command-producing
predicate are as follows:

CHAPTER 3. SYSTEM DESCRIPTION 45

– File: this is the XSB input file to be processed. Usually this argument is left
unused, but might be useful for producing error messages or debugging.

– Preprocessor name: this is the name under which the preprocessor is regis-
tered (see below). It is the same as processor_name referred to above. This
name is up to the programmer; it is to be used to refer to the preprocessor
(it does not need to be related in any way to the shell-command-producing
predicate or to the OS’s pathname for the preprocessor).

– Options: these are the command-line options that the preprocessor might
need. If the preprocessor spec mentioned above is foo(bar) then the pre-
processor name (argument 2) would be bound to foo and options (argument
3) to bar.

– Shell command: this is the only output argument. It is supposed to be
the shell command to be used to invoke the preprocessor. The shell com-
mand must not include the file name to be processed—that name is added
automatically as the last option to the shell command.

• The preprocessor must be registered using the following query:

:- import register_xsb_preprocessor/2 from parse.

?- register_xsb_preprocessor(preproc_name,preproc_predicate(_,_,_,_)).

Here preproc_name is the user-given name for the preprocessor and preproc_predicate

is the 4-ary shell-command-producing predicate described earlier.
The registration query must be executed before the start of the preprocessing
of the input XSB file. Clearly, this implies that the shell-command-producing
predicate must be in a different file than the one being preprocessed.
Note: one cannot register the same preprocessor twice. The second time the same
name is used, it is ignored. However, it is possible to register the same shell-
command-producing predicate twice, if the user registers them under different
preprocessor names.

The difference between xpp_on/N and xpp_dump/N is that the latter also saves the out-
put of each preprocessing stage in a separate file. For instance, if the XSB file to be pre-
processed is abc.P and the xpp_dump/N option has the form xpp_dump(foo,gpp,bar)

then three files will be produced: abc.P_foo, abc.P_gpp, abc.P_bar, each containing
the result of the respective stage in preprocessing.

Here is an example. Suppose that foobar.P includes the definition of the following
predicate

make_append_cmd(_File,_Name,Options,ResultingCmd) :-

fmt_write_string(ResultingCmd, ’"/bin/cat" "%s"’, arg(Options)).

and also has the following registration query:

CHAPTER 3. SYSTEM DESCRIPTION 46

?- parse:register_xsb_preprocessor(appendfile,make_append_cmd(_,_,_,_)).

Suppose that the file abc.P includes the following compiler directive:

:- compiler_options([xpp_on(appendfile(’data.P’),gpp)]).

If the file foobar.P is loaded before compiling abc.P then the file data.P will be first
appended to foobar.P and then the result will be processed by GPP. The final result
will be parsed and compiled by XSB.

Note that although the parameters _File and _Name are not used by make_append_cmd/4

in our example, when this predicate is called they will be bound to foobar.P and
appendfile, respectively, and could be used for various purposes.

quit_on_error This causes XSB to exit if compilation of a program end with an error.
This option is useful when running XSB from a makefile, when it is necessary to stop
the build process after an error has been detected. For instance, XSB uses this option
during its own build process.

auto_table When specified as a compiler option, the effect is as described in Section 3.10.4.
Briefly, a static analysis is made to determine which predicates may loop under Pro-
log’s SLD evaluation. These predicates are compiled as tabled predicates, and SLG
evaluation is used instead.

suppl_table The intention of this option is to direct the system to table for efficiency
rather than termination. When specified, the compiler uses tabling to ensure that no
predicate will depend on more than three tables or EDB facts (as specified by the
declaration edb of Section 3.10.4). The action of suppl_table is independent of that
of auto_table, in that a predicate tabled by one will not necessarily be tabled by
the other. During compilation, suppl_table occurs after auto_table, and uses table
declarations generated by it, if any.

spec_repr When specified, the compiler performs specialization of partially instantiated
calls by replacing their selected clauses with the representative of these clauses, i.e.
it performs folding whenever possible. In general specialization with replacement is
correct only under certain conditions. XSB’s compiler checks for sufficient conditions
that guarantee correctness, and if these conditions are not met, specialization with
replacement is not performed for the violating calls.

spec_off When specified, the compiler does not perform specialization of partially instan-
tiated calls.

unfold_off When specified, singleton sets optimizations are not performed during spe-
cialization. This option is necessary in Version 3.3 for the specialization of table

declarations that select only a single chain rule of the predicate.

CHAPTER 3. SYSTEM DESCRIPTION 47

spec_dump Generates a module.spec file, containing the result of specializing partially
instantiated calls to predicates defined in the module under compilation. The result
is in Prolog source code form.

ti_dump Generates a module.ti file containing the result of applying unification factoring
to predicates defined in the module under compilation. The result is in Prolog source
code form. See page 55 for more information on unification factoring.

ti_long_names Used in conjunction with ti_dump, generates names for predicates created
by unification factoring that reflect the clause head factoring done by the transforma-
tion.

modeinfer This option is used to trigger mode analysis. For each module compiled, the
mode analyzer creates a module.D file that contains the mode information.

Warning: Occasionally, the analysis itself may take a long time. As far as we have
seen, the analysis times are longer than the rest of the compilation time only when the
module contains recursive predicates of arity ≥ 10. If the analysis takes an unusually
long time (say, more than 4 times as long as the rest of the compilation) you may
want to abort and restart compilation without modeinfer.

mi_warn During mode analysis, the .D files corresponding to the imported modules are
read in. The option mi_warn is used to generate warning messages if these .D files are
outdated — i.e., older than the last modification time of the source files.

mi_foreign This option is used only when mode analysis is performed on XSB system
modules. This option is needed when analyzing standard and machine in syslib.

sysmod Mainly used by developers when compiling system modules and used for boot-
strapping. If specified, standard predicates (see /$XSB_DIR/syslib/std_xsb.P) are
automatically available for use only if they are primitive predicates (see the file
$XSB_DIR/syslib/machine.P for a current listing of primitive predicates.) When
compiling in this mode, non-primitive standard predicates must be explicitly imported
from the appropriate system module. Also standard predicates are permitted to be
defined.

verbo Compiles the files (modules) specified in “verbose” mode, printing out information
about the progress of the compilation of each predicate.

profile This option is usually used when modifying the XSB compiler. When specified,
the compiler prints out information about the time spent in certain phases of the
compilation process.

asm_dump, compile_off Generates a textual representation of the SLG-WAM assembly
code and writes it into the file module.A where module is the name of the module
(file) being compiled.

CHAPTER 3. SYSTEM DESCRIPTION 48

Warning: This option was created for compiler debugging and is not intended for
general use. There might be cases where compiling a module with these options may
cause generation of an incorrect .A and .xwam file. In such cases, the user can see the
SLG-WAM instructions that are generated for a module by compiling the module as
usual and then using the -d module.xwam command-line option of the XSB emulator
(see Section 3.7).

index_off When specified, the compiler does not generate indices for the predicates com-
piled.

3.10.3 Specialization

From Version 1.4.0 on, the XSB compiler automatically performs specialization of partially
instantiated calls. Specialization can be thought as a source-level program transformation
of a program to a residual program in which partially instantiated calls to predicates in
the original program are replaced with calls to specialized versions of these predicates.
The expectation from this process is that the calls in the residual program can be executed
more efficiently that their non-specialized counterparts. This expectation is justified mainly
because of the following two basic properties of the specialization algorithm:

Compile-time Clause Selection The specialized calls of the residual program directly
select (at compile time) a subset containing only the clauses that the corresponding
calls of the original program would otherwise have to examine during their execution
(at run time). By doing so, laying down unnecessary choice points is at least partly
avoided, and so is the need to select clauses through some sort of indexing.

Factoring of Common Subterms Non-variable subterms of partially instantiated calls
that are common with subterms in the heads of the selected clauses are factored out
from these terms during the specialization process. As a result, some head unification
(get_* or unify_*) and some argument register (put_*) WAM instructions of the
original program become unnecessary. These instructions are eliminated from both
the specialized calls as well as from the specialized versions of the predicates.

Though these properties are sufficient to get the idea behind specialization, the actual
specialization performed by the XSB compiler can be better understood by the following
example. The example shows the specialization of a predicate that checks if a list of HiLog
terms is ordered:

CHAPTER 3. SYSTEM DESCRIPTION 49

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, ordered([Y|Z]).

−→

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, _$ordered(Y, Z).

:- index _$ordered/2-2.

_$ordered(X, []).

_$ordered(X, [Y|Z]) :-

X @=< Y, _$ordered(Y, Z).

The transformation (driven by the partially instantiated call ordered([Y|Z])) effectively
allows predicate ordered/2 to be completely deterministic (when used with a proper list as
its argument), and to not use any unnecessary heap-space for its execution. We note that
appropriate :- index directives are automatically generated by the XSB compiler for all
specialized versions of predicates.

The default specialization of partially instantiated calls is without any folding of the
clauses that the calls select. Using the spec_repr compiler option (see Section 3.10.2)
specialization with replacement of the selected clauses with the representative of these
clauses is performed. Using this compiler option, predicate ordered/2 above would be
specialized as follows:

ordered([]).

ordered([X|Y]) :- _$ordered(X, Y).

:- index _$ordered/2-2.

_$ordered(X, []).

_$ordered(X, [Y|Z]) :- X @=< Y, _$ordered(Y, Z).

We note that in the presence of cuts or side-effects, the code replacement operation is
not always sound, i.e. there are cases when the original and the residual program are
not computationally equivalent (with respect to the answer substitution semantics). The
compiler checks for sufficient (but not necessary) conditions that guarantee computational
equivalence, and if these conditions are not met, specialization is not performed for the
violating calls.

The XSB compiler prints out messages whenever it specialises calls to some predicate.
For example, while compiling a file containing predicate ordered/1 above, the compiler
would print out the following message:

% Specialising partially instantiated calls to ordered/1

The user may examine the result of the specialization transformation by using the spec_dump

compiler option (see Section 3.10.2).

CHAPTER 3. SYSTEM DESCRIPTION 50

Finally, we have to mention that for technical reasons beyond the scope of this document,
specialization cannot be transparent to the user; predicates created by the transformation
do appear during tracing.

3.10.4 Compiler Directives

Consider a directive

:- foo(a).

That occurs in a file that is to be compiled. There are two logical interpretations of such a
directive.

1. foo(a) is to be executed upon loading the file; or

2. foo(a) provides information used by the compiler in compiling the file.

By default, the interpretation of a directive is as in case (1) except in the case of the
compiler directives listed in this section, which as their name implies, are taken to provide
information to the compiler. Some of the directives, such as the mode/1 directive, have
no meaning as an executable directive, while others, such as import/2 do. In fact as an
executable directive import/2 imports predicates into usermod. For such a directive, a
statement beginning with ?-, such as

?- import foo/1 from myfile.

indicates that the directive should be executed upon loading the file, and should have no
meaning to the compiler. On the other hand, the statement

:- import foo/1 from myfile.

Indicates that foo/1 terms in the file to be compiled are to be understood as myfile:foo/1.
In other words, the statement is used by the compiler and will not be executed upon loading.
For non-compiler directives the use of ?- and :- has no effect — in both cases the directive
is executed upon loading the file.

The following compiler directives are recognized in Version 3.3 of XSB

Including Files in a Compilation

include(+FileName) ISO

CHAPTER 3. SYSTEM DESCRIPTION 51

The ISO directive

:- include(FileName)

Causes the compiler to act as if the code from FileName were contained at the posi-
tion where the directive was encountered. XSB’s preprocessor can perform the same
function via the command #include FileName and can support more sophisticated
substitutions, but include/1 should be used if code portability is desired.

Mode Declarations

The XSB compiler accepts mode declarations of the form:

:- mode ModeAnnot1, . . . , ModeAnnotn.

where each ModeAnnot is a mode annotation (a term indicator whose arguments are el-
ements of the set {+,-,#,?}). From Version 1.4.1 on, mode directives are used by the
compiler for tabling directives, a use which differs from the standard use of modes in Prolog
systems10. See Section 3.10.4 for detailed examples.

Mode annotations have the following meaning:

+ This argument is an input to the predicate. In every invocation of the predicate, the
argument position must contain a non-variable term. This term may not necessarily
be ground, but the predicate is guaranteed not to alter this argument).

:- mode see(+), assert(+).

- This argument is an output of the predicate. In every invocation of the predicate the
argument position will always be a variable (as opposed to the # annotation below).
This variable is unified with the value returned by the predicate. We note that Prolog
does not enforce the requirement that output arguments should be variables; however,
output unification is not very common in practice.

:- mode cputime(-).

This argument is either:

• An output argument of the predicate for which a non-variable value may be
supplied for this argument position. If such a value is supplied, the result in this
position is unified with the supplied supplied value. The predicate fails if this
unification fails. If a variable term is supplied, the predicate succeeds, and the
output variable is unified with the return value.

:- mode ’=’(#,#).

10The most common uses of mode declarations in Prolog systems are to reduce the size of compiled code,
or to speed up a predicate’s execution.

CHAPTER 3. SYSTEM DESCRIPTION 52

• An input/output argument position of a predicate that has only side-effects (usu-
ally by further instantiating that argument). The # symbol is used to denote the
± symbol that cannot be entered from the keyboard.

? This argument does not fall into any of the above categories. Typical cases would be the
following:

• An argument that can be used both as input and as output (but usually not with
both uses at the same time).

:- mode functor(?,?,?).

• An input argument where the term supplied can be a variable (so that the argu-
ment cannot be annotated as +), or is instantiated to a term which itself contains
uninstantiated variables, but the predicate is guaranteed not to bind any of these
variables.

:- mode var(?), write(?).

We try to follow these mode annotation conventions throughout this manual.

Finally, we warn the user that mode declarations can be error-prone, and since errors in
mode declarations do not show up while running the predicates interactively, unexpected
behavior may be witnessed in compiled code, optimized to take modes into account (cur-
rently not performed by XSB). However, despite this danger, mode annotations can be a
good source of documentation, since they express the programmer’s intention of data flow
in the program.

Tabling Directives

Memoization is often necessary to ensure that programs terminate, and can be useful as an
optimization strategy as well. The underlying engine of XSB is based on SLG, a memoiza-
tion strategy, which, in our version, maintains a table of calls and their answers for each
predicate declared as tabled. Predicates that are not declared as tabled execute as in Prolog,
eliminating the expense of tabling when it is unnecessary.

The simplest way to use tabling is to include the directive

:- auto_table.

anywhere in the source file. auto_table declares predicates tabled so that the program will
terminate.

To understand precisely how auto_table does this, it is necessary to mention a few
properties of SLG. For programs which have no function symbols, or where function symbols
always have a limited depth, SLG resolution ensures that any query will terminate after it
has found all correct answers. In the rest of this section, we restrict consideration to such
programs.

CHAPTER 3. SYSTEM DESCRIPTION 53

Obviously, not all predicates will need to be tabled for a program to terminate. The
auto_table compiler directive tables only those predicates of a module which appear to
static analysis to contain an infinite loop, or which are called directly through tnot/1. It
is perhaps more illuminating to demonstrate these conditions through an example rather
than explaining them. For instance, in the program.

:- auto_table.

p(a) :- s(f(a)).

s(X) :- p(f(a)).

r(X) :- q(X,W),r(Y).

m(X) :- tnot(f(X)).

:- mode ap1(-,-,+).

ap1([H|T],L,[H|L1]) :- ap1(T,L,L1).

:- mode ap(+,+,-).

ap([],F,F).

ap([H|T],L,[H|L1]) :- ap(T,L,L1).

mem(H,[H|T]).

mem(H,[_|T]) :- mem(H,T).

The compiler prints out the messages

% Compiling predicate s/1 as a tabled predicate

% Compiling predicate r/1 as a tabled predicate

% Compiling predicate m/1 as a tabled predicate

% Compiling predicate mem/2 as a tabled predicate

Terminating conditions were detected for ap1/3 and ap/3, but not for any of the other
predicates.

auto_table gives an approximation of tabled programs which we hope will be useful
for most programs. The minimal set of tabled predicates needed to ensure termination for
a given program is undecidable. It should be noted that the presence of meta-predicates
such as call/1 makes any static analysis useless, so that the auto_table directive should
not be used in such cases.

Predicates can be explicitly declared as tabled as well, through the table/1. When
table/1 is used, the directive takes the form

CHAPTER 3. SYSTEM DESCRIPTION 54

:- table(F/A).

where F is the functor of the predicate to be tabled, and A its arity.

Another use of tabling is to filter out redundant solutions for efficiency rather than
termination. In this case, suppose that the directive edb/1 were used to indicate that
certain predicates were likely to have a large number of clauses. Then the action of the
declaration :- suppl_table in the program:

:- edb(r1/2).

:- edb(r2/2).

:- edb(r3/2).

:- suppl_table.

join(X,Z):- r1(X,X1),r2(X1,X2),r3(X2,Z).

would be to table join/2. The suppl_table directive is the XSB analogue to the deductive
database optimization, supplementary magic templates [5]. suppl_table/0 is shorthand for
suppl_table(2) which tables all predicates containing clauses with two or more edb facts
or tabled predicates. By specifying suppl_table(3) for instance, only predicates containing
clauses with three or more edb facts or tabled predicates would be tabled. This flexibility
can prove useful for certain data-intensive applications.

Indexing Directives

The XSB compiler by default generates an index on the principal functor of the first argu-
ment of a predicate. Indexing on the appropriate argument of a predicate may significantly
speed up its execution time. In many cases the first argument of a predicate may not be
the most appropriate argument for indexing and changing the order of arguments may seem
unnatural. In these cases, the user may generate an index on any other argument by means
of an indexing directive. This is a directive of the form:

:- index Functor/Arity-IndexArg.

indicating that an index should be created for predicate Functor/Arity on its IndexArgth

argument. One may also use the form:

:- index(Functor/Arity, IndexArg, HashTableSize).

which allows further specification of the size of the hash table to use for indexing this
predicate if it is a dynamic (i.e., asserted) predicate. For predicates that are dynamically
loaded, this directive can be used to specify indexing on more than one argument, or indexing
on a combination of arguments (see its description on page 235). For a compiled predicate
the size of the hash table is computed automatically, so HashTableSize is ignored.

CHAPTER 3. SYSTEM DESCRIPTION 55

All of the values Functor, Arity, IndexArg (and possibly HashTableSize) should be
ground in the directive. More specifically, Functor should be an atom, Arity an integer in
the range 0..255, and IndexArg an integer between 0 and Arity. If IndexArg is equal to 0,
then no index is created for that predicate. An index directive may be placed anywhere in
the file containing the predicate it refers to.

As an example, if we wished to create an index on the third argument of predicate
foo/5, the compiler directive would be:

:- index foo/5-3.

Unification Factoring

When the clause heads of a predicate have portions of arguments common to several clauses,
indexing on the principal functor of one argument may not be sufficient. Indexing may be
improved in such cases by the use of unification factoring. Unification Factoring is a program
transformation that “factors out” common parts of clause heads, allowing differing parts to
be used for indexing, as illustrated by the following example:

p(f(a),X) :- q(X).

p(f(b),X) :- r(X).
−→

p(f(X),Y) :- _$p(X,Y).

_$p(a,X) :- q(X).

_$p(b,X) :- r(X).

The transformation thus effectively allows p/2 to be indexed on atoms a/0 and b/0. Uni-
fication Factoring is transparent to the user; predicates created by the transformation are
internal to the system and do not appear during tracing.

The following compiler directives control the use of unification factoring 11:

:- ti(F/A). Specifies that predicate F/A should be compiled with unification factoring
enabled.

:- ti_off(F/A). Specifies that predicate F/A should be compiled with unification factor-
ing disabled.

:- ti_all. Specifies that all predicates defined in the file should be compiled with unifi-
cation factoring enabled.

:- ti_off_all. Specifies that all predicates defined in the file should be compiled with
unification factoring disabled.

By default, higher-order predicates (more precisely, predicates named apply with arity
greater than 1) are compiled with unification factoring enabled. It can be disabled using the

11Unification factoring was once called transformational indexing, hence the abbreviation ti in the com-
piler directives

CHAPTER 3. SYSTEM DESCRIPTION 56

ti_off directive. For all other predicates, unification factoring must be enabled explicitly
via the ti or ti_all directive. If both :- ti(F/A). (:- ti_all.) and :- ti_off(F/A).

(:- ti_off_all.) are specified, :- ti_off(F/A). (:- ti_off_all.) takes precedence.
Note that unification factoring may have no effect when a predicate is well indexed to begin
with. For example, unification factoring has no effect on the following program:

p(a,c,X) :- q(X).

p(b,c,X) :- r(X).

even though the two clauses have c/0 in common. The user may examine the results of the
transformation by using the ti_dump compiler option (see Section 3.10.2).

Other Directives

XSB has other directives not found in other Prolog systems.

:- hilog atom1, . . . , atomn.

Declares symbols atom1 through atomn as HiLog symbols. The hilog declaration
should appear before any use of the symbols. See Chapter 4 for a purpose of this
declaration.

:- ldoption(Options).

This directive is only recognized in the header file (.H file) of a foreign module. See
the chapter Foreign Language Interface in Volume 2 for its explanation.

:- compiler_options(OptionsList).

Indicates that the compiler options in the list OptionsList should be used to compile
this file. This must appear at the beginning of the file. These options will override
any others, including those given in the compilation command. The options may be
optionally prefixed with + or - to indicate that they should be set on or off. (No prefix
indicates the option should be set on.)

3.10.5 Inline Predicates

Inline predicates represent “primitive” operations in the (extended) WAM. Calls to inline
predicates are compiled into a sequence of WAM instructions in-line, i.e. without actually
making a call to the predicate. Thus, for example, relational predicates (like >/2, >=/2,
etc.) compile to, essentially, a subtraction followed by a conditional branch. As a result,
calls to inline predicates will not be trapped by the debugger, and their evaluation will not
be visible during a trace of program execution. Inline predicates are expanded specially
by the compiler and thus cannot be redefined by the user without changing the compiler.

CHAPTER 3. SYSTEM DESCRIPTION 57

The user does not need to import these predicates from anywhere. There are available no
matter what options are specified during compiling.

Table 3.1 lists the inline predicates of XSB Version 3.3. Those predicates that start with
_$ are internal predicates that are also expanded in-line during compilation.

’=’/2 ’<’/2 ’=<’/2 ’>=’/2 ’>’/2

’=:=’/2 ’=\=’/2 is/2 ’@<’/2 ’@=<’/2

’@>’/2 ’@>=’/2 ’==’/2 ’\==’/2 fail/0

true/0 var/1 nonvar/1 halt/0 ’!’/0

min/2 max/2 ’><’/2 **/2 sign/1

’_$cutto’/1 ’_$savecp’/1 ’_$builtin’/1

Table 3.1: The Inline Predicates of XSB

We warn the user to be cautious when defining predicates whose functor starts with _$

since the names of these predicates may interfere with some of XSB’s internal predicates.
The situation may be particularly severe for predicates like ’_$builtin’/1 that are treated
specially by the XSB compiler.

3.11 A Note on ISO Compatibility

In Version 3.3, an effort has been made to ensure compatibility with the core Prolog ISO
standard [34]. In this section, we summarize the differences with the ISO standard. XSB
implements almost all ISO built-ins and evaluable functions, although there are certain
semantic differences between XSB’s implementation and that of the ISO standard in certain
cases.

The main difference of XSB with the ISO standard is in terms of parsing. Version 3.3
of XSB does not support full ISO syntax 12. In addition, XSB supports only the ASCII
character set for atoms, predicates and functions, so that ISO predicates relating to different
character sets, such as char_conversion/2, current_char_conversion/2 and others are
not supported.

Another difference is that XSB does not support the logical update semantics for assert
and retract, but instead supports an immediate semantics. Despite the patholical examples
that can be devised using the immediate semantics, the logical semantics for assert is not
often critical for single-threaded applications. It is however, critical for multi-threaded
applications, and XSB will support this in the future.

A somewhat more minor difference involves XSB’s implementation of ISO streams. XSB
can create streams from several Firstzd class objects, including pipes, atoms, and consoles

12XSB also does not support multiple character sets or Unicode, which is perhaps a bigger limitation than
the lack of full ISO syntax.

CHAPTER 3. SYSTEM DESCRIPTION 58

in addition to files. However by default, XSB opens streams in binary mode, rather than
text mode in opposition to the ISO standard, which opens streams in text mode. This
makes no difference in UNIX or LINUX, for which text and binary streams are identical,
but does make a difference in Windows, where text files are processed more than binary
files.

Most other differences with the core standard are mentioned under portability notes for
the various predicates.

XSB supports most new features mentioned in the revisions to the core standard [35], in-
cluding call_cleanup/2 and various library predicates such as subsumes/2, numbervars/3

and so on. XSB also has strong support for the working multi-threading Prolog stan-
dard [36], and XSB has been one of the first Prologs to support this standard. However,
because XSB has an atom-based module system it does not support the ISO standard for
Prolog modules.

Chapter 4

Syntax

The syntax of XSB is taken from C-Prolog with extensions to support HiLog [13] 1, which
adds certain features of second-order syntax to Prolog.

4.1 Terms

The data objects of the HiLog language are called terms. A HiLog term can be constructed
from any logical symbol or a term followed by any finite number of arguments. In any case,
a term is either a constant, a variable, or a compound term.

A constant is either a number (integer or floating-point) or an atom. Constants are
definite elementary objects, and correspond to proper nouns in natural language.

4.1.1 Integers

The printed form of an integer in HiLog consists of a sequence of digits optionally preceded
by a minus sign (’-’). These are normally interpreted as base 10 integers. It is also possible
to enter integers in other bases (2 through 36); this can be done by preceding the digit string
by the base (in decimal) followed by an apostrophe (’). If a base greater than 10 is used,
the characters A-Z or a-z are used to stand for digits greater than 9.

Using these rules, examples of valid integer representations in XSB are:

1 -3456 95359 9’888 16’1FA4 -12’A0 20’

representing respectively the following integers in decimal base:

1Sporadic attempts are made to make XSB ISO-compliant, contact us if you have a problem with syntax.

59

CHAPTER 4. SYNTAX 60

1 -3456 95359 728 8100 -120 0

Note that the following:

+525 12’2CF4 37’12 20’-23

are not valid integers of XSB.

A base of 0 (zero) will return the ASCII code of the (single) character after the apos-
trophe; for example,

0’A = 65

4.1.2 Floating-point Numbers

A HiLog floating-point number consists of a sequence of digits with an embedded decimal
point, optionally preceded by a minus sign (’-’), and optionally followed by an exponent
consisting of uppercase or lowercase ’E’ and a signed base 10 integer.

Using these rules, examples of HiLog floating point numbers are:

1.0 -34.56 817.3E12 -0.0314e26 2.0E-1

Note that in any case there must be at least one digit before, and one digit after, the decimal
point.

4.1.3 Atoms

A HiLog atom is identified by its name, which is a sequence of up to 1000 characters (other
than the null character). Just like a Prolog atom, a HiLog atom can be written in any of
the following forms:

• Any sequence of alphanumeric characters (including ’_’), starting with a lowercase
letter.

• Any sequence from the following set of characters (except of the sequence ’/*’, which
begins a comment):

+ - * / \ ^ < > = ‘ ~ : . ? @ # &

• Any sequence of characters delimited by single quotes, such as:

CHAPTER 4. SYNTAX 61

’sofaki’ ’%’ ’_$op’

If the single quote character is to be included in the sequence it must be written twice.
For example:

’don’’t’ ’’’’

• Any of the following:

! ; [] {}

Note that the bracket pairs are special. While ’[]’ and ’{}’ are atoms, ’[’, ’]’,
’{’, and ’}’ are not. Like Prolog, the form [X] is a special notation for lists (see
Section 4.1.6), while the form {X} is just “syntactic sugar” for the term ’{}’(X).

Examples of HiLog atoms are:

h foo ^=.. ::= ’I am also a HiLog atom’ []

4.1.4 Variables

Variables may be written as any sequence of alphanumeric characters (including ’_’) be-
ginning with either a capital letter or ’_’. For example:

X HiLog Var1 _3 _List

If a variable is referred to only once in a clause, it does not need to be named and may
be written as an anonymous variable, represented by a single underscore character ’_’.
Any number of anonymous variables may appear in a HiLog clause; all of these variables
are read as distinct variables. Anonymous variables are not special at runtime.

4.1.5 Compound Terms

Like in Prolog, the structured data objects of HiLog are compound terms (or structures).
The external representation of a HiLog compound term comprises a functor (called the
principal functor or the name of the compound term) and a sequence of one or more terms
called arguments. Unlike Prolog where the functor of a term must be an atom, in HiLog
the functor of a compound term can be any valid HiLog term. This includes numbers,
atoms, variables or even compound terms. Thus, since in HiLog a compound term is just
a term followed by any finite number of arguments, all the following are valid external
representations of HiLog compound terms:

CHAPTER 4. SYNTAX 62

foo(bar) prolog(a, X) hilog(X)

123(john, 500) X(kostis, sofia) X(Y, Z, Y(W))

f(a, (b(c))(d)) map(double)([], []) h(map(P)(A, B))(C)

Like a functor in Prolog, a functor in HiLog can be characterized by its name and
its arity which is the number of arguments this functor is applied to. For example, the
compound term whose principal functor is ’map(P)’ of arity 2, and which has arguments
L1, and L2, is written as:

map(P)(L1, L2)

As in Prolog, when we need to refer explicitly to a functor we will normally denote it
by the form Name/Arity. Thus, in the previous example, the functor ’map(P)’ of arity 2
is denoted by:

map(P)/2

Note that a functor of arity 0 is represented as an atom.

In Prolog, a compound term of the form p(t1, t2, . . . , tk) is usually pictured as a tree in
which every node contains the name p of the functor of the term and has exactly k children
each one of which is the root of the tree of terms t1, t2, . . . , tk.

For example, the compound term

s(np(kostis), vp(v(loves), np(sofia)))

would be pictured as the following tree:
s

/ \

np vp

| / \

| v np

| | |

kostis loves sofia

The principal functor of this term is s/2. Its two arguments are also compound terms. In
illustration, the principal functor of the second argument is vp/2.

Likewise, any external representation of a HiLog compound term t(t1, t2, . . . , tk) can be
pictured as a tree in which every node contains the tree representation of the name t of the
functor of the term and has exactly k children each one of which is the root of the tree of
terms t1, t2, . . . , tk.

Sometimes it is convenient to write certain functors as operators. Binary functors (that
is, functors that are applied to two arguments) may be declared as infix operators, and

CHAPTER 4. SYNTAX 63

unary functors (that is, functors that are applied to one argument) may be declared as
either prefix or postfix operators. Thus, it is possible to write the following:

X+Y (P;Q) X<Y +X P;

More about operators in HiLog can be found in section 4.3.

4.1.6 Lists

As in Prolog, lists form an important class of data structures in HiLog. They are essentially
the same as the lists of Lisp: a list is either the atom ’[]’, representing the empty list, or
else a compound term with functor ’.’ and two arguments which are the head and tail
of the list respectively, where the tail of a list is also a list. Thus a list of the first three
natural numbers is the structure:

.

/ \

1 .

/ \

2 .

/ \

3 []

which could be written using the standard syntax, as:

.(1,.(2,.(3,[])))

but which is normally written in a special list notation, as:

[1,2,3]

Two examples of this list notation, as used when the tail of a list is a variable, are:

[Head|Tail] [foo,bar|Tail]

which represent the structures:

. .

/ \ / \

Head Tail foo .

/ \

bar Tail

CHAPTER 4. SYNTAX 64

respectively.

Note that the usual list notation [H|T] does not add any new power to the language;
it is simply a notational convenience and improves readability. The above examples could
have been written equally well as:

.(Head,Tail) .(foo,.(bar,Tail))

For convenience, a further notational variant is allowed for lists of integers that cor-
respond to ASCII character codes. Lists written in this notation are called strings. For
example,

"I am a HiLog string"

represents exactly the same list as:

[73,32,97,109,32,97,32,72,105,76,111,103,32,115,116,114,105,110,103]

4.2 From HiLog to Prolog

From the discussion about the syntax of HiLog terms, it is clear that the HiLog syntax
allows the incorporation of some higher-order constructs in a declarative way within logic
programs. As we will show in this section, HiLog does so while retaining a clean first-
order declarative semantics. The semantics of HiLog is first-order, because every HiLog
term (and formula) is automatically encoded (converted) in predicate calculus in the way
explained below.

Before we briefly explain the encoding of HiLog terms, let us note that the HiLog syntax
is a simple (but notationally very convenient) encoding for Prolog terms, of some special
form. In the same way that in Prolog:

1 + 2

is just an (external) shorthand for the term:

+(1, 2)

in the presence of an infix operator declaration for + (see section 4.3), so:

X(a, b)

is just an (external) shorthand for the Prolog compound term:

CHAPTER 4. SYNTAX 65

apply(X, a, b)

Also, in the presence of a hilog declaration (see section 3.10.4) for h, the HiLog term whose
external representation is:

h(a, h, b)

is a notational shorthand for the term:

apply(h, a, h, b)

Notice that even though the two occurrences of h refer to the same symbol, only the one
where h appears in a functor position is encoded with the special functor apply/n, n ≥ 1.

The encoding of HiLog terms is performed based upon the existing declarations of hilog
symbols. These declarations (see section 3.10.4), determine whether an atom that appears
in a functor position of an external representation of a HiLog term, denotes a functor or
the first argument of a set of special functors apply. The actual encoding is as follows:

• The encoding of any variable or parameter symbol (atom or number) that does not
appear in a functor position is the variable or the symbol itself.

• The encoding of any compound term t where the functor f is an atom that is not one
of the hilog symbols (as a result of a previous hilog declaration), is the compound
term that has f as functor and has as arguments the encoding of the arguments of
term t. Note that the arity of the compound term that results from the encoding of t
is the same as that of t.

• The encoding of any compound term t where the functor f is either not an atom, or
is an atom that is a hilog symbol, is a compound term that has apply as functor,
has first argument the encoding of f and the rest of its arguments are obtained by
encoding of the arguments of termt. Note that in this case the arity of the compound
term that results from the encoding of t is one more than the arity of t.

Note that the encoding of HiLog terms described above, implies that even though the
HiLog terms:

p(a, b)

h(a, b)

externally appear to have the same form, in the presence of a hilog declaration for h but
not for p, they are completely different. This is because these terms are shorthands for the
terms whose internal representation is:

CHAPTER 4. SYNTAX 66

p(a, b)

apply(h, a, b)

respectively. Furthermore, only h(a,b) is unifiable with the HiLog term whose external
representation is X(a, b).

We end this short discussion on the encoding of HiLog terms with a small example that
illustrates the way the encoding described above is being done. Assuming that the following
declarations of parameter symbols have taken place,

:- hilog h.

:- hilog (hilog).

before the compound terms of page 61 were read by XSB, the encoding of these terms in
predicate calculus using the described transformation is as follows:

foo(bar) prolog(a,X)

apply(hilog,X) apply(123,john,500)

apply(X,kostis,sofia) apply(X,Y,Z,apply(Y,W))

f(a,apply(b(c),d)) apply(map(double),[],[])

apply(apply(h,apply(map(P),A,B)),C)

4.3 Operators

From a theoretical point of view, operators in Prolog are simply a notational convenience
and add absolutely nothing to the power of the language. For example, in most Prologs
’+’ is an infix operator, so

2 + 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure:

+

/ \

2 1

and not the number 3. (The addition would only be performed if the structure were passed
as an argument to an appropriate procedure, such as is/2).

However, from a practical or a programmer’s point of view, the existence of operators
is highly desirable, and clearly handy.

Prolog syntax allows operators of three kinds: infix, prefix, and postfix. An infix operator
appears between its two arguments, while a prefix operator precedes its single argument and
a postfix operator follows its single argument.

CHAPTER 4. SYNTAX 67

Each operator has a precedence, which is an integer from 1 to 1200. The precedence is
used to disambiguate expressions in which the structure of the term denoted is not made
explicit through the use of parentheses. The general rule is that the operator with the
highest precedence is the principal functor. Thus if ’+’ has a higher precedence than ’/’,
then the following

a+b/c a+(b/c)

are equivalent, and both denote the same term +(a,/(b,c)). Note that in this case, the
infix form of the term /(+(a,b),c) must be written with explicit use of parentheses, as in:

(a+b)/c

If there are two operators in the expression having the same highest precedence, the
ambiguity must be resolved from the types (and the implied associativity) of the operators.
The possible types for an infix operator are

yfx xfx xfy

Operators of type ’xfx’ are not associative. Thus, it is required that both of the arguments
of the operator must be subexpressions of lower precedence than the operator itself; that
is, the principal functor of each subexpression must be of lower precedence, unless the
subexpression is written in parentheses (which automatically gives it zero precedence).

Operators of type ’xfy’ are right-associative: only the first (left-hand) subexpression
must be of lower precedence; the right-hand subexpression can be of the same precedence
as the main operator. Left-associative operators (type ’yfx’) are the other way around.

An atom named Name can be declared as an operator of type Type and precedence
Precedence by the command;

op(+Precedence,+Type,+Name) ISO

The same command can be used to redefine one of the predefined XSB operators (obtainable
via current_op/3). However, it is not allowed to alter the definition of the comma (’,’)
operator. An operator declaration can be cancelled by redeclaring the Name with the same
Type, but Precedence 0.

As a notational convenience, the argument Name can also be a list of names of operators
of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds: infix, prefix, or postfix. An operator of any kind may be redefined by a
new declaration of the same kind. For example, the built-in operators ’+’ and ’-’ are as
if they had been declared by the command:

CHAPTER 4. SYNTAX 68

:- op(500, yfx, [+,-]).

so that:

1-2+3

is valid syntax, and denotes the compound term:

(1-2)+3

or pictorially:

+

/ \

- 3

/ \

1 2

In XSB, the list functor ’.’/2 is one of the standard operators, that can be thought as
declared by the command:

:- op(661, xfy, .).

So, in XSB,

1.2.[]

represents the structure

.

/ \

1 .

/ \

2 []

Contrasting this picture with the picture above for 1-2+3 shows the difference between
’yfx’ operators where the tree grows to the left, and ’xfy’ operators where it grows to the
right. The tree cannot grow at all for ’xfx’ type operators. It is simply illegal to combine
’xfx’ operators having equal precedences in this way.

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.

In Version 3.3 of XSB the possible types for prefix operators are:

CHAPTER 4. SYNTAX 69

fx fy hx hy

and the possible types for postfix operators are:

xf yf

We end our discussion about operators by mentioning that prefix operators of type hx

and hy are proper HiLog operators. The discussion of proper HiLog operators and their
properties is deferred for the manual of a future version.

Chapter 5

Using Tabling in XSB: A Tutorial
Introduction

XSB has two ways of evaluating predicates. The default is to use Prolog-style evaluation,
but by using various declarations a programmer can also use tabled resolution which can
provide a different, more declarative programming style than Prolog. In this section we
discuss various aspects of tabling and their implementation in XSB. Our aim in this section
is to provide a user with enough information to be able to program productively with tables
in XSB. It is best to read this tutorial with a copy of XSB handy, since much of the
information is presented through a series of exercises.

For the theoretically inclined, XSB uses SLG resolution which can compute queries to
non-floundering normal programs under the well-founded semantics [80], and is guaranteed
to terminate when these programs have the bounded term-depth property. This tutorial
covers only enough of the theory of tabling to explain how to program in XSB. For those
interested, the web site contains papers covering in detail various aspects of tabling (often
through the links for individuals involved in XSB). An overview of SLG resolution, and
practical evaluation strategies for it, are provided in [15, 71, 65, 28]. The engine of XSB,
the SLG-WAM, is an extension of the WAM [84, 1], and is described in [62, 58, 27, 64, 14,
22, 37, 18, 19, 11, 51, 74, 52, 76] as it is implemented in Version 3.3 and its performance
analyzed. Examples of large-scale applications that use tabling are overviewed in [42, 43,
16, 21, 57, 7, 17, 31, 77].

5.1 Tabling in the Context of a Prolog System

Before describing how to program using tabling it is perhaps worthwhile to review some of
the goals of XSB’s implementation of tabling. Among them are:

70

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 71

1. To execute tabled predicates at the speed of compiled Prolog.

2. To ensure that the speed of compiled Prolog is not slowed significantly by adding the
option of tabling.

3. To ensure that the functionality of Prolog is not compromised by support for tabling.

4. To provide Prolog functionality in tabled predicates and operators whenever it is
semantically sensible to do so.

5. To provide standard predicates to manipulate tables taken as data structures in them-
selves.

Goals 1 and 2 are addressed by XSB’s engine, which in Version 3.3 is based on a virtual
machine called the SLG-WAM. The overhead for SLD resolution using this machine is small,
and usually less than 5%. Thus when XSB is used simply as a Prolog system (i.e., no tabling
is used), it is reasonably competitive with other Prolog implementations based on a WAM
emulator written in C or assembly. For example, when compiled as a threaded interpreter
(see Chapter 3) XSB Version 3.3 is about two times slower than Quintus 3.1.1 or emulated
SICStus Prolog 3.1. Goals 3, 4 and 5 have been nearly met, but there are a few instances
in which interaction of tabling with a Prolog construct has not been accomplished, or is
perhaps impossible. Accordingly we discuss these instances throughout this chapter. XSB
is still under development however, so that future versions may support more transparent
mixing of Prolog and tabled code.

5.2 Definite Programs

Definite programs, also called Horn Clause Programs, are Prolog programs without negation
or aggregation. In XSB, this means without the \+/1, fail_if/1, not/1, tnot/1, setof/3,
bagof/3, tt findall/3 or other aggregation operators. Consider the Prolog program

path(X,Y) :- path(X,Z), edge(Z,Y).

path(X,Y) :- edge(X,Y).

together with the query ?- path(1,Y). This program has a simple, declarative meaning:
there is a path from X to Y if there is a path from X to some node Z and there is an edge
from Z to Y, or if there is an edge from X to Y. Prolog, however, enters into an infinite loop
when computing an answer to this query. The inability of Prolog to answer such queries,
which arise frequently, comprises one of its major limitations as an implementation of logic.

A number of approaches have been developed to address this problem by reusing partial
answers to the query path(1,Y) [25, 78, 4, 81, 82]. The ideas behind these algorithms can
be described in the following manner. Calls to tabled predicates, such as path(1,Y) in the
above example, are stored in a searchable structure together with their proven instances.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 72

This collection of tabled subgoals paired with their answers, generally referred to as a table,
is consulted whenever a new call, C, to a tabled predicate is issued. If C is sufficiently
similar to a tabled subgoal S, then the set of answers, A, associated with S may be used
to satisfy C. In such instances, C is resolved against the answers in A, and hence we refer
to the call C as a consumer of A (or S). If there is no such S, then C is entered into the
table and is resolved against program clauses as in Prolog — i.e., using SLD resolution.
As each answer is derived during this process, it is inserted into the table entry associated
with C if it contains information not already in A. In this second case, we refer to C as a
generator, or producer , as resolution of C in this manner produces the answers stored in its
table entry. If the answer is in fact added to this set, then it is additionally scheduled to be
returned to all consumers of C. If instead it is rejected as redundant, then the evaluation
simply fails and backtracks to generate more answers.

Notice that since consuming subgoals resolve against unique answers rather than re-
peatedly against program clauses, tabling will terminate whenever

1. a finite number of subgoals are encountered during query evaluation, and

2. each of these subgoals has a finite number of answers.

Indeed, it can be proven that for any program with the bounded term depth property —
roughly, where all terms generated in a program have a maximum depth — SLG computa-
tion will terminate. These programs include the important class of Datalog programs.

Predicates can be declared tabled in a variety of ways. A common form is the compiler
directive

:- table P1, . . . , Pn.

where each Pi is a predicate indicator or callable term. More generally

:- table P1, . . . , Pn as Options.

allows a user to specify different types of tabling through Options along with other prop-
erties of the designated predicates For static predicates, these directives must be added to
the file containing the clauses of the predicate(s) to be tabled, and the directives cause the
predicates to be compiled with tabling 1. For dynamic predicates, the executable directives

?- table P1, . . . Pn.

and
?- table P1, . . . , Pn as Options.

cause a Pi to be tabled (with the appropriate options) if no clauses have been asserted for
Pi.

1In Version 3.3, tabling does not work together with multi-file predicates.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 73

Exercises Unless otherwise noted, the file $XSB_DIR/examples/table_examples.P con-
tains all the code for the running examples in this section. Invoke XSB with its default
settings (i.e., don’t supply additional options) when working through the following exercises.

Exercise 5.2.1 Consult $XSB_DIR/examples/table_examples.P into XSB and and try
the goal

?- path(1,X).

and continue typing ;<RETURN> until you have exhausted all answers. Now, try rewriting the
path/2 predicate as it would be written in Prolog — and without a tabling declaration. Will
it now terminate for the provided edge/2 relation? (Remember, in XSB you can always hit
<ctrl>-C if you go into an infinite loop). ✷

The return of answers in tabling aids in filtering out redundant computations – indeed
it is this property which makes tabling terminate for many classes of programs. The same

generation program furnishes a case of the usefulness of tabling for optimizing a Prolog
program.

Exercise 5.2.2 If you are still curious, load in the file cyl.P in the $XSB_DIR/examples

directory using the command.

?- load_dync(cyl.P).

and then type the query

?- same_generation(X,X),fail.

Now rewrite the same_generation/2 program so that it does not use tabling and retry the
same query. What happens? (Be patient — or use <ctrl>-C). ✷

Exercise 5.2.3 The file table_examples.P contains a set of facts

ordered_goal(one).

ordered_goal(two).

ordered_goal(three).

ordered_goal(four).

Clearly, the query ?- ordered_goal(X) will return the answers in the expected order.
table_examples.P also contains a predicate

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 74

:- table table_ordered_goal/1.

table_ordered_goal(X):- ordered_goal(X).

which simply calls ordered_goal/1 and tables its answers (tabling is unnecessary in this
case, and is only used for illustration). Call the query ?- table_ordered_goal(X) and
backtrack through the answers. In what order are the answers returned?

The examples stress two differences between tabling and SLD resolution beyond termina-
tion properties. First, that each solution to a tabled subgoal is returned only once — a
property that is helpful not only for path/2 but also for same_generation/2 which termi-
nates in Prolog. Second, because answers are sometimes obtained using program clauses
and sometimes using the table, answers may be returned in an unaccustomed order.

Tabling Dynamic Predicates Dynamic predicates may be tabled just as static predi-
cates, as the following exercise shows.

Exercise 5.2.4 For instance, restart XSB and at the prompt type the directive

?- table(dyn_path/2).

and

?- load_dyn(dyn_examples).

Try the queries to path/2 of the previous examples. Note that it is important to dynamically
load dyn_examples.P — otherwise the code in the file will be compiled without knowledge
of the tabling declaration. ✷

In general, as long as the directive table/1 is executed before asserting (or dynamically
loading) the predicates referred to in the directive, any dynamic predicate can be tabled.

Letting XSB Decide What to Table Other tabling declarations are also provided.
Often it is tedious to decide which predicates must be tabled. To address this, XSB can
automatically table predicates in files. The declaration auto_table chooses predicates to
table to assist in termination, while suppl_table chooses predicates to table to optimize
data-oriented queries. Both are explained in Section 3.10.2. 2.

2The reader may have noted that table/1, is referred to as a directive, while auto_table/0 and
suppl_table/0 were referred to as declarations. The difference is that at the command line, user can
execute a directive but not a compiler declaration.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 75

5.2.1 Call Variance vs. Call Subsumption

The above description gives a general characterization of tabled evaluation for definite
programs but glosses over certain details. In particular, we have not specified the criteria
for

• Call Similarity – whereby a newly issued subgoal S is determined to be “sufficiently
similar” to a tabled subgoal Stab so that S can use the answers from the table of Stab

rather than re-deriving its own answers. In the first case where S uses answers of a
tabled subgoal it is termed a consumer; in the second case when S produces its own
answers it is called a generator or producer.

• Answer Similarity – whereby a derived answer to a tabled subgoal is determined to
contain information similar to that already in the set of answers for that subgoal.

Different measures of similarity are possible. XSB’s engine supports two measures for call
similarity: variance and subsumption. XSB’s engine supports a variance-based measure for
answer similarity, but allows users to program other measures in certain cases. We discuss
call similarity here, but defer the discussion of answer similarity until Section 5.4.

Determining Call Similarity via Variance By default, XSB determines that a subgoal
S is similar to a tabled subgoal Stab if S is a variant of Stab, that is if S and Stab are
identical up to variable renaming 3. As an example p(X,Y,X) is a variant of p(A,B,A), but
not of p(X,Y,Y), or p(X,Y,Z). Under variance-based call similarity, or call variance, when
a tabled subgoal S is encountered, a search for a table entry containing a variant subgoal
Stab is performed. Notice that if Stab exists, then all of its answers are also answers to S,
and therefore will be resolved against it. Call variance was used in the original formulation
of SLG resolution [15] for the evaluation of normal logic programs according to the well-
founded semantics and interacts well with many of Prolog’s extra-logical constructs.

Determining Call Similarity via Subsumption Call similarity can also be based
on call subsumption. A term T1 subsumes a term T2 if T2 is more specific than T1

4.
Furthermore, we say that T1 properly subsumes T2 if T2 subsumes T1, but is not a variant of
T1. Under call subsumption, when a tabled subgoal S is encountered, a search is performed
for a table entry containing a subsuming subgoal Stab. Notice that, if such an entry exists,
then its answer set A logically contains all the solutions to satisfy C. The subset of answers
A′ ⊆ A which unify with C are said to be relevant to C.

3Formally, S and Stab are variants if they have an mgu θ such that the domain and range of θ1 consists
only of variables.

4Formally, T1 subsumes T2 if there is a substitution θ whose domain consists only of variables from T1

such that T1θ = T2.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 76

Notice that call subsumption permits greater reuse of computed results, thus avoiding
even more program resolution, and thereby can lead to time and space performances superior
to call variance. In addition, beginning with Version 3.2, call-subsumption based tabling
fully supports well-founded negation under the default local scheduling strategy. However,
there are downsides to this paradigm. First of all, subsumptively tabled predicates do not
interact well with certain Prolog constructs with which variant-tabled predicates can (see
Example 5.2.4 below). Second, call subsumption does not yet support calls with tabled
attributed variables or answer subsumption 5.

Example 5.2.1 The terms T1: p(f(Y),X,1) and T2: p(f(Z),U,1) are variants as one can
be made to look like the other by a renaming of the variables. Therefore, each subsumes
the other.
The term t3: p(f(Y),X,1) subsumes the term t4: p(f(Z),Z,1). However, they are not
variants. Hence t3 properly subsumes t4. ✷

The above examples show how a variant-based tabled evaluation can reduce certain
redundant subcomputations over SLD. However, even more redundancy can be eliminated,
as the following example shows.

Exercise 5.2.5 Begin by abolishing all tables in XSB, and then type the following query

?- abolish_all_tables.

?- path(X,Y), fail.

Notice that only a single table entry is created during the evaluation of this query. You can
check that this is the case by invoking the following query

?- get_calls_for_table(path/2,Call).

Now evaluate the query

?- path(1,5), fail.

and again check the subgoals in the table. Notice that two more have been added. Further
notice that these new subgoals are subsumed by that of the original entry. Correspondingly,
the answers derived for these newer subgoals are already present in the original entry. You
can check the answers contained in a table entry by invoking get_returns_for_call/2 on
a tabled subgoal. For example:

?- get_returns_for_call(p(1,_),Answer).

5Beginning with Version 3.2, XSB supports attributed variables in answers under call subsumption,
although not in calls.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 77

Compare these answers to those of p(X,Y) and p(1,5). Notice that the same answer can,
and in this case does, appear in multiple table entries.

Now, let’s again abolish all the tables and change the evaluation strategy of path/2 to
use subsumption.

?- abolish_all_tables.

?- table path/2 as subsumptive.

And re-perform the first few queries:

?- path(X,Y),fail.

?- get_calls_for_table(path/2,Call).

?- path(1,5).

?- get_calls_for_table(path/2,Call).

Notice that this time the table has not changed! Only a single entry is present, that for the
original query p(X,Y).

When using call subsumption, XSB is able to recognize a greater range of “redundant”
queries and thereby make greater use of previously computed answers. The result is that
less program resolution is performed and less redundancy is present in the table. However,
subsumption is not a panacea. The elimination of redundant answers depends upon the
presence of a subsuming subgoal in the table when the call to p(1,5) is made. If the order
of these queries were reversed, one would find that the same entries would be present in
this table as the one constructed under variant-based evaluation.

Declarations for Call Variance and Call Subsumption By default tabled predicate
use call variance. However, call subsumption can be made the default by giving XSB the -S

option at invocation (refer to Section 3.7). More versatile constructs are provided by XSB
so that the tabling method can be selected on a per predicate basis. Use of the directive

table p/n as subsumptive

or

table p/n as variant

described in Section 6.15.1, ensures that a tabled predicate is evaluated using the desired
strategy regardless of the default tabling strategy.

5.2.2 Table Scheduling Strategies

Recall that SLD resolution works by selecting a goal from a list of goals to be proved, and
selecting a program clause C to resolve against that goal. During resolution of a top level

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 78

goal G, if the list of unresolved goals becomes empty, G succeeds, while if there is no program
clause to resolve against the selected goal from the list resolution against G fails. In Prolog
clauses are selected in the order they are asserted, while literals are selected in a left-to-right
selection strategy. Other strategies are possible for SLD, and in fact completeness of SLD
for definite programs depends on a non-fixed literal selection strategy. This is why Prolog,
which has a fixed literal selection strategy is not complete for definite programs, even when
they have bounded term-depth.

Because tabling uses program clause resolution, the two parameters of clause selection
and literal selection also apply to tabling. Tabling makes use of a dynamic literal selec-
tion strategy for certain non-stratified programs (via the delaying mechanism described in
Section ??), but uses the same left-to-right literal selection strategy as Prolog for definite
programs. However, in tabling there is also a choice of when to return derived answers
to subgoals that consume these answers. While full discussion of scheduling strategies for
tabling is not covered here (see [27]) we discuss two scheduling strategies that have been
implemented for XSB Version 3.3 6.

• Local Scheduling Local Scheduling depends on the notion of a subgoal dependency
graph. For the state of a tabled evaluation, a non-completed tabled subgoal S1 directly
depends on a non-completed subgoal S2 when S2 is in the SLG tree for S1 – that is
when S2 is called by S1 without any intervening tabled predicate. The edges of the
subgoal dependency graph are then these direct dependency relations, so that the
subgoal dependency graph is directed. As mentioned, the subgoal dependency graph
reflects a given state of a tabled evaluation and so may changed as the evaluation
proceeds, as new tabled subgoals are encountered, or encountered in different contexts,
as tables complete, and so on. As with any directed graph, the subgoal dependency
graph can be divided up into strongly connected components, consisting of tabled
subgoals that depend on one another. Local scheduling then fully evaluates each
maximal SCC (a SCC that does not depend on another SCC) before returning answers
to any subgoal outside of the SCC 7.

• Batched Scheduling Unlike Local Scheduling, Batched Scheduling allows answers to be
returned outside of a maximal SCC as they are derived, and thus resembles Prolog’s
tuple at a time scheduling.

Both Local and Batched Scheduling have their advantages, and we list points of com-
parison.

• Time for left recursion Batched Scheduling is somewhat faster than Local Scheduling
6Many other scheduling strategies are possible. For instance, [29] describes a tabling strategy implemented

for the SLG-WAM that emulates magic sets under semi-naive evaluation. This scheduling strategy, however,
is not available in Version 3.3 of XSB.

7XSB’s implementation maintains a slight over-approximation of SCCs – see [27].

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 79

for left recursion as Local Scheduling imposes overhead to prevent answers from being
returned outside of a maximal SCC.

• Time to first answer Because Batched Scheduling returns answers out of an SCC
eagerly, it is faster to derive the first answer to a tabled predicate.

• Stack space Local evaluation generally requires less space than batched evaluation as
it fully explores a maximal SCC, completes the SCC’s subgoals, reclaims space, and
then moves on to a new SCC.

• Integration with cuts As discussed in Exercise 5.2.6 and throughout Section 5.2.3,
Local Scheduling integrates better with cuts, although this is partly because tabled
subgoals may be fully evaluated before the cut takes effect.

• Efficiency for call subsumption Because Local Evaluation completes tables earlier than
Batched Evaluation it may be faster for some uses of call subsumption, as subsumed
calls can make use of completed subsuming tables.

• Negation and tabled aggregation As will be shown below, Local Scheduling is superior
for tabled aggregation as only optimal answers are returned out of a maximal SCC.
Local Scheduling also can be more efficient for non-stratified negation as it may allow
delayed answers that are later simplified away to avoid being propagated.

On the whole, advantages of Local Scheduling outweigh the advantages of Batched
Scheduling, and for this reason Local Scheduling is the default scheduling strategy for
Version 3.3 of XSB. XSB can be configured to use batched scheduling via the configuration
option –enable-batched-scheduling and remaking XSB. This will not affect the default
version of XSB, which will also remain available.

5.2.3 Interaction Between Prolog Constructs and Tabling

Tabling integrates well with most non-pure aspects of Prolog. Predicates with side-effects
like read/1 and write/1 can be used freely in tabled predicates as long as it is remembered
that only the first call to a goal will execute program clauses while the rest will look up
answers from a table. However, other extra-logical constructs like the cut (!) pose greater
difficulties. Tabling with call subsumption is also theoretically precluded from correct in-
teraction with certain meta-logical predicates.

Cuts and Tabling The semantics for cuts in Prolog is largely operational, and is usually
defined based on an ordered traversal of an SLD search tree. Tabling, of course, has a
different operational semantics than Prolog – it uses SLG trees rather than SLD trees, for
instance – so it is not surprising that the interaction of tabling with cuts is operational. In
Prolog, the semantics for a cut can be expressed in the following manner: a cut executed in

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 80

the body of a predicate P frames from the top (youngest end) of the choice point stack down
to and including the call for P . In XSB a cut is allowed to succeed as long as it does not cut
over a choice point for a non-completed tabled subgoal, otherwise, the computation aborts.
This means, among other matters, that the validity of a cut depends on the scheduling
strategy used for tabling, that is on the strategy used to determine when an answer is to
be returned to a consuming subgoal. Scheduling strategy was discussed Section 5.2.2: for
now, we assume that XSB’s default local scheduling is used in the examples for cuts.

Exercise 5.2.6 Consider the program

:- table cut_p/1, cut_q/1, cut_r/0, cut_s/0.

cut_p(X) :- cut_q(X), cut_r.

cut_r :- cut_s.

cut_s :- cut_q(_).

cut_q(1). cut_q(2).

What solutions are derived for the goal ?- cut_p(X)? Suppose that cut_p/1 were rewritten
as

cut_p(X) :- cut_q(X), once(cut_r).

How should this cut over a table affect the answers generated for cut_p/1? What happens
if you rewrite cut_p/1 in this way and compile it in XSB? ✷

In Exercise 5.2.6, cut_p(1) and cut_p(2) should both be true. Thus, the cut in the lit-
eral once(cut_r) must not inadvertently cut away solutions that are demanded by cut_p/1.
In the default local scheduling of XSB Version 3.3 tabled subgoals are fully evaluated when-
ever possible before returning any of their answers. Thus the first call cut_q(X) in the body
of the clause for cut_p/1 is fully evaluated before proceeding to the goal once(cut_r). Be-
cause of this any choice points for cut_q(X) are to a completed table. For other scheduling
strategies, such as batched scheduling, non-completed choice points for cut_p/1 may be
present on the choice point stack so that the cut would be disallowed. In addition, it is also
possible to construct examples where a cut is allowed if call variance is used, but not if call
subsumption is used.

Example 5.2.2 A further example of using cuts in a tabled predicate is a tabled meta-
interpreter.

:- table demo/1.

demo(true).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 81

demo((A,B)) :- !, demo(A), demo(B).

demo(C) :- call(C).

More elaborate tabled meta-interpreters can be extremely useful, for instance to implement
various extensions of definite or normal programs. ✷

In XSB’s compilation, the cut above is compiled so that it is valid to use with either
local or batched (a non-default) evaluation. An example of a cut that is valid neither in
batched nor in local evaluation is as follows.

Example 5.2.3 Consider the program

:- table cut_a/1, cut_b/1.

cut_a(X):- cut_b(X).

cut_a(a1).

cut_b(X):- cut_a(X).

cut_b(b1).

For this program the goal ?- cut_a(X) produces two answers, as expected: a1 and b1.
However, replacing the first class of the above program with

cut_a(X):- once(cut_b(X)).

will abort both in batched or in local evaluation. ✷

To summarize, the behavior of cuts with tables depends on dynamic operational prop-
erties, and we have seen examples of programs in which a cut is valid in both local and
batched scheduling, in local but not batched scheduling, and in neither batched nor local
scheduling. In general, any program and goal that allows cuts in batched scheduling will
allow them in local scheduling as well, and there are programs for which cuts are allowed
in local scheduling but not in batched.

Finally, we note that in Version 3.3 of XSB a “cut” over tables implicitly occurs when
the user makes a call to a tabled predicate from the interpreter level, but does not generate
all solutions. This commonly occurs in batched scheduling, but can also occur in local
scheduling if an exception occurs. In such a case, the user will see the warning "Removing

incomplete tables..." appear. Any complete tables will not be removed. They can be
abolished by using one of XSB’s predicates for abolishing tables.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 82

Call Subumption and Meta-Logical Predicates Meta-logical predicates like var/1

can be used to filter the choices made during an evaluation. However, this is dangerous
when used in conjunction with call subsumption, since call subsumption assumes that if a
specific relation holds — e.g., p(a) — then a more general query — e.g., p(X) — will also
hold.

Example 5.2.4 Consider the following simple program

p(X) :- var(X), X = a.

to which the queries

?- p(X).

?- p(a).

are posed. Let us compare the outcome of these queries when p/1 is (1) a Prolog predicate,
(2) a variant-tabled predicate, and (3) a subsumptive-tabled predicate.

Both Prolog and variant-based tabling yield the same solutions: X = a and no, respec-
tively. Under call subsumption, the query ?- p(X). likewise results in the solution X = a.
However, the query ?- p(a). is subsumed by the tabled subgoal p(X) — which was entered
into the table when that query was issued — resulting in the incorrect answer yes. ✷

As this example shows, incorrect answers can result from using meta-logical with subsump-
tive predicates in this way.

5.2.4 Potential Pitfalls in Tabling

Over-Tabling While the judicious use of tabling can make some programs faster, its
indiscriminate use can make other programs slower. Naively tabling append/3

append([],L,L).

append([H|T],L,[H|T1]) :- append(T,L,T1).

is one such example. Doing so can, in the worst case, copy N sublists of the first and third
arguments into the table, transforming a linear algorithm into a quadratic one.

Exercise 5.2.7 If you need convincing that tabling can sometimes slow a query down, type
the query:

?- genlist(1000,L), prolog_append(L,[a],Out).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 83

and then type the query

?- genlist(1000,L), table_append(L,[a],Out).

append/3 is a particularly bad predicate to table. Type the query

?- table_append(L,[a],Out).

leaving off the call to genlist/2, and backtrack through a few answers. Will table_append/3

ever succeed for this predicate? Why not?

Suppose DCG predicates (Section 11) are defined to be tabled. How is this similar to
tabling append? ✷

We note that XSB has special mechanisms for handling tabled DCGs. See Section 11 for
details.

Tabled Predicates and Tracing Another issue to be aware of when using tabling in
XSB is tracing. XSB’s tracer is a standard 4-port tracer that interacts with the engine at
each call, exit, redo, and failure of a predicate (see Chapter 10). When tabled predicates
are traced, these events may occur in unexpected ways, as the following example shows.

Exercise 5.2.8 Consider a tabled evaluation when the query ?- a(0,X) is given to the
following program

:- table mut_ret_a/2, mut_ret_b/2.

mut_ret_a(X,Y) :- mut_ret_d(X,Y).

mut_ret_a(X,Y) :- mut_ret_b(X,Z),mut_ret_c(Z,Y).

mut_ret_b(X,Y) :- mut_ret_c(X,Y).

mut_ret_b(X,Y) :- mut_ret_a(X,Z),mut_ret_d(Z,Y).

mut_ret_c(2,2). mut_ret_c(3,3).

mut_ret_d(0,1). mut_ret_d(1,2). mut_ret_d(2,3).

mut_ret_a(0,1) can be derived immediately from the first clause of mut_ret_a/2. All other
answers to the query depend on answers to the subgoal mut_ret_b(0,X) which arises in the
evaluation of the second clause of mut_ret_a/2. Each answer to mut_ret_b(0,X) in turn
depends on an answer to mut_ret_a(0,X), so that the evaluation switches back and forth
between deriving answers for mut_ret_a(0,X) and mut_ret_b(0,X).

Try tracing this evaluation, using creep and skip. Do you find the behavior intuitive or
not? ✷

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 84

5.3 Normal Programs

Normal programs extend definite programs to include default negation, which posits a fact
as false if all attempts to prove it fail. As shown in Example 1.0.1, which presented one of
Russell’s paradoxes as a logic program, the addition of default negation allows logic programs
to express contradictions. As a result, some assertions, such as shaves(barber,barber)

may be undefined, although other facts, such as shaves(barber,mayor) may be true.
Formally, the meaning of normal programs may be given using the well-founded semantics
and it is this semantics that XSB adopts for negation (we note that in Version 3.3 the
well-founded semantics is implemented only for variant-based tabling).

5.3.1 Stratified Normal Programs

Before considering the full well-founded semantics, we discuss how XSB can be used to
evaluate programs with stratified negation. Intuitively, a program uses stratified negation
whenever there is no recursion through negation. Indeed, most programmers, most of the
time, use stratified negation.

Exercise 5.3.1 The program

win(X):- move(X,Y),tnot(win(Y)).

is stratified when the move/2 relation is a binary tree. To see this, load the files tree1k.P

and table_examples.P from the directory $XSB_DIR/examples and type the query

?- win(1).

win(1) calls win(2) through negation, win(2) calls win(4) through negation, and so on,
but no subgoal ever calls itself recursively through negation.

The previous example of win/1 over a binary tree is a simple instance of a stratified
program, but it does not even require tabling. A more complex example is presented below.

Exercise 5.3.2 Consider the query ?- lrd_s to the following program

lrd_p:- lrd_q,tnot(lrd_r),tnot(lrd_s).

lrd_q:- lrd_r,tnot(lrd_p).

lrd_r:- lrd_p,tnot(lrd_q).

lrd_s:- tnot(lrd_p),tnot(lrd_q),tnot(lrd_r).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 85

Should lrd_s be true or false? Try it in XSB. Using the intuitive definition of “stratified”
as not using recursion through negation, is this program stratified? Would the program still
be stratified if the order of the literals in the body of clauses for lrd_p, lrd_q, or lrd_r

were changed?

The rules for p, q and r are involved in a positive loop, and no answers are ever produced.
Each of these atoms can be failed, thereby proving s. Exercise 5.3.2 thus illustrates an
instance of how tabling differs from Prolog in executing stratified programs since Prolog
would not fail finitely for this program 8.

Completely Evaluated Subgoals Knowing when a subgoal is completely evaluated
can be useful when programming with tabling. Simply put, a subgoal S is completely
evaluated if an evaluation can produce no more answers for S. The computational strategy
of XSB makes great use of complete evaluation so that understanding this concept and its
implications can be of great help to a programmer.

Consider a simple approach to incorporating negation into tabling. Each time a negative
goal is called, a separate table is opened for the negative call. This evaluation of the call
is carried on to termination. If the evaluation terminates, its answers if any, are used to
determine the success of failure of the calling goal. This general mechanism underlies early
formulations for tabling stratified programs [39, 69]. Of course this method may not be
efficient. Every time a new negative goal is called, a new table must be started, and run
to termination. We would like to use information already derived from the computation to
answer a new query, if at all possible — just as with definite programs.

XSB addresses this problem by keeping track of the state of each subgoal in the table.
A call can have a state of complete, incomplete or not_yet_called. Calls that do have table
entries may be either complete or incomplete. A subgoal in a table is marked complete
only after it is determined to be completely evaluated; otherwise the subgoal is incomplete.
If a tabled subgoal is not present in the table, it is termed not_yet_called. XSB contains
predicates that allow a user to examine the state of a given table (Section 6.15).

There are in fact two ways that a tabled subgoal S can be determined to be completely
evaluated. If S is part of an SCC S, (a mutually recorsive component), then S can be
completed once it is ensure that all resolution steps have been done to all subgoals in S.
Otherwise, if there is a derivation of an answer that is identical to S, S can be completed
before the rest of the subgoals in S since further evaluation of S itself will not produce
useful information. In this case, we sometimes say that S is early completed.

Using these concepts, we can overview how tabled negation is evaluated for stratified
programs. If a literal tnot(S) is called, where S is a tabled subgoal, the evaluation checks

8LRD-stratifiedstratification may be reminiscent of the Subgoal Dependency Graphs of Section 5.2.2
but differ in several respects, most notably in that stratification considers only cycles through negative
dependencies.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 86

the state of S. If S is complete the engine simply determines whether the table contains
an answer for S. Otherwise the engine suspends the computation path leading to tnot(S)

until S is completed (and calls S if necessary). Whenever a suspended subgoal tnot(S) is
completed with no answers, the engine resumes the evaluation at the point where it had
been suspended. We note that because of this behavior, tracing programs that heavily use
negation may produce behavior unexpected by the user.

tnot/1 vs. ′\ +′/1 Subject to some semantic restrictions, an XSB programmer can in-
termix the use of tabled negation (tnot/1) with Prolog’s negation (′\ +′/1, or equivalently
fail_if/1 or not/1). These restrictions are discussed in detail below — for now we fo-
cus on differences in behavior or these two predicates in stratified programs. Recall that
′\ +′ (S) calls S and if S has a solution, Prolog executes a cut over the subtree created by
′\ +′ (S), and fails. tnot/1 on the other hand, does not execute a cut, so that all subgoals in
the computation path begun by the negative call will be completely evaluated. The major
reason for not executing the cut is to ensure that XSB evaluates ground queries to Data-
log programs with negation with polynomial data complexity. As seen [15], this property
cannot be preserved if negation “cuts” over tables.

There are other small differences between tnot/1 and ′\ +′/1 illustrated in the following
exercise.

Exercise 5.3.3 In general, making a call to non-ground negative subgoal in Prolog may
be unsound (cf. [48]), but the following program illustrates a case in which non-ground
negation is sound.

ngr_p:- \+ ngr_p(_).

ngr_p(a).

One tabled analog is

:- table ngr_tp/1.

ngr_tp(a).

ngr_tp:- tnot(ngr_tp(_)).

Version 3.3 of XSB will flounder on the call to ngr_tp, but not on the call to ngr_p/0. On
the other hand if not_exists/1 is used

ngr_skp:- not_exists(ngr_tp(_)).

the non-ground semantics is allowed.

not_exists/1 works by asserting a new tabled subgoal, abstractly

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 87

:- table ’_$ngr_tp’

’_$skolem_ngr_tp’ :- ngr_tp(_).

to avoid the problem with variables. In addition, since not_exists/1 creates a new tabled
predicate, it can be used to call non-tabled predicates as well, ensuring tabling.

The description of tnot/1 in Section 6.5 describes other small differences between
′\ +′/1 and tnot/1 as implemented in XSB. Before leaving the subject of stratification,
we note that the concepts of stratification also underly XSB’s evaluation of tabled findall:
tfindall/3. Here, the idea is that a program is stratified if it contains no loop through
tabled findall (See the description of predicate tfindall/3 on page 199).

5.3.2 Non-stratified Programs

As discussed above, in stratified programs, facts are either true or false, while in non-
stratified programs facts may also be undefined. XSB represents undefined facts as condi-
tional answers.

Conditional Answers

Exercise 5.3.4 Consider the behavior of the win/1 predicate from Exercise 5.3.1.

win(X):- move(X,Y),tnot(win(Y)).

when the when the move/2 relation is a cycle. Load the file $XSB_DIR/examplescycle1k.P

into XSB and again type the query ?- win(1). Does the query succeed? Try tnot(win(1)).

Now query the table with the standard XSB predicate get_residual/2, e.g. ?- get_residual(win(1),X).
Can you guess what is happening with this non-stratified program?

The predicate get_residual/2 (Section 6.15) unifies its first argument with a tabled
subgoal and its second argument with the (possibly empty) delay list of that subgoal. The
truth of the subgoal is taken to be conditional on the truth of the elements in the delay list.
Thus win(1) is conditional on tnot(win(2)), win(2) in tnot(win(3)) and so on until
win(1023) which is conditional on win(1).

From the perspective of the well-founded semantics, win(1) is undefined. Informally,
true answers in the well-founded semantics are those that have a (tabled) derivation. False
answers are those for which all possible derivations fail — either finitely as in Prolog or by
failing positive loops. win(1) fits in neither of these cases – there is no proof of win(1),
yet it does not fail in the sense given above and is thus undefined.

However this explanation does not account for why undefined answers should be repre-
sented as conditional answers, or why a query with a conditional answer and its negation

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 88

should both succeed. These features arise from the proof strategy of XSB, which we now
examine in more detail.

Exercise 5.3.5 Consider the program

:- table simpl_p/1,simpl_r/0,simpl_s/0.

simpl_p(X):- tnot(simpl_s).

simpl_s:- tnot(simpl_r).

simpl_s:- simpl_p(X).

simpl_r:- tnot(simpl_s),simpl_r.

Try the query ?- simpl_p(X). If you have a copy of XSB defined using Batched Scheduling
load the examples program and query ?- simpl_p(X) – be sure to backtrack through all
possible answers. Now try the query again. What could possibly account for the difference
in behavior between Local and Batched Scheduling?

At this point, it is worthwhile to examine closely the evaluation of the program in
Exercise 5.3.5. The query simpl_p(X) calls simpl_s and simpl_r and executes the portion
of the program shown below in bold:

simpl_p(X):- tnot(simpl_s).

simpl_s:- tnot(simpl_r).
simpl_s:- simpl_p(X).

simpl_r:- tnot(simpl_s),simpl_r.

Based on evaluating only the bold literals, the three atoms are all undefined since they
are neither proved true, nor fail. However if the evaluation could only look at the literal
in italics, simpl_r, it would discover that simpl_r is involved in a positive loop and, since
there is only one clause for simpl_r, the evaluation could conclude that the atom was false.
This is exactly what XSB does, it delays the evaluation of tnot(simpl_s) in the clause
for simpl_r and looks ahead to the next literal in the body of that clause. This action
of looking ahead of a negative literal is called delaying. A delayed literal is moved into
the delay list of a current path of computation. Whenever an answer is derived, the delay
list of the current path of computation is copied into the table. If the delay list is empty,
the answer is unconditional; otherwise it is conditional. Of course, for definite programs
any answers will be unconditional — we therefore omitted delay lists when discussing such
programs.

In the above program, delaying occurs for the negative literals in clauses for simpl_p(X),
simpl_s, and simpl_r. In the first two cases, conditional answers can be derived, while

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 89

in the third, simpl_r will fail as mentioned above. Delayed literals eventually become
evaluated through simplification. Consider an answer of the form

simpl_p(X):- tnot(simpl_s)|

where the | is used to represent the end of the delay list. If, after the answer is copied
into the table, simpl_s turns out to be false, (after being initially delayed), the answer can
become unconditional. If simpl_s turns out to be true, the answer should be removed, it
is false.

In fact, it is this last case that occurs in Exercise 5.3.5. The answer

simpl_p(X):- tnot(simpl_s)|

is derived, and returned to the user (XSB does not currently print out the delay list). The
answer is then removed through simplification so that when the query is re-executed, the
answer does not appear.

We will examine in detail how to alter the XSB interface so that evaluation of the well-
founded semantics need not be confusing. It is worthwhile to note that the behavior just
described is uncommon.

Version 3.3 of XSB handles dynamically stratified programs through delaying negative
literals when it becomes necessary to look to their right in a clause, and then simplifying
away the delayed literals when and if their truth value becomes known. However, to ensure
efficiency, literals are never delayed unless the engine determines them to not to be stratified
under the LRD-stratified evaluation method.

When Conditional Answers are Needed A good Prolog programmer uses the order
of literals in the body of a clause to make her program more efficient. However, as seen
in the previous section, delaying can break the order that literals are evaluated within the
body of a clause. It then becomes natural to ask if any guarantees can be made that XSB
is not delaying literals unnecessarily.

Such a guarantee can in fact be made, using the concept of dynamic stratification [56].
Without going into the formalism of dynamic stratification, we note that a program is
dynamically stratified if and only if it has a two-valued model. It is also known that
computation of queries to dynamically stratified programs is not possible under any fixed
strategy for selecting literals within the body of a clause. In other words, some mechanism
for breaking the fixed-order literal selection strategy must be used, such as delaying.

However, by redefining dynamic stratification to use an arbitrary fixed-order literal
selection strategy (such as the left-to-right strategy of Prolog), a new kind of stratification
is characterized, called Left-to-Right Dynamic Stratification, or LRD-stratification. LRD-
stratified is not as powerful as dynamic stratification, but is more powerful than other

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 90

fixed-order stratification methods, and it can be shown that for ground programs, XSB
delays only when programs are not LRD-stratified. In the language of [65] XSB is delay
minimal.

Programming in the Well-founded Semantics XSB delays literals for non-LRD-
stratified programs and later simplifies them away. In Local Scheduling, all simplification
will be done before the first answer is returned to the user. In Batched Scheduling it is
usually better to make a top-level call for a predicate, p as follows:

?- p,fail ; p.

when the second p in this query is called, all simplification on p will have been performed.
However, this query will succeed if p is true or undefined.

Exercise 5.3.6 Write a predicate wfs_call(+Tpred,?Val) such that if Tpred is a ground
call to a tabled predicate, wfs_call(+Tpred,?Val) calls Tpred and unifies Val with the
truth value of Tpred under the well-founded semantics. Hint: use get_residual/2.

How would you modify wfs_call(?Tpred,?Val) so that it properly handled cases in
which Tpred is non-ground.

Trouble in Paradise: Answer Completion The engine for XSB performs both pro-
gram clause and answer resolution, along with delay and simplification. What it does not
do is to perform an operation called answer completion which is needed in certain (patho-
logical?) programs.

Exercise 5.3.7 Consider the following program:

:- table ac_p/1,ac_r/0,ac_s/0.

ac_p(X):- ac_p(X).

ac_p(X):- tnot(ac_s).

ac_s:- tnot(ac_r).

ac_s:- ac_p(X).

ac_r:- tnot(ac_s),ac_r.

Using either the predicate from Exercise 5.3.6 or some other method, determine the truth
value of ac_p(X). What should the value be? (hint: what is the value of ac_s/1?).

For certain programs, XSB will delay a literal (such as ac_p(X) that it will not be able
to later simplify away. In such a case, an operation, called answer completion is needed to
remove the clause

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 91

ac_p(X):- ac_p(X)|

Without answer completion, XSB may consider some answers to be undefined rather than
false. It is thus is sound, but not complete for terminating programs to the well-founded
semantics. Answer completion is not available for Version 3.3 of XSB, as it is expensive and
the need for answer completion arises rarely in practice. However answer completion will
be included at some level in future versions of XSB.

5.3.3 On Beyond Zebra: Implementing Other Semantics for Non-stratified
Programs

The Well-founded semantics is not the only semantics for non-stratified programs. XSB can
be used to (help) implement other semantics that lie in one of two classes. 1) Semantics
that extend the well-founded semantics to include new program constructs; or 2) semantics
that contain the well-founded partial model as a submodel.

An example of a semantics of class 1) is (WFSX) [3], which adds explicit (or provable)
negation to the default negation used by the Well-founded semantics. The addition of
explicit negation in WFSX, can be useful for modeling problems in domains such as diagnosis
and hierarchical reasoning, or domains that require updates [44], as logic programs. WFSX
is embeddable into the well-founded semantics; and this embedding gives rise to an XSB
meta-interpreter, or, more efficiently, to the preprocessor described in Section Extended
Logic Programs in Volume 2. See [72] for an overview of the process of implementing
extensions of the well-founded semantics.

An example of a semantics of class 2) is the stable model semantics. Every stable model
of a program contains the well-founded partial model as a submodel. As a result, the XSB
can be used to evaluate stable model semantics through the residual program, to which we
now turn.

The Residual Program Given a program P and query Q, the residual program for
Q and P consists of all (conditional and unconditional) answers created in the complete
evaluation of Q.

Exercise 5.3.8 Consider the following program.

:- table ppgte_p/0,ppgte_q/0,ppgte_r/0,ppgte_s/0,

ppgte_t/0,ppgte_u/0,ppgte_v/0.

ppgte_p:- ppgte_q. ppgte_p:- ppgte_r.

ppgte_q:- ppgte_s. ppgte_r:- ppgte_u.

ppgte_q:- ppgte_t. ppgte_r:- ppgte_v.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 92

ppgte_s:- ppgte_w. ppgte_u:- undefined.

ppgte_t:- ppgte_x. ppgte_v:- undefined.

ppgte_w:- ppgte(1). ppgte_x:- ppgte(0).

ppgte_w:- undefined. ppgte_x:- undefined.

ppgte(0).

:- table undefined/0.

undefined:- tnot(undefined).

Write a routine that uses get_residual/2 to print out the residual program for the query ?-

ppgte_p,fail. Try altering the tabling declarations, in particular by making ppgte_q/0,
ppgte_r/0, ppgte_s/0 and ppgte_t/0 non-tabled. What effect does altering the tabling
declarations have on the residual program?

When XSB returns a conditional answer to a literal L, it does not propagate the delay
list of the conditional answer, but rather delays L itself, even if L does not occur in a
negative loop. This has the advantage of ensuring that delayed literals are not propagated
exponentially through conditional answers.

Stable Models Stable models are one of the most popular semantics for non-stratified
programs. The intuition behind the stable model semantics for a ground program P can be
seen as follows. Each negative literal notL in P is treated as a special kind of atom called an
assumption. To compute the stable model, a guess is made about whether each assumption
is true or false, creating an assumption set, A. Once an assumption set is given, negative
literals do not need to be evaluated as in the well-founded semantics; rather an evaluation
treats a negative literal as an atom that succeeds or fails depending on whether it is true
or false in A.

Example 5.3.1 Consider the simple, non-stratified program

writes_manual(terry)-¬writes_manual(kostis),has_time(terry).

writes_manual(kostis)-¬writes_manual(terry),has_time(kostis).

has_time(terry).

has_time(kostis).

there are two stable models of this program: in one writes_manual(terry) is true, and
in another writes_manual(kostis) is true. In the Well-Founded model, neither of these
literals is true. The residual program for the above program is

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 93

writes_manual(terry)-¬writes_manual(kostis).

writes_manual(kostis)-¬writes_manual(terry).

has_time(terry).

has_time(kostis).

Computing stable models is an intractable problem, meaning that any algorithm to
evaluate stable models may have to fall back on generating possible assumption sets, in
pathological cases. For a ground program, if it is ensured that residual clauses are produced
for all atoms, using the residual program may bring a performance gain since the search
space of algorithms to compute stable models will be correspondingly reduced. In fact, by
using XSB in conjunction with a Stable Model generator, Smodels [54], an efficient system
has been devised for model checking of concurrent systems that is 10-20 times faster than
competing systems [47]. In addition, using the XASP package (see the separate manual,
[12] in XSB’s packages directory) a consistency checker for description logics has also been
created [73].

5.4 Answer Subsumption

By default XSB adds an answer A to a table T only if A is not a variant of some other answer
already in T , a technique termed answer variance. While answer variance is sufficient to
allow tabling to compute the well-founded semantics and to terminate for programs with
bounded term-depth, other choices of when and how to add an answer can be made. Using
partial order answer subsumption, A would be added to T only if A is maximal with respect
to other answers in T according to a given partial order >O. Furthermore if A is added, any
answers in T that A subsumes (i.e., is greater than in >O) are deleted. When using lattice
answer subsumption, A itself may not be added to T , rather the join is taken of A and
another answer A′ in T , with A′ being deleted. Despite its conceptual simplicity, answer
subsumption can be a powerful tool. Partial order answer subsumption allows a table to
retain only answers that are maximal according to a metric or to a preference relation;
lattice answer subsumption can form the basis of multi-valued logics, quantitative logics,
and of abstract interpretations for programs and process logics.

5.4.1 Types of Answer Subsumption

Partial Order Answer Subsumption.

We illustrate the use of partial order answer subsumption through a shortest-path predicate
(Figure 5.1) that counts the number of edges between two vertices.

As mentioned above, partial-order answer subsumption retains in a table T only those
answers that are maximal according to a given partial order >O. In the case of the shortest-
path predicate of Figure 5.1, sp(A1, A2, A3) >O sp(B1, B2, B3) if, A1 = B1, A2 = B2, and

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 94

sp(X,Y,1):- edge(X,Y).

sp(X,Z,N):- sp(X,Y,N1),edge(Y,Z),N is N1 + 1.

Figure 5.1: A Shortest Path Predicate

A3 < B3. Note that that minimal distances are maximal in <O, and that <O is undefined
if A3 or B3 is non-numeric. In XSB, partial order answer subsumption is specified for sp/3
using the declaration

:- table sp(_,_,po(</2)).

In a given state of computation, only those answers that are maximal according to >O

are available for resolution. Thus, for a finite graph with cycles, sp/3 will terminate using
answer subsumption, but not with answer variance. Other partial orders beyond distance
metrics may be useful. For instance, >O may specify a preference ordering between derived
atoms so that answer subsumption provides an alternative to default-based methods for
computing preferences.

Lattice Answer Subsumption.

An upper semi-lattice is a partial order for which any two elements have a unique least
upper bound. Because the ordering for the third argument of sp/3 is total, it also forms an
upper semi-lattice, and so can be computed using lattice answer subsumption. 9. In XSB
lattice answer subsumption for sp/3 is declared as

:- table sp(_,_,lattice(min/3)).

with min/3 defined as min(X,Y,Z):- Z is min(X,Y). Operationally, this means that when-
ever an answer sp(A1, A2, A3) is derived, if there is another answer sp(B1, B2, B3) where
A1 = B1 and A2 = B2 the join J3 of A3 and B3 is taken, and only sp(A1, A2, J3) is available
for resolution. As with a partial order, the join operation ensures termination for shortest
path over a finite graph with cycles.

As the following proposition shows, lattice answer subsumption can be modeled either
starting with a lattice, or starting with a function with appropriate properties.

Proposition 5.4.1 Let op be an associative, commutative, and idempotent binary function.
Then there is a partial order P , such that P is an upper semi-lattice with join op.

Conversely, if a function does not have the above properties, it is not suitable for lattice
answer subsumption. Accordingly the aggregate functions count and sum cannot be com-

9The terminology lattice answer subsumption is employed even though only the join of the lattice is used.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 95

puted using lattice answer subsumption 10. Lattice answer subsumption has a variety of
applications. [76] shows how it is used for social-network analysis and Section 5.4.2 shows
its use for an application of multi-valued logics, [72] describes how a similar formalism can
implement a quantitative logic, and [59] describes how XSB’s PITA package is based on
answer subsumption (see Volume 2 of this manual).

Partial Order Answer Subsumption with Abstraction.

Computation over an abstract domain may require certain maximal answers to be ab-
stracted. In many cases, abstraction can be modeled by a join operation, but in others
the abstraction represents an implicit induction step in the following sense. Given a set A
of answers, it may be detected that the program computed does not have a finite model.
An abstraction operation then is applied so that A and its extensions can be symbolically
represented by a single answer A. Using answer subsumption, this abstraction can be taken
only if needed during program execution. Abstractly, partial order answer subsumption
with abstraction uses the declaration

:- table p(_,_,po(rel/2,abs/3)).

where rel/2 is a partial order, and abs/3 is the abstraction operation. Section 5.4.2 provides
a detailed example of how such an approach is used to analyze a process logic.

5.4.2 Examples of Answer Subsumption

Answer Subsumption and Abstract Interpretation

Net-style formalisms, such as Petri Nets, Workflow Nets, etc. have been used extensively for
process modeling. Reachability is a central problem in analyzing properties of such nets, to
which properties such as liveness, deadlock-freedom, and the existence of home states can
be reduced. However, many interesting net formalisms cannot guarantee a finite number of
configurations in a given net, so abstraction methods must be applied for their analysis.

For instance, the lack of finiteness is a problem in analyzing Place/Transition (PT)
Nets. PT nets have no guard conditions or after-effects, and do not distinguish between
token types. However, PT nets do allow a place to hold more than one token, leading to
a potentially infinite number of configurations. This can be seen in the simple network of
Figure 5.2 (from [24]) in which transitions are denoted by squares and places by circles.
Each transition removes one token from the places that are the sources of its input edges
and adds one token to each place at the target of each of its output edges. Starting from the
configuration in Figure 5.2, repeated application of transition t1 leads to place s2 containing

10Since count and sum are not idempotent their semantics is based on multi-sets, rather than sets. Incor-
porating these as tabling features requires modifying their semantics to be set-based, in a manner similar to
aggregation ASP systems.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 96

s3

t1

s1

s2

t2

t3 s4

t4

Figure 5.2: A PT-net and configuration with an infinite number of reachable configurations

:- table reachable(_,po(omega_gte/2,omega_abs/3)).

reachable(InConf,NewConf):-

reachable(InConf,NewConf),

hasTransition(Conf,NewConf).

reachable(InConf,NewConf):- hasTransition(InConf,NewConf).

Figure 5.3: Top-level predicate for PT net reachability

an unbounded number of tokens; repeated application of the sequence t1,t2,t3,t4 leads
to place s4 containing an unbounded number of tokens.

Despite such examples, reachability in PT nets is decidable and can be determined using
an abstraction method called ω-sequences, (see e.g. [24]). The main idea in determining ω
sequences is to define a partial order ≥ω on configurations as follows. If configurations C1

and C2 are both reachable, C1 and C2 have tokens in the same set PL of places, C1 has
at least as many tokens in each place as C2, and there exists a non-empty PLsub ⊆ PL,
such that for each pl ∈ Plsub C1 has strictly more tokens than C2, then C1 >ω C2. When
evaluating reachability, if C2 is reached first, and then C1 was subsequently reached, C1

is abstracted by marking each place in PLsub with the special token ω which is taken to
be greater than any integer. If C1 was reached first and then C2, C2 is treated as having
already been seen.

Tabling combined with partial order answer subsumption requires slightly over 100 lines
of code to model reachability in PT nets using ω-sequences. Due to space restrictions, the
program cannot be fully described here, but the top-level reachability predicate is shown in
Figure 5.3. Despite its succinctness, it can evaluate reachability in networks with millions
of states in a few minutes. This use of tabling to determine reachability in PT nets can
be seen as a special case of tabling for abstract interpretation (cf. [38] and other works).
However the framework for answer subsumption described here allows tabling to be used
to efficiently perform abstract interpretation within a general Prolog system

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 97

mutually refuted

bottom

mutually rebutted

default refuted falserefuted true

default falsetrue

top

Figure 5.4: A Truth Lattice for a Simplified Version of Courteous Argumentation Theory

Scalability for multi-valued and quantitative logics

The technique of program justification (cf. e.g. [55]) has been used for debugging tabled
programs that cannot be debugged by traditional means. Here, we consider justification
in the context of the Silk system, currently under development at Vulcan, Inc. Silk is
a commercial knowledge representation and rule system built on top of Flora-2, which
is implemented using XSB. One of the salient features of Silk is its default reasoning,
which is based on a parameterized argumentation theory evaluated under the well-founded
semantics [83]. One issue in using Silk is that knowledge engineers must have a way of
understanding the reasoning of the system, a task complicated by the use of the well-founded
semantics and the intricacies of the argumentation theory. We describe an experimental
approach to justification of Silk-style argumentation theories using multi-valued logics.

As noted in [83], argumentation theories in Silk are usually extensions of the default
theories of Courteous Logic Programs (CLP) and are based on two user-defined predicates:
opposes/2 and overrides/2. Two atoms oppose each other if no model of a program can
contain both atoms: an atom and its explicit negation oppose each other, but opposition
can capture many other types of contradictions. Given two opposing atoms, one atom may
override the other, and so be given preference. For atoms A1 and A2, if A1 and A2 are both
derivable and oppose each other but neither overrides the other, A1 and A2 mutually rebut
each other. If in addition A1, say, overrides A2, A1 refutes A2

11. Within Silk and Flora-2,
the compilation of an argumentation theory ensures that rebutted atoms have an undefined
truth value, as do atoms that refute themselves (i.e. if the overrides/2 predicate is cyclic).
However, for justification, it is meaningful to distinguish those facts that are undefined due
to a negative loop in the argumentation theory from those that are undefined due to a
negative loop in the program itself. In addition, it is meaningful to distinguish an atom
that is true because it overrides some other atom, from an atom whose derivation does not
depend on the argumentation theory. Similar distinctions can be made for default false
literals leading to the truth lattice shown in Figure 5.4.

11In [83] argumentation theories are built on named rules, here we base them on derived atoms.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 98

5.4.3 Term-Sets

XSB provides support for a programming technique for representing sets of terms, called
term-sets. (While it is not closely related to answer subsumption, it is partially implemented
through tabling and a table declaration, and so this facility is documented here.)

We begin in an example. We can represent a set of Prolog terms by using a particular
term of the form {Var:Goal} where Goal has (only) Var free in it. Then we will use this
set-term to represent the set of terms obtained by evaluating Goal and taking the values of
Var that are obtained. I.e., they would be the terms in the list L returned by the Prolog
call to setof(Var,Goal,L). For example, the set-term:

{X : member(X,[a,b,c])}

represents the set of terms {a,b,c}.

Now a term-set is a Prolog term that may contain set-terms as subterms. For example,

m({X:member(X,[a,b,c])},g(d,{Y:member(Y,[e,f,g])}),h)

is a term-set, and it represents the set of terms obtained from it by replacing (recursively)
any embedded set-term by a term in that set-term. So the above term-set represents the 9
terms:

m(a,g(d,e),h) m(a,g(d,f),h) m(a,g(d,g),h)

m(b,g(d,e),h) m(b,g(d,f),h) m(b,g(d,g),h)

m(c,g(d,e),h) m(c,g(d,f),h) m(c,g(d,g),h)

This example shows an advantage of this representation. Say a term-set has k sub-set-terms
each of which is of the member form in this example where each member has a list of atoms
of length n. To represent this set of terms explicitly takes O(nk) space, whereas to represent
them with the term-set takes only O(n × k) space. So a term-set representation can take
exponentially less space than an explicit representation.

It is relatively easy to write a predicate, member_termset/2, which takes a variable and
a term-set and nondeterministically generates all concrete terms represented by the term-
set, called extensionalizing the term-set. Some care must be taken since a call to goal to
extensionalize a set-term may itself return a term-set. Also term-sets can be self-recursive
and thus represent infinitely many Prolog terms. For example, consider the term-set:

{X : p(X)} where

p(a).

p(f({X:p(X)})).

This term-set contains the infinitely many terms:

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 99

a, f(a), f(f(a)), f(f(f(a))), ...

A particularly intriguing use of term-sets is in conjunction with tabling. Consider the
term-set {X:p(1,2,X)} where p/3 is tabled. If p(1,2,_} has been called and so its table is
filled, then extensionalizing the previous term-set is just a table lookup; in some sense we
can think of such a term-set a standing for a pointer into a table to a set of terms. This
can be elegantly used to solve an important problem in handling parse trees in context-free
parsing.

Consider the following DCG for the language a*:

:- table a/3.

a(a(P1,P2)) --> a(P1),a(P2).

a(a) --> [a].

which recognizes a string and constructs its parse trees.

To generate all answers, this DCG will take time exponential in the length of the input
string; not surprising since there are exponentially many parses. But say we give it an input
string of n a’s followed by one b. In this case it will take exponential time to fail, since it
will construct all the exponentially many partial parse trees. We would like the grammar
in this case to fail in polynomial time. By representing the parse trees as a term-set, while
recognizing the string, and then after the string is recognized, extensionalize the set-term
representing the parse trees, we can get the behavior we want. The set-term representing the
parse trees for any grammar will be constructed in polynomial time; the extensionalization
will take exponential time only if there are exponentially many parses.

We can cause XSB to automatically use the term-set representation by adding to the
above program the declaration:

:- table a(termset,_,_).

which tells XSB to use the term-set representation of the first argument of a/3.

With this declaration, XSB will transform the above program into the following:

:- table a/3.

a(a(P1,P2),S0,S) :- ’_$a’(P1,S0,S1),’_$a’(P2,S1,S).

a(a,S0,S1) --> ’C’(S0,a,S1).

:- table ’_$a’/3 as subsumptive.

’_$a’({X:’_$a’(X,S0,S)},S0,S) :- a(_,S0,S).

A new predicate ’_$a’/3 is introduced, and all calls to the original predicate a/3 are
replaced by calls to the new one. It is defined to call the original a/3 but to return the
term-set instead of the concrete parse tree in the argument declared to be a term-set.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 100

We can see that a call to a/3 in this new program will have exactly as many answers
as the corresponding call to a/2 in the original recognizing DCG, since given values for S0

and S, a call to ’_$a’/2 returns only one value in its first argument. So a call to a/3 with
have the polynomial complexity of the recognizer. So now with this representation to get
the concrete parse tree for a string, one writes, for example:

| ?- a(Pts,[a,a,a,a,a,a,a],[]), member_termset(Parse,Pts).

which uses the term-set representation while recognizing the input string, and then exten-
sionalizes it to the produce the actual parse tree. With this way of handling parse trees in
arbitrary context-free grammars, the complexity of parsing to create the term-set is always
polynomial, and then extensionalizing the term-set may be exponential if all parses are de-
sired and there are exponentially many of them. Of course, if the parsing call to a/3 fails,
then there is no extensionalization to do, and the process is polynomial.

Note that the transformation uses subsumptive tabling for the newly introduced auxil-
iary predicate. This is important for this example, since the parsing calls to ’_$a’/3 will
normally have S0 bound and S free, yet when extensionalizing the constructed term-set to
obtain the parse trees, the calls will have both S0 and S bound. We do not want to recom-
pute the parse during extensionalizion, which would happen were we to be using variant
tabling, and so we use subsumptive tabling.

Problems in graph traversal provide another example of the effective use of term-sets.
For graph reachability, we have the very familiar:

:- table reach/2.

reach(X,Y) :- edge(X,Y).

reach(X,Y) :- reach(X,Z), edge(Z,Y).

which is linear in the number of edges in the graph. But say that we now want to construct
the path from X to Y when Y is reachable from X. One simple way to do it (collecting the
intermediate nodes in the path in reverse order) is:

:- table path/3.

path(X,Y,[]) :- edge(X,Y).

path(X,Y,[Z|Path]) :- path(X,Z,Path), edge(Z,Y).

For an acyclic edge graph, this works fine, but for a graph with cycles, this will go into
an infinite loop. Indeed, it must, since in a cyclic graph there are infinitely many different
paths between some nodes. However, we can use term-set to handle this situation more
flexibly. We modify the above program by adding:

:- table path(_,_,termset).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 101

With this declaration, every call to path/3 (for a finite edge graph) will terminate in time
linear in the number of edges. And all the paths will be presented in the term-set returned
in the third argument. Here we have an advantage similar to the one we had in the grammar
example above: if there is no path from our source to our target node, we will find that out
in linear time. Without the term-set declaration, this might take exponential time, while
the program builds all the paths to all the nodes that are reachable from our source node.
Also, if we want only one possible path from our source to our target, we can easily retrieve
only one member of the term-set during extensionalization, and the whole process is still
linear.

Now consider what happens with when the graph has cycles. In this case, the term-set
may be recursive and represent the infinitely many paths between nodes. For example, the
term-set representing all paths from a to a in the graph with a single edge from a to a

will have the same structure as the example of an infinite term-set given at the beginning
of this subsection. Once the path term-set is constructed (in time linear in the number of
edges for a single source), producing paths reduces to processing the term-set structure. For
example to generate all paths between nodes which do not contain repeated intermediate
nodes, one could write an extensionalization predicate that passes a list of term-sets in the
process of being expanded, and refuse to re-expand one currently being expanded. This is
the technique often used in Prolog without tabling to compute reachability in cyclic graphs.

All of these examples can be seen as special cases of constructing proof trees or jus-
tifications of goals. Indeed, term-sets could be effectively used in the construction of a
justification or explanation system.

5.5 Tabling for Termination

As noted throughout this manual, tabling adds important termination properties to pro-
grams and queries. In this section we state more precisely what these termination properties
are, and how the properties can be strengthened through declarations and settings for sub-
goal abstraction and for bounded rationality through answer abstraction.

Before doing so, it is important to set the context for where issues of termination may
arise. Consider first a pure normal program in which every predicate is tabled. This
means a program where rules may only call other rules, possibly through negation (tnot/1,
not_exists/1 or u_not/1 in XSB); but where there are no calls to builtins for arithmetic,
all-solutions predicates, or other built-ins. If such a fully-tabled pure normal program does
not have function symbols, XSB will always terminate for any query. For instance, XSB
will terminate for fully tabled pure datalog programs – even if the head of a rule is “unsafe”
in that it contains variables that do not occur in the body of that rule 12.

12Evaluations that call non-ground negative literals will terminate through floundering, although this can
be avoided in most cases by using not_exists/1.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 102

While datalog programs are useful for certain kinds of knowledge representation, they
are not powerful enough for general programming as they do not allow recursive structures
such as lists. Thus, for the rest of this section we consider pure programs that may contain
function symbols. Consider a pure definite program in which every predicate is tabled. Such
a program would call each tabled subgoal (up to variance) exactly once if call variance were
used, and at most once if call subsumption were used. In addition, tabling guarantees that
each answer will be returned to each call to a tabled subgoal at most once. This means
that there are two sources of non-termination. Either there can be an infinite number of
subgoals, or there can be an infinite number of answers 13.

An Infinite Number of Subgoals If a definite program produces an infinite number
of subgoals but has a finite number of answers, the program can be made to terminate by
abstracting the subgoal. For instance, consider the program fragment:

:- table p/1.

p(X) :- p(f(X)).

The goal ?- p(1) can create an infinite number of tabled subgoals: p(f(1)), p(f(f(1))),
p(f(f(f(1)))) and so on. Note that since all of the subgoals are ground, none subsume
one another, so that call subsumption will not help here, (although call subsumption would
help if the goal were ?- p(X)).

Infinite Answers Of course, subgoal abstraction can’t handle cases where there are an
infinite number of answers, as in the program fragment:

p(f(X)) :- p(X).

when given the query ?- p(X).

We consider each case in turn.

5.5.1 Subgoal Abstraction

In a nutshell, subgoal abstraction allows a goal like p(f(f(f(1)))) to be rewritten as

p(f(f(X))),X = f(1).

If all subgoals that have a term depth (or term size) over a given finite threshold are
abstracted, any query can produce only a finite number of subgoals (since there are a finite
number of predicate, function and constant symbols in any program). If a program is

13Using the forest of trees model of tabling (cf. Section 10.3) non-termination requires that there are an
infinite number of trees or that at least one tree have infinite size.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 103

definite, it can be shown that any query to a program will terminate if that program uses
subgoal abstraction [78]. For normal programs, the situation is not much different at a
conceptual level. A goal such as tnot(p(f(f(f(1)))) would execute as p(f(f(X))) and
then ensure that none of the answers to this goal have a binding for X that allows it to
unify with f(1). Using this intuition, it can be shown that if a program has a well-founded
model with a finite number of true or undefined answers it will terminate using tabling with
subgoal abstraction [60, 61].

Despite its theoretical power, subgoal abstraction can also cause problems if used indis-
criminately. if the second argument of the subgoal

?- member(e,[a,b,c,d,e])

is abstracted forming the goal

?- member(e,[a,b,c|X])

leading to an infinite number of answers. a goal that terminates without abstraction will not
terminate after abstraction. Note that any program containing member/2 and at least one
constant does not have a finite model. While an experienced programmer would never want
to table member/2, he well may want to table a grammar or other program that performs
recursion through a finite structure.

Declaring Subgoal Abstraction

Subgoal abstraction in XSB is performed for goals called positively; but not for goals called
negatively including tnot/1 and not_exists/1; rather, such goals will throw an exception
if they surpass the specified depth. In addition, subgoal abstraction is only implemented
for call variance, and applies equally all terms, whether they are lists or non-lists. However,
despite these restrictions, a tabled evaluation can be guaranteed to terminate for queries to
safe programs (cf. [61]).

Subgoal abstraction can be declared by setting a value for the maximum depth of a
subgoal and for the action to take when a subgoal is encountered that reaches that depth.

• depth The maximum depth can be set to n for a set of predicates 〈PredSpec〉 via
including the specifier subgoal_abstract(n) as part of the tabling declaration

:- table 〈PredSpec〉 as ...,subgoal_abstract(n),...

Specifying subgoal_abstract(0) turns abstraction off for predicates in 〈PredSpec〉.
The depth can also be set globally by seting the flag max_table_subgoal_depth to
the desired maximal depth. If the subgoal depth has been set of a given predicate via
a tabling declaration the declared depth will override the global depth.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 104

• action When a subgoal is encountered of maximum depth, abstraction is enabled if
the Prolog flag max_table_subgoal_action to abstract. Other possible values for
the action are error and fail (cf. pg. 209).

Unless otherwise specified, XSB starts up with max_table_subgoal_action set to error

and max_table_subgoal_depth set to the maximum integer possible under the compilation
method for which XSB has been configured. Under this default behavior, XSB will throw
an error if a subgoal has depth greater than max_table_subgoal_depth. As an alternative
to setting flags, subgoal abstraction can be set by calling XSB with the command-line
arguments –max_subgoal_action a and –max_subgoal_depth n where n is the size of the
desired depth.

5.5.2 Bounded Rationality through Radial Restraint

In XSB, a programmer can use a form of bounded rationality called radial restraint to
ensure that only a finite number of answers are generated by a query [32]. For instance if
the query p(X) to the program

p(f(X)) :- p(X).

p(0).

were evaluated using this approach with a depth limit of 3, the answers, p(0), p(f(0)),
p(f(f(0))) and p(f(f(f(X)))) would be generated; however, p(f(f(f(X)))) would have
the truth value of undefined. Note that by doing things in this way, both of the goals
p(f(f(f(0)))), and p(f(f(f(1)))) will unify with p(f(f(f(X)))) and so will succeed
with a truth value of undefined. Similarly tnot(p(f(f(f(0))))), and tnot(p(f(f(f(1)))))

will both succeed with a value of undefined (perhaps better called unknown in this context).
Since all predicates and function symbols have a maximum arity (256 in XSB) bounding
the depth of an answer ensures that only a finite number of answers are returned 14.

Semantically when radial restraint is used, XSB is computing an approximation to
the three-valued well-founded model of a program, called a restrained model. To see this,
suppose the proof of a query Q does not depend on negation. If Q has a derivation that
does not require any answers whose depth is greater than n, it is proven as usual. Similarly,
if Q is false in the well-founded model of a program, and none of the subgoals explored in
the derivation of Q derive answers whose depth is greater than n, XSB will derive that Q
is false. Thus, the approximation that XSB computes is informationally sound in the sense
that no incorrect answer will be derived, although the truth value of some atoms won’t be
known that might have been if the depth bound had been set higher. Due to the halting

14If a program has a infinite number of true answers and a finite numebr of false answers, one possible
approach might be to “dualize” the program so that only false answers are computed. However, since most
programs with function symbols have an infinite number of both true and false answers, this approach won’t
work in general.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 105

problem, there is no way to know in general what depth to set for answer abstraction, or
whether any bound needs to be set at all.

If a restrained model is derived, that are undefined through radial restraint can be
desinguished from answers that are undefined in the well-founded model of a program, or
for other reasons such as unsafe negation. If an answer A was abstracted due to a depth
check, the query get_residual(A,Delay) would bind Delay to a list containing the atom
brat_undefined, where brat_undefined/0 is simply a predicate defined as

brat_undefined:- tnot(brat_undefined)

which in a delay list indicates that an answer was made undefined through bounded-
rationality based answer abstraction.

More generally, information about when a derivation has uses bounded rationality can
be obtained either thorugh the predicate explain_u_val/3, or get_residual_sccs/[3,5].
Both of these predicates traverse the residual dependency graph to provide information
about why a literal is undefined.

Using Radial Restraint

Radial restraint is currently implemented only for tabling with call variance, and lists are
not currently included in the depth check. Similarly to the use of subgal abstraction, answer
abstraction is the implementational basis of radial restraint. It can be declared by setting
a value for the maximum depth of an answer and for the action to take when an answer is
encountered that reaches that depth.

• depth The maximum depth can be set to n for a set of predicates via including the
specifier answer_abstract(n) as part of their tabling declaration

:- table < PredSpec > as ...,answer_abstract(n),...

Specifying answer_abstract(0) turns answer abstraction off for predicates in <
PredSpec >. The depth can also be set globally by seting the flag max_table_answer_depth

to the desired maximal depth. If the answer depth of a given predicate has been set
via a tabling declaration, the predicate-specific declared depth will override the global
depth.

• action When an answer is encountered of maximum depth, abstraction is enabled if
the Prolog flag max_table_answer_action to bounded_rationality. Other possible
values for the action are error and fail (cf. pg. 209).

Unless otherwise specified, XSB starts up with

• max_table_answer_action and

• max_table_answer_list_action

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 106

set to error and max_table_answer_depth and max_table_answer_depth set to the max-
imum integer possible under the compilation method for which XSB has been configured.
Under this default behavior, XSB will throw an error if a subgoal has depth greater than
max_table_subgoal_depth.

5.6 Incremental Table Maintenance

XSB allows the user to declare that the system should incrementally maintain particular
tables. A table T is incremental if XSB ensures that its answers are consistent with all
dynamic facts and rules upon which T depends (subject to transactionality conditions ex-
plained below). After a database update or series of updates ∆, a table T that depends on
∆ may be updated

• Eagerly: by issuing a command to update all tables that depend on ∆; or

• Lazily: by updating T and all tables upon which T depends the next time that T is
called.

In either case, if tables are thought of as database views, then the table maintenznce subsys-
tem enables what is known in the database community as incremental view maintenance 15.

5.6.1 Examples

To demonstrate incremental table maintenance (informally called incremental tabling), we
consider first the following simple program that does not use incremental tabling:

:- table p/2.

p(X,Y) :- q(X,Y),Y =< 5.

:- dynamic q/2.

q(a,1). q(b,3). q(c,5). q(d,7).

and the following queries and results:

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

15In the current version of XSB, there are certain restrictions on how incremental tabling can be used.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 107

no

| ?- assert(q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

Here we see that the table for p/2 depends on the contents of the dynamic predicate
q/2. We first evaluate a query, p(X,Y), which creates a table. Then we use assert/1

to add a fact to the q/2 predicate and re-evaluate the query. We see that the answers
haven’t changed, and this is because the table is already created and the second query just
retrieves answers directly from that existing table. But in this case we have answers that
are inconsistent with the current definition of p/2. I.e., if the table didn’t exist (e.g. if p/2

weren’t tabled), we would get a different answer to our p(X,Y) query, this time including the
[d,4] answer. Without incremental table maintenance, the only solution to this problem
is for the XSB programmer to explicitly abolish a table whenever changing (with assert or
retract) a predicate on which the table depends.

By declaring that the tables for p/2 should be incrementally maintained, XSB will
automatically keep the tables for p/2 correct.

A Quasi Forward-Chaining Approach Consider a slight rewrite of the above program:

:- table p/2 as incremental.

p(X,Y) :- q(X,Y),Y =< 5.

:- dynamic q/2 as incremental.

q(a,1). q(b,3). q(c,5). q(d,7).

in which p/2 is declared to be incrementally tabled (with :- table p/2 as incremental)
and q/2 is declared to be both dynamic and incremental, meaning that an incremental table
depends on it 16. Consider the following goals and execution:

| ?- import incr_assert/1 from increval.

16The declarations use_incremental_tabling/1 and use_incremental_dynamic/1 are deprecated from
Version 3.3 of XSB forward – in other words backwards compatability will be maintained for a time, but
these declarations will not be further supported.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 108

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

| ?- incr_assert(q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[d,4]

[c,5]

[b,3]

[a,1]

no

Here again we call p(X,Y) and generate a table for it and its answers. Then we update q/2

by using the incremental version of assert, incr_assert/1, which was explicitly imported.
Now when we call p(X,Y) again, the table has been updated and we get the correct answer.

In this case after every incr_assert/1 and/or incr_retract(all)/1, the tables are
incrementally updated to reflect the change. The system keeps track of what tabled goals
depend on what other tabled goals and (incremental) dynamic goals, and tries to minimize
the amount of recomputation necessary. Incrementally tabled predicates may depend on
other tabled predicates. In this case, those tabled predicates must also be declared as
incremental (or opaque) 17. The algorithm used is described in [68, 67].

An Eager Updating Approach There is a more efficient way to program incremental
updates when there are several changes made to the base predicates at one time. In this case
the incr_assert_inval/1 and incr_retract(all)_inval/1 predicates should be used for
each individual update. These operations leave the dependent tables unchanged (and thus
inconsistent.) When the updates are finished, the user then calls incr_table_update/0.
which updates all tables that depend on any changed dynamic rules or facts. The following
execution for our running program shows an example of this.

| ?- import incr_assert_inval/1, incr_table_update/0 from increval.

17An opaque predicate P is tabled and is used in the definition of some incrementally tabled predicate but
should not be maintained incrementally. In this case the system assumes that the programmer will abolish
tables for P in such a way so that re-calling it will always give semantically correct answers.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 109

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

| ?- incr_assert_inval(q(d,4)), incr_assert_inval(q(d,1)),

yes

| ?- incr_table_update.

| ?- p(X,Y),writeln([X,Y]),fail.

[d,4]

[d,1]

[c,5]

[b,3]

[a,1]

no

A Lazy Updating Approach But what if a user forgets to call incr_table_update/0?
Or, what if it is important that some tables be updated, while others can remain inconsis-
tent? Beginning with Version 3.3.7 of XSB, lazy incremental table maintenance is supported.
In this case if a query Q is called to a table that is marked to be inconsistent with the under-
lying dynamic code, but that table has not been updated, Q will be dynamically updated
along with all tables upon which Q depends – and only those tables will be updated. In
this manner, if incremental table maintenance is used, inconsistent answers to a query Q
will never be returned. However, if table inspection predicates are used (cf. Chapter 6.15)
inconsistent answers may be shown. We note, however, that the use of these predicates is
much less common than direct queries to tables; but if using table inspection predicates
on incrementally maintained tables, the user should ensure that incr_table_update/0 is
called before inspecting the tables.

Updating conditional answers As discussed earlier in this chapter, answers that are
undefined in the well-founded semantics are represented as conditional answers. Beginning
with version 3.3.7, incremental updates work correctly with conditional answers (before
this version they only worked correctly on stratified tables: those with only unconditional
answers). No special care needs to be taken for conditional answers, and they can be updated
through any of the previously described methods. The following example illustrates one such
approach.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 110

Consider the program

:- dynamic data/1 as incremental.

:- table opaque_undef/0 as opaque.

opaque_undef:- tnot(opaque_undef).

:- table p/1 as incremental.

p(_X):- opaque_undef.

p(X):- data(X).

Note that opaque_undef/1 upon which p/1 depends is explicitly declared as opaque. When
the above program is loaded, XSB will behave as follows.

| ?- p1(1).

undefined

| ?- incr_assert(data(1)).

yes

| ?- p1(1).

yes

| ?- incr_retract(data(1)).

yes

| ?- p1(1).

undefined

| ?- get_residual(p1(1),C).

C = [opaque_undef]

Declaring Predicates to be Incremental

In XSB, tables can have numerous properties: subsumptive, variant, incremental, opaque,
dynamic, private, and shared, and can use answer subsumption or call abstraction. XSB
also has variations in forms of dynamic predicates: tabled, incremental, private, and shared.
XSB extends the table and dynamic compiler and executable directives with modifiers that
allow users to indicate the kind of tabled or dynamic predicate they want. For example,

:- table p/3,s/1 as subsumptive,private.

:- table q/3 as incremental,variant.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 111

:- dynamic r/2,t/1 as incremental.

We note that

:- table p/3 as dyn.

and

:- dynamic p/3 as tabled.

are equivalent.

In the current version of XSB, many combinations involving incremental tabling are not
supported and will throw an error (cf. page 247 and page 237, respectively). Incremental
tabling has not yet been ported to the multi-threaded engine and and it currently works
only for predicates that use both call and answer variance.

5.6.2 Incremental Tabling using Interned Tries

Sometimes it is more convenient or efficient to maintain facts in interned tries rather than
as dynamically asserted facts (cf. Chapter 8). Tables based on interned tries can be auto-
matically updated when terms are interned or uninterned just as they can be automatically
updated when a fact is asserted or retracted. Consider the example from Section 5.6.1
rewritten to use interned tries. As usual, an incrementally updated table is declared as
such:

:- table p/2 as incremental.

p(X,Y) :- trie_interned(q(X,Y),inctrie),Y =< 5.

However, the declaration for dynamic data changes: rather than using the declaration :-

dynamic q/2 as incremental, a trie is specified as incremental in its creation.

trie_create(Trie_handle,[incremental,alias(inctrie)]),

As described in Chapter 8, the trie handle returned is an integer, but can be aliased just as
with any other trie. The trie may then be initially loaded:

trie_intern(q(a,1),inctrie),trie_intern(q(b,3),inctrie),

trie_intern(q(c,5),inctrie),trie_intern(q(d,7),inctrie).

At this stage a query to p/2 acts as before:

| ?- p(X,Y),writeln([X,Y]),fail.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 112

[c,5]

[b,3]

[a,1]

The following sequence ensures that p/2 is incrementally updated as inctrie changes:

| ?- import incr_trie_intern/2.

yes

| ?- incr_trie_intern(inctrie,q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[d,4]

[c,5]

[b,3]

[a,1]

no

There are also incr_trie_intern_inval/2, and incr_trie_unintern_inval/2 predicates
which do not immediately update dependent tables. Lazy incremental table maintenance
works for changes made to interned tries just as it does for regular dynamic code and for
trie-indexed dynamic code.

5.6.3 View Consistency

In addition to the success continuations that are standard in most languages, Prolog has
failure continuations – choice points to take upon backtracking. The presence of these
failure continuations leads to an issue of view consistency, even within a single-threaded
computation. Suppose that a user

1. Makes a query to a completed incrementally tabled subgoal Q. Q has more than one
solution and the first one is returned, leaving a choice point into the table for Q.

2. Makes an update to dynamic code upon which Q depends

3. Makes another query to Q

What is the relation between the queries and the update. Presumably, the first query in step
1) should not reflect the changes made in step 2) if a user backtracks for further answers to
that query – this can be seen as ensuring view consistency.. However it is less clear whether
the second query to Q in step 4) should return the same answers as the first query in step

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 113

1), or whether the second query should reflect the database update. Arguments can be
made for either approach.

• Prolog-style semantics If the second query reflects the database change, it is consistent
with the database, but is not consistent with the first query 18;

• Delayed update semantics If the second query does not reflect the dynamic code
change, it is consistent with the first query but not with the dynamic code change.

XSB chooses the latter of these approaches. If a user has failure continuations into a
query Q, then Q and all tables that depend on Q will not be updated until these failure
continuations have been exhausted or removed. However, all updates are ensured to be
applied once this is the failure continuations are removed.

5.6.4 Summary and Implementation Status

Thus the user has four choices: tables may be updated as soon as the database is changed
(e.g., via incr_assert/1); at some point after a series of database changes (e.g. via
incr_assert_inval/1 and incr_table_update/0); or lazily whenever a given table is
called. In addition, if the changes are so massive that there is no point in incrementally
updating the table, the tables can be abolished so that the tables will be reconstructed
whenever they are re-queried.

In the current version of XSB, incremental tabling has not yet been ported to the
multi-threaded engine. In addition, incremental tabling only works for predicates that
use both call and answer variance. However, incremental tabling does work with for the
full well-founded semantics, for trie indexed dynamic code (in addition to regular dynamic
code) and with interned tries as described in Section 5.6.2. The space reclamation pred-
icates abolish_all_tables/0 and abolish_table_call/[1,2] both can be safely used
with incremental tables, but abolish_table_pred/[1,2] if the predicate it abolishes is
incremental.

5.6.5 Predicates for Incremental Table Maintenance

A Note on Terminology Suppose p/1 and q/1 are incrementally tabled, and that there
is a clause

p(X):- q(X).

In this case we say that p(X) depends_on q(X) and that q(X) affects p(X). A recursive
predicate both depends on and affects itself.

18This approach could be viewed as an extension of the ISO semantics for dynamic code in Prolog, which
XSB does not currently support.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 114

Declarations The following directives support incremental tabling based on changes in
dynamic code:

table +PredSpecs as incremental Tabling
is a executable predicate that indicates that each tabled predicate specified in PredSpec

is to have its tables maintained incrementally. PredSpec is a list of skeletons, i.e. open
terms, or Pred/Arity specifications 19. The tables must use call variance and answer
variance and must compiled and loaded into the single-threaded engine. If a predicate
is already declared as subsumptively tabled, an error is thrown. This predicate, when
called as a compiler directive, implies that its arguments are tabled predicates. See
page 247 for further discussion of tabling options.

We also note that any tabled predicate that is called by a predicate tabled as in-
cremental must also be tabled as incremental or as opaque. On the other hand, a
dynamic predicate d/n that is called by a predicate tabled as incremental may or may
not need to be declared as incremental. However if d/n is not declared incremental,
then changes to it will not be propagated to incrementally maintained tables.

dynamic +PredSpecs as incremental Tabling
is an executable predicate that indicates that each predicate in PredSpecs is dy-
namic and used to define an incrementally tabled predicate and will be updated us-
ing incr_assert/1 and/or incr_retractall/1 (or relatives.) This predicate, when
called as a compiler directive, implies that its arguments are dynamic predicates. See
page 237 for further discussion of dynamic options.

table +PredSpecs as opaque Tabling
is an executable predicate that indicates that each predicate P in PredSpecs is tabled
and is used in the definition of some incrementally tabled predicate but should not
be maintained incrementally. In this case the system assumes that the programmer
will abolish tables for P in such a way so that re-calling it will always give semanti-
cally correct answers. In other words, instead of maintaining information to support
incremental table maintenance, the system re-calls the opaque predicate whenever its
results are required to recompute an answer. One example of an appropriate use of
opaque is for tabled predicates in a DCG used to parse some string. Rather than in-
crementally maintain all dependencies on all input strings, the user can declare these
intermediate tables as opaque and abolish them before any call to the DCG. This
predicate, when called as a compiler directive, implies that its arguments are tabled
predicates.

Basic Incremental Maintenance Predicates The following predicates are used to
manipulate incrementally maintained tables:

19No explicit module references are allowed.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 115

incr_assert(+Clause) module: increval
incr_assertz(+Clause) module: increval
incr_asserta(+Clause) module: increval
incr_retract(+Clause) module: increval
incr_retractall(+Term) module: increval

are versions of assert/1 and other standard Prolog predicates. They modify dy-
mamic code just as their Prolog counterparts, but they then immediately updates all
incrementally maintained tables that depend on Clause.

Error Cases are the same as assert<a/z>/1, retract/1 and retractall/1 with
the additional error condition:

• The head of the clause Clause or the Term refers to a predicate that is not
incremental and dynamic.

– type error(dynamic_incremental, Term)

incr_assert_inval(+Clause) module: increval
incr_assertz_inval(+Clause) module: increval
incr_asserta_inval(+Clause) module: increval
incr_retractall_inval(+Clause) module: increval
incr_retract_inval(+Term) module: increval

are versions of assert/1 and other standard Prolog predicates. They modify dymamic
code just as their Prolog counterparts, and mark any incrementally maintained tables
that depend on the modification as invalid (in need of updating). The tables may
be updated by an explicit call to incr_table_update/[0,1,2], or the table will be
dynamically recomputed when a query is made to it.

incr_table_update module: increval

may be called after base predicates have been changed (by incr_assert_inval/1

and/or
incr_retractall_inval/1 or friends). This predicate updates all the incrementally
maintained tables whose contents change as a result of those changes to the base pred-
icates. This update operation is separated from the operations that change the base
predicates (incr_assert_inval/1 and incr_retractall_inval/1) so that a set of
base predicate changes can be processed all at once, which may be much more efficient
that updating the tables at every base update. Beginning with Version 3.3.7, it is not
absolutely necessary to call this predicate, as tables will be incrementally updated
upon demand. However, using this predicate allows a choice of incurring the cost of
update at a time other than querying an updated goal.

Error Cases

• A table T that is to be incrementally updated is not yet complete.

– permission_error(update, incomplete_table Goal)

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 116

incr_table_update(-GoalList) module: increval

acts as incr_table_update/0 in its action to update the incrementally maintained
tables after changes to base predicates. It returns the list of goals whose tables were
changed in the update process.

incr_table_update(+SkelList,-GoalList) module: increval

acts as incr_table_update/1 in its action to update incrementally maintained tables
after changes to base predicates. The first argument is a list of predicate skeletons
(open terms) for incrementally maintained tables. The predicate returns in GoalList

a list of goals whose skeletons appear in SkelList and whose tables were changed
in the update process. So SkelList acts as a filter to restrict the goals that are
returned to those of interest. If SkelList is a variable, all affected goals are returned
in GoalList.

incr_invalidate_call(+Goal) module: increval

is used to directly invalidate a call to an incrementally maintained table, Goal. A sub-
sequent invocation of incr_table_update/[0,1,2] will cause Goal to be recomputed
and all incrementally maintained tables that Goal affects will be updated; similarly, a
call to Goal will automatically perform incremental updating for Goal along with any
tables that Goal depends on that are in need of updating. This predicate can be used
if a tabled predicate depends on some external data and not (only) on dynamic in-
cremental predicates. If, for example, an incrementally maintained predicate depends
on a relation stored in an external relational database (perhaps accessed through the
ODBC interface), then this predicate can be used to invalidate the table when the
external relation changes. The application programmer must know when the external
relation changes and invoke this predicate as necessary.

Error Cases

• Goal is tabled, but not incrementally tabled

– permission_error(invalidate,non-incremental predicate,Goal)

Incremental Maintenance using Interned Tries The following predicates are used
for modifying incremental tries, and can be freely intermixed with predicates for modifying
incremental dynamic code, as well as with predicates for invalidating or updating tables
(Section 5.6.5).

incr_trie_intern(+TrieIdOrAlias,+Term) module: intern

is a version of trie_intern/2 for tries declared as incremental. A call to this predicate
interns Term in TrieIdOrAlias and then updates all incrementally maintained tables
that depend on this trie.

incr_trie_uninternall(+TrieIdOrAlias,+Term) module: intern

is a version of trie_unintern/2 for tries declared as incremental. A call to this

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 117

predicate removes all terms unifying with Term in TrieIdOrAlias and then updates
all incrementally maintained tables that depend on this trie.

incr_trie_intern_inval(+TrieIdOrAlias,+Term) module: intern

works for tries declared as incremental in a similar manner as incr_trie_intern/2 ex-
cept that it does not update the incrementally maintained tables, but only marks them
as invalid. The tables may be updated by an explicit call to incr_table_update/[0,1,2],
or updated lazily.

incr_trie_uninternall_inval(+TrieIdOrAlias,+Term) module: intern

works for tries declared as incremental in a similar manner as incr_trie_uninternall/2

except that it does not update the incrementally maintained tables, but only marks
them as invalid. The tables may be updated by an explicit call to incr_table_update/[0,1,2]

or updated lazily.

Introspecting Dependencies among Incremental Subgoals In order to efficiently
perform incremental updates, each incrementally tabled subgoal S contains information
about other subgoals upon which S directly depends or which S directly affects. These re-
lations form a labelled directed graph for which the nodes are incrementally tabled subgoals
present in XSB; a given subgoal in the graph may or may not have been completed. In
addition, there is an edge from S1 to S2 labelled depends (affects) if S1 directly depends on
(directly affects) S2. We call this graph the incrementally tabled subgoal dependency graph,
or just the incremental dependency graph. The predicates in this section allow a user to
inspect properties of the dependency graph that can be useful in debugging or profiling a
computation 20.

As explained below, nodes for the dependency graph can be accessed via the predicate
is_incremental_subgoal/1, while edges can be accessed via incr_directly_depends/2.
The predicates get_incr_scc/[1,2] and get_incr_scc_with_deps/[3,4] can be used to
efficiently materialize the dependency graph in Prolog, including SCC information.

is_incremental_subgoal(?Subgoal) module: increval

This predicate non-deterministically unifies Subgoal with incrementally tabled sub-
goals that are currently table entries.

incr_directly_depends(?Goal1,?Goal2) module: increval

accesses the dependency structures used by the incremental table maintenance sub-
system to provide information about which incremental table calls depend on which
others. At least one of Goal1 or Goal2 must be bound.

20The predicates for traversing the incremental dependency graph are somewhat analogous to those for
traversing the residual dependency graph (Section 6.15.2).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 118

• If Goal1 is bound, then this predicate will return in Goal2 through backtracking
the goals for all incrementally maintained tables on which Goal1 directly depends.

• If Goal2 is bound, then it returns in Goal1 through backtracking the goals for
all incrementally maintained tables that Goal2 directly affects – in other words
all goals that directly depend on Goal2.

Error Cases

• Neither Goal1 nor Goal2 is bound

– instatiation_error

• Goal1 and/or Goal2 is bound, but is not incrementally tabled

– table_error

incr_trans_depends(?Goal1,?Goal2) module: increval

is similar to incr_directly_depends/2 except that it returns goals according to the
transitive closure of the “directly depends” relation. Error conditions are the same as
incr_directly_depends/2.

get_incr_sccs(?SCCList) module: increval
get_incr_sccs_with_deps(?SCCList,?DepList) module: increval
get_incr_sccs(+SubgoalList,?SCCList) module: increval
get_incr_sccs_with_deps(+SubgoalList,?SCCList,?DepList) module: increval

Most linear algorithms for SCC detection over a graph use destructive assignment on
a stack to maintain information about the connecteness of a component; as a result
such algorithms are difficult to write efficiently in Prolog.

get_incr_sccs/1 unifies SCCList with SCC information for the incremental depen-
dency graph that is represented as a list whose elements are of the form

ret(Subgoal,SCC).

SCC is a numerical index for the SCCs of Subgoal. Two subgoals are in the same
SCC iff they have the same index, however no other dependency information can be
otherwise directly inferred from the index 21.

If dependency information is also desired, get_incr_scc_with_dependencies/2 should
be called. In addition to the SCC information as above, DepList is unified with a list
of dependency terms of the form

depends(SCC1,SCC2)

21The actual number for each SCC index depends on how the incremental dependency graph happens to
be traversed; as a result it is best to rely on the index only as a “generated” name for each SCC.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 119

for each pair SCC1 and SCC1 such that some subgoal with index SCC1 directly depends
on some subgoal with index SCC1. If it is necessary to know which subgoal(s) in
SCC1 directly depends on which subgoal(s) in SCC2, the information can be easily
reconstructed using incr_depends/2 above. Similarly, incr_depends/2 can be used
to determine the actual edges within a given SCC.

Ordinarily a user will want to see the entire dependency graph and in such a case
the predicates described above should be used. However, note that if the depen-
dency graph is the result of several indepdendent queries it may not be connected.
get_incr_scc/2 takes as input a list of incremental subgoals, SubgoalList. For
each Subgoal in SubgoalList, this predicate finds the set of subgoals connected to
Subgoal by any mixture of depends and affects relations, unions these sets together,
and finds the SCCs of all subgoals in the unioned set.

SCC detection is implemented using Tarjan’s algorithm [79] in C working directly
on XSB’s data structures. The algorithm is O(|V | + |E|) where |V | is the num-
ber of vertices and |E| the number of edges in the dependency graph. As a result,
get_incr_sccs/[1,2] provides an efficient means to materialize the high-level to-
pography of the dependency graph 22.

Error Cases

• SCCList contains a predicate that is not tabled

– permission_error

5.7 Compatability of Tabling Modes and Predicate Attributes

As discussed in this chapter, there are several choices for how to table a predicate. Ei-
ther call subsumption or call variance may be used, incremental tabling might or might
not be used, and answer subsumption might or might not be used. Furthermore, a tabled
predicate, like any other predicate, may be static or dynamic and thread shared or thread
private. Together, there are 48 different combinations, not all of which are supported in
Version 3.3 of XSB. To analyze further, all combinations are supported for call-variance
and for thread private predicates. However, call subsumption has not been fully integrated
with dynamic code or thread shared predicates, and cannot currently be combined with
incremental tabling or with answer subumption. Similarly incremental tabling is not yet
supported in the multi-threaded engine (it is supported for “thread private” computations
only in the sequential engine). The compatabilities are listed in Table 5.1. Further combi-
nations will be supported in future versions of XSB as resources allow.

22Currently, the materialization of dependency information between SCCs is implemented in a naive
manner, so that get_incr_sccs_with_deps/[2,3] is O(|V |2).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 120

The combinations in Table 5.1 allow full well-founded computation, constrained variables
in calls and answers (including the residual program), and safe space reclamation, with the
following exceptions. Answer subsumption does support non lrd-stratified programs; and
call subsumption does not yet support attributed variables in calls.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 121

variant static private nonincremental no answer subsumption yes
variant static private nonincremental answer subsumption yes
variant static private opaque no answer subsumption yes
variant static private opaque answer subsumption no
variant static private incremental no answer subsumption yes
variant static private incremental answer subsumption no
variant static shared nonincremental no answer subsumption yes
variant static shared nonincremental answer subsumption yes
variant static shared opaque no answer subsumption no
variant static shared opaque answer subsumption no
variant static shared incremental no answer subsumption no
variant static shared incremental answer subsumption no
variant dynamic private nonincremental no answer subsumption yes
variant dynamic private nonincremental answer subsumption yes
variant dynamic private opaque no answer subsumption no
variant dynamic private opaque answer subsumption no
variant dynamic private incremental no answer subsumption no
variant dynamic private incremental answer subsumption no
variant dynamic shared nonincremental no answer subsumption yes
variant dynamic shared nonincremental answer subsumption yes
variant dynamic shared opaque no answer subsumption no
variant dynamic shared opaque answer subsumption no
variant dynamic shared incremental no answer subsumption no
variant dynamic shared incremental answer subsumption no
subsumptive static private nonincremental no answer subsumption yes
subsumptive static private nonincremental answer subsumption yes
subsumptive static private opaque no answer subsumption no
subsumptive static private opaque answer subsumption no
subsumptive static private incremental no answer subsumption no
subsumptive static private incremental answer subsumption no
subsumptive static shared nonincremental no answer subsumption no
subsumptive static shared nonincremental answer subsumption no
subsumptive static shared opaque no answer subsumption no
subsumptive static shared opaque answer subsumption no
subsumptive static shared incremental no answer subsumption no
subsumptive static shared incremental answer subsumption no
subsumptive dynamic private nonincremental no answer subsumption yes
subsumptive dynamic private nonincremental answer subsumption yes
subsumptive dynamic private opaque no answer subsumption no
subsumptive dynamic private opaque answer subsumption no
subsumptive dynamic private incremental no answer subsumption no
subsumptive dynamic private incremental answer subsumption no
subsumptive dynamic shared nonincremental no answer subsumption no
subsumptive dynamic shared nonincremental answer subsumption no
subsumptive dynamic shared opaque no answer subsumption no
subsumptive dynamic shared opaque answer subsumption no
subsumptive dynamic shared incremental no answer subsumption no
subsumptive dynamic shared incremental answer subsumption no

Table 5.1: Support for different tabling modes in XSB Version 3.3

Chapter 6

Standard Predicates and
Predicates of General Use

This chapter describes standard predicates, which are always available to the Prolog inter-
preter, and do not need to be imported or loaded explicitly as do other Prolog predicates.
By default, it is a compiler error to redefine standard predicates.

In the description below, certain standard predicates depend on HiLog semantics; the
description of such predicates have the token HiLog at the right of the page. Similarly
predicates that depend on SLG evaluation are marked as Tabling, and predicates whose
semantics is defined by the ISO standard (or whose implementation is reasonably close
to that definition) are marked as ISO. Occasionally, however, we include in this section
predicates that are not standard. In such cases we denote their module in text font towards
the middle of the page.

6.1 Input and Output

XSB’s I/O is based on ISO-style streams, although it also supports older DEC-10 style file
handling. The use of streams provides a unified interface to a number of different classes
of sources and sinks. Currently these classes include textual and binary files, console input
and output, pipes, and atoms; in the future sockets and urls may be handled under the
stream interface. When streams are opened, certain actions may occur depending on the
class of the source or sink and on the wishes of the user. For instance when a file F is opened
for output mode, an existing file F may be truncated (in write mode) or not (in append
mode). In addition, various operations may or may not be valid depending on the class of
stream. For instance, repositioning is valid for an atom or file but not a pipe or console.

XSB provides several default I/O streams, which make it easier for a user to embed
XSB in other applications. These streams include the default input and output streams.

122

CHAPTER 6. STANDARD AND GENERAL PREDICATES 123

They also include the standard error stream, to which XSB writes all error messages. By
default the standard error stream is the same as the standard output stream, but it can be
redirected either by UNIX shell-style I/O redirection or by the predicates file_reopen/4

and file_clone/3. Similarly there is the standard warning stream (to which all sys-
tem warnings are written), the standard message stream, the standard debugging stream
(to which debugging information is written), and the standard feedback stream (for in-
terpreter prompts, yes/no answers, etc). All of these streams are aliased by default to
standard output, and can be redirected by the predicates the predicates file_reopen/4

and file_clone/3.

Streams may also be aliased: the default input and output streams can be denoted by
user_input and user_output and they refer to the standard input and standard output
streams of the process 1. Similarly, XSB’s error, warning and message streams uses the
aliases user_error, user_warning and user_message respectively.

Streams are distinguished by their class – whether they are file or atom, etc.; as well
as by various properties. These properties include whether a stream is positionable or not
and whether a (file) stream is textual or binary.

• Console The default streams mentioned above are console streams, which are textual
and not repositionable.

• File A file stream corresponds to an operating system file and is repositionable. On
Windows, binary files and textual files differ, while on UNIX they are the same.

• Atom XSB can read from an atom, just as it can from a file. Atoms are considered to be
textual and repositionable. Writing to atoms via streams is not currently available in
XSB, although the predicate term_to_atom/[2,3] contains much of the functionality
that such streams would provide.

• Pipe XSB can also open pipes either directly, or as part of its ability to spawn pro-
cesses. When made into streams, pipes are textual and not repositionable.

6.1.1 I/O Stream Implementation

A user may note that XSB’s I/O streams are small integers, but they should not be confused
with the file descriptors used by the OS. The OS file descriptors are objects returned by
the C open function; XSB I/O streams indices into the internal XSB table of open files
and associated information. The OS does not know about XSB I/O streams, while XSB
(obviously) does know about the OS file descriptors. An OS file descriptor may be returned
by certain predicates (e.g. pipe_open/2 or user-defined I/O). In the former case, a file

1For backwards compatibility, the default input stream can also be aliased by user or userin, and the
default output stream by user or userout.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 124

descriptor can be promoted to XSB stream by open/{3,4} and in the latter by using the
predicate fd2iostream/2.

When it starts, XSB opens a number of standard I/O streams that it uses to print results,
errors, debugging info, etc. The descriptors are described in the file prolog_includes/standard.h.
This file provides the following symbolic definitions:

#define STDIN 0

#define STDOUT 1

#define STDERR 2

#define STDWARN 3 /* output stream for xsb warnings */

#define STDMSG 4 /* output for regular xsb messages */

#define STDDBG 5 /* output for debugging info */

#define STDFDBK 6 /* output for XSB feedback

(prompt/yes/no/Aborting/answers) */

#define AF_INET 0 /* XSB-side socket request for Internet domain */

#define AF_UNIX 1 /* XSB-side socket request for UNIX domain */

These definitions can be used in user programs, if the following is provided at the top of
the source file:

compiler_options([xpp_on]).

#include "standard.h"

If this header is used, the various streams can be used as any other output stream – e.g.
?- write(STDWARN,’watch it!’). (Note: the XSB preprocessor is not invoked on clauses
typed into an interactive XSB session, so the above applies only to programs loaded from
a file using consult and such.)

6.1.2 ISO Streams

open(+SourceSink,+Mode,-Stream) ISO
open/1 creates a stream for the source or sink designated in SourceSink, and binds
Stream to a structure representing that stream.

• If SourceSink is an atom, or the term file(File) where File is an atom, the
stream is a file stream. In this case Mode can be

– read to create an input stream. In Windows, whether the file is textual or
binary is determined by the file’s properties.

– write to create an output stream. Any previous file with a similar path is
removed and a (textual) file is created which becomes a record of the output
stream.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 125

– write_binary to create an output stream. Any previous file with a similar
path is removed and a file is created which becomes a record of the output
stream. The file created is binary in Windows, while in UNIX write_binary

has the same effect as write.
– append to create an output stream. In this case the output stream is ap-

pended to the contents of the file, if it exists, and otherwise a new file is
created for (textual) output

– append_binary to create an output stream. In this case the output stream
is appended to the contents of the file, if it exists, and otherwise a new file
is created for (binary) output

• If SourceSink is the term atom(Atom) where Atom is an atom, the stream is an
atom stream. In this case Mode currently can only be read. This stream class,
which reads from interned atoms, is analogous to C’s sscanf() function.

• If SourceSink is the term pipe(FIleDescriptor) where FileDescriptor is an
integer, then a pipe stream is opened in the mode for FileDescriptor.

ISO Compatability Note: This predicate extends the ISO definition of open/3 to
include strings and pipes as well as the file modes write_binary and append_binary.

Error Cases

• SourceSink or Mode is not instantiated

– instantiation_error

• Mode is not a valid I/O mode

– domain_error(io_mode,Mode)

• SourceSink is a file and cannot be opened, or opened in the desired mode

– permission_error(open,file,SourceSink)

open(+File,+Mode,-Stream,+Options) ISO
open/4 behaves as does open/3, but allows a list of options to be given. The current
options are a subset of ISO options and are:

• alias(A) allows the stream to be aliased to an atom A.

• type(T) has no effect on file streams in UNIX, which are always textual, but in
Windows if T is binary a binary file is opened.

Error Cases Error cases are the same as open/3 but with the addition:

• Option_list contains an option O that is not a (currently implemented) stream
option.

– domain_error(stream_option,O)

• An element of OptionsList is alias(A) and A is already associated with an
existing thread, queue, mutex or stream

CHAPTER 6. STANDARD AND GENERAL PREDICATES 126

– permission_error(create,alias, A)

• An element of OptionsList is alias(A) and A is not an atom

– type_error(atom,A)

ISO Compatability Note: The ISO option reposition(Boolean) currently has no
effect on streams, because whether or not the stream is repositionable or not depends
on the stream class. The ISO option eof_action(Action) currently has no effect
on file streams. If these options are encountered in Options, a warning is issued to
STDWARN.

close(+Stream_or_alias,+OptionsList) ISO
close/2 closes the stream or alias Stream_or_alias. OptionsList allows the user
to declare whether a permission error will be raised in XSB upon a resource or sys-
tem error from the closing function (e.g. fclose() or other system function). If
OptionsList is non-empty and contains only terms unifying with force(true) then
such an error will be ignored (possibly leading to unacknowledged loss of data). Oth-
erwise, a permission error is thrown if fclose() or other system function returns an
error condition. If the stream class of Stream_or_alias is an atom, then the only
action taken is to close the stream itself – the interned atom itself is not affected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

• OptionList contains an option O that is not a closing option.

– domain_error(close_option,O)

• OptionList contains conflicting options

– domain_error(close_option,OptionList)

• Closing the stream produces an error (and OptionsList is a non-empty list
containing terms of the form force(true)).

– permission_error(close,file,Stream_or_alias)

close(+Stream_or_alias) ISO
close/1 closes the stream or alias Stream_or_alias.
Behaves as close(Stream_or_alias,[force(false)]).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 127

set_input(+Stream_or_alias) ISO
Makes file Stream_or_alias the current input stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not an open input stream

– existence_error(stream,Stream_or_alias)

set_output(+Stream_or_alias) ISO
Makes file Stream_or_alias the current output stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

stream_property(?Stream,?Property) ISO
This predicate backtracks through the various stream properties that unify with
Property for the stream Stream. Currently, the following properties are defined.

• stream_class(C) gives the stream class for a file: i.e. file, atom, console or
pipe.

• file_name(F) is a property of Stream, if Stream is a file stream and F is the file
name associate with Stream. The full operating system path is used.

• type(T) is a property of Stream, if Stream is a file stream and T is the file type
of Stream: text or binary.

• mode(M) is a property of Stream, if M represents the I/O mode with which Stream

was opened: i.e. read, write, append, write_binary, etc., as appropriate for
the class of Stream.

• alias(A) is a property of Stream, if Stream was opened with alias A.

• input is a property of Stream, if Stream was opened in the I/O mode: read.

• output is a property of Stream, if Stream was opened in the I/O mode: write,
append, write_binary, or append_binary.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 128

• reposition(Bool) is true, if Stream is repositionable, and false otherwise.

• end_of_stream(E) returns at if the end of stream condition for Stream is true,
and not otherwise.

• position(Pos) returns the current position of the stream as determined by
fseek or the byte-offset of the current stream within an atom. In either case, if
an end-of-stream condition occurs, the token end_of_file is returned.

• eof_action(Action) is reposition if the stream class is console, eof_code if
the stream class is file, and error is the stream class is pipe or atom.

flush_output(+Stream_or_alias) ISO
Any buffered data in Stream_or_alias gets flushed. If Stream is not buffered (i.e. if
it is of class atom), no action is taken.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(Stream_or_alias,Stream)

• Stream is not associated with an open output stream

– existence_error(Stream_or_alias,Stream)

• Flushing (i.e. fflush()) returns an error.

– permission_error(flush,stream,Stream)

flush_output ISO
Any buffered data in the current output stream gets flushed.

set_stream_position(+Stream_or_alias,+Position) ISO
If the stream associated with Stream_or_alias is repositionable (i.e. is a file or atom),
sets the stream position indicator for the next input or output operation. Position is
a positive integer, taken to be the number of bytes the stream is to be placed from
the origin.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Position is not instantiated to a positive integer.

– domain_error(stream_position,Position)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 129

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

• Stream_or_alias is not repositionable, or repositioning returns an error.

– permission_error(resposition,stream,Stream_or_alias)

at_end_of_stream(+Stream_or_alias) ISO
Succeeds if Stream_or_alias has position at or past the end of stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream,Stream_or_alias)

• Stream_or_alias is not an open stream

– existence_error(stream,Stream_or_alias)

at_end_of_stream ISO
Acts as at_end_of_stream/1 but using the current input stream.

Other Predicates using ISO Streams

file_reopen(+FileName,+Mode,+Stream,-RetCode)

Takes an existing I/O stream, closes it, then opens it and attaches it to a file. This
can be used to redirect I/O from any of the standard streams to a file. For instance,

| ?- file_reopen(’/dev/null’, w, 3, Error).

redirects all warnings to the Unix black hole.

On success, RetCode is 0; on error, the return code is negative.

file_clone(+SrcStream,?DestStream,-RetCode)

This is yet another way to redirect I/O. It is a Prolog interface to the C dup and dup2

system calls. If DestStream is a variable, then this call creates a new XSB I/O stream
that is a clone of SrcStream. This means that I/O sent to either stream goes to the
same place. If DestStream is not a variable, then it must be a number corresponding
to a valid I/O stream. In this case, XSB closes DestStream and makes it into a clone
of SrcStream.

For instance, suppose that 10 is a I/O Stream that is currently open for writing to
file foo.bar. Then

| ?- file_clone(10,3,_).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 130

causes all messages sent to XSB standard warnings stream to go to file foo.bar. While
this could be also done with file_reopen, there are things that only file_clone can
do:

| ?- file_clone(1,10,_).

This means that I/O stream 10 now becomes clone of standard output. So, all subse-
quent I/O will now go to standard output instead of foo.bar.

On success, RetCode is 0; on error, the return code is negative.

file_truncate(+Stream, +Length, -Return) module: file_io

The regular file referenced by the StreamStream is chopped to have the size of Length

bytes. Upon successful completion Return is set to zero.

Portability Note: Under Windows (including Cygwin) file_truncate/2 is imple-
mented using _chsize(), while on Unix ftruncate() is used. There are minor se-
mantic differences between these two system calls, which are reflected by the behavior
of file_truncate/2 on different platforms.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable, nor a a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

• Length is a variable

– instantiation_error

• Length is neither a variable nor an integer

– type_error(integer,Length)

tmpfile_open(-Stream)

Opens a temporary file with a unique filename. The file is deleted when it is closed
or when the program terminates.

flush_all_output_streams module: error_handler

Flushes output streams, both user and system STDOUT, STDERR, etc. This convenience
predicate is written as

flush_all_open_streams:-

stream_property(S,mode(X)),(X = append ; X = write),flush_output(S),fail.

flush_all_open_streams.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 131

6.1.3 DEC-IO Style File Handling

see(+File_or_stream)

Makes File_or_stream the current input stream.

• If there is an open input stream associated with the file that has File_or_stream

as its file name, and that stream was opened previously, then it is made the
current input stream.

• Otherwise, the specified file is opened for input and made the current input
stream. If the file does not exist, see/1 throws a permission error.

Note that see/1 is incompatible with ISO aliases – calling see(Alias) with an ISO
alias will try to open a file named Alias rather than using the alias. Also note
that different file names (that is, names which do not unify) represent different input
streams (even if these different file names correspond to the same file).

Error Cases

• File_or_stream is a variable

– instantiation_error

• File_or_stream is neither a variable nor an atomic file identifier nor a stream
identifier.

– domain_error(stream_or_path,F)

• File File_or_stream is directory or file is not readable.

– permission_error(open,file,F)

• File File_or_stream does not exist.

– existence_error(stream_or_path,F)

seeing(?F)

F is unified with the name of the current input stream. This is exactly the same
with predicate current_input/1 described in Section 6.12, and it is only provided
for upwards compatibility reasons.

seen

Closes the current input stream. Current input reverts to “userin” (the standard
input stream).

tell(+F)

Makes file F the current output stream.

• If there is an open output stream associated with F and that was opened previ-
ously by tell/1, then that stream is made the current output stream.

• Otherwise, the specified file is opened for output and made the current output
stream. If the file does not exist, it is created.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 132

Also note that different file names (that is, names which do not unify) represent
different output streams (even if these different file names correspond to the same
file).

The implementation of the ISO predicate set_output/1, is essentially that of tell/1.

Error Cases

• File_or_stream is a variable

– instantiation_error

• File_or_stream is neither a variable nor an atomic file identifier nor a stream
identifier.

– domain_error(stream_or_path,F)

• File File_or_stream is directory or file is not readable.

– permission_error(open,file,F)

• File File_or_stream does not exist.

– existence_error(stream_or_path,F)

telling(?F)

F is unified with the name of the current output stream. This predicate is exactly
the same with predicate current_output/1 described in Section 6.12, and it is only
provided for upwards compatibility reasons.

told

Closes the current output stream. Current output stream reverts to “userout” (the
standard output stream).

file_exists(+F)

Succeeds if file F exists. F must be instantiated to an atom at the time of the call, or
an error message is displayed on the standard error stream and the predicate aborts.

Error Cases

instantiation_error F is uninstantiated.

url_encode(+Filename,-EncodedFilename)

This predicate is useful when one needs to create a file whose name contains forbidden
characters, such as >, <, and the like. It takes a string and encodes any forbidden
character using an appropriate %-sequence of characters that is acceptable as a file
name in any OS: Unix, Windows, or Mac. For instance,

| ?- url_encode(’http://foo’’>$’,X).

X = http%3a%2f%2ffoo%27%3e%24

CHAPTER 6. STANDARD AND GENERAL PREDICATES 133

url_decode(+Filename,-EncodedFilename)

This predicate performs the inverse operation with respect to url_encode/2. For
instance,

| ?- url_decode(’http%3a%2f%2ffoo%27%3e%24’,X).

X = http://foo’>$

6.1.4 Character I/O

nl ISO
A new line character is sent to the current output stream.

nl(+Stream_or_alias) ISO
A new line character is sent to the designated output stream.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

get_char(+Stream_or_alias,?Char) ISO
Unifies Char with the next ASCII character from Stream_or_alias, advancing the
position of the stream. Char is unified with -1 if an end of file condition is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

get_char(?Char) ISO
Behaves as get_char/2, but reads from the current input stream.

Error Cases

CHAPTER 6. STANDARD AND GENERAL PREDICATES 134

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

get_code(+Stream_or_alias,?Code) ISO
Code unifies with the ASCII code of the next character from Stream_or_alias. The
position of the stream is advanced.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Code is not a variable or character code

– domain_error(character_code_or_variable,Code)

get_code(?Code) ISO
Behaves as get_code/2, but reads from the current input stream.

Error Cases

• Code is not a variable or character code

– domain_error(character_code_or_variable,Code)

get0(?N)

N is the ASCII code of the next character read from the current input stream (regarded
as a text stream). If the current input stream reaches its end of file, a -1 is returned.
This predicate does not check for errors, so that it is faster (and potentially less safe)
than, e.g. get_code/1.

get(?N)

N is the ASCII code of the next non-blank printable character from the current input
stream (regarded as a text stream). If the current input stream reaches its end of file,
a -1 is returned.

peek_char(+Stream_or_alias,?Char) ISO
Char is the next ASCII character from Stream_or_alias. The position in Stream_or_alias

is unchanged. Char is unified with -1 if an end of file condition is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 135

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

peek_char(?Char) ISO
Char is the next ASCII character from the current input stream. The position in the
current input stream is unchanged. Char is unified with -1 if an end of file condition
is detected.

Error Cases

• Char is not a variable or character.

– domain_error(character_or_variable,Char)

peek_code(+Stream_or_alias,?Code) ISO
Code is the next ASCII coder from Stream_or_alias. The position in Stream_or_alias

is unchanged. Code is unified with -1 if an end of file condition is detected.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Code is not a variable or character.

– domain_error(character_code_or_variable,Code)

peek_code(?Code) ISO
Behaves as peek_code/1, but the current input stream is used.

Error Cases

• Char is not a variable or character.

– domain_error(character_code_or_variable,Code)

put_char(+Stream,+Char) ISO
Puts the ASCII character Char to Stream_or_alias.

Error Cases

CHAPTER 6. STANDARD AND GENERAL PREDICATES 136

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Char is a not a character

– type_error(character,Char)

put_char(+Char) ISO
Puts the ASCII code of the character Char to the current output stream.

Error Cases

• Code is a not a character.

– type_error(character,Char)

put_code(+Stream,+Code) ISO
Puts the ASCII code of the character Char to Stream_or_alias.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• Code is a not a character code

– type_error(character_code,Code)

put_code(+Code) ISO
Puts the ASCII code Code to the current output stream. Error Cases

• Code is a not a character code.

– type_error(character_code,Code)

put(+Code)

Puts the ASCII character code N to the current output stream.

Error Cases

• Code is a not a character code.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 137

– type_error(character_code,Code)

tab(+N)

Puts N spaces to the current output stream.

Error Cases

• Code is a not a positiveInteger

– domain_error(positiveInteger,Code)

get_byte/1 ISO

get_byte/2 ISO

put_byte/1 ISO

put_byte/2 ISO

put_byte/1 ISO

put_byte/2 ISO
In XSB, these predicates are simply aliases for the associated xxx_code predicates
and behave accordingly. This is safe to do since the reader for Version 3.3 of XSB
supports only ASCII character codes, which are themselves single bytes.

6.1.5 Term I/O

read(?Term) ISO
A HiLog term is read from the current or designated input stream, and unified with
Term according to the operator declarations in force. (See Section 4.1 for the definition
and syntax of HiLog terms). The term must be delimited by a full stop (i.e. a “.”
followed by a carriage-return, space or tab). Predicate read/1 does not return until
a valid HiLog term is successfully read; that is, in the presence of syntax errors
read/1 does not fail but continues reading terms until a term with no syntax errors
is encountered. If a call to read(Term) causes the end of the current input stream to
be reached, variable Term is unified with the term end_of_file. In that case, further
calls to read/1 for the same input stream will cause an error failure.

In Version 3.3, read/[1,2] are non ISO-compliant in how they handle syntax errors
or their behavior when encountering an end of file indicator.

read(+Stream_or_alias, ?Term) ISO
read/2 has the same behavior as read/1 but the input stream is explicitly designated
by Stream_or_alias.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 138

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

read_canonical(-Term)

Reads a term that is in canonical format from the current input stream and returns it
in Term. On end-of-file, it returns the atom end_of_file. If it encounters an error, it
prints an error message on STDERR and returns the atom read_canonical_error.
This is significantly faster than read/1, but requires the input to be in canonical form.

read_canonical(+Stream_or_alias),-Term)

Behaves as read_canonical/1, but reads from Stream_or_alias.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

read_term(?Term,?OptionsList) ISO
A term is read from the current input stream as in read/1; but OptionsList is a
(possibly empty) list of read options that specifies additional behavior. The read
options include

• variables(Vars): once a term has been read, Vars is a list of the variables in
the term, in left-to-right order.

• variable_names(VN_List): once a term has been read VN_List is a list of non-
anonymous variables in the term. The elements of the list have the form A =

V where V is a non-anonymous variable of the term, and A is the string used to
denote the variable in the input stream.

• singletons(VS_List): once a term has been read VN_List is a list of the non-
anonymous singleton variables in the term. The elements of the list have the
form A = V where V is a non-anonymous variable of the term, and A is the string
used to denote the variable in the input stream.

Error Cases

• OptionsList is a variable, or is a list containing a variable element.

– instantiation_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 139

• OptionsList contains a non-variable element O that is not a read option.

– domain_error(read_option,O)

read_term(+Stream_or_alias, ?Term,?OptionsList) ISO
read_term/3 has the same behavior as read_term/2 but the input stream is explicitly
designated using the first argument.

Error Cases are the same as read_term/2, but with the additional errors that may
arise in stream checking.

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open stream

– existence_error(stream,Stream_or_alias)

write_term(?Term,+Options) ISO
Outputs +Term to the current output stream. Stream (write_term/3) according to
the list of write options, Options. The current set of write options which form a
superset of the ISO-standard write options, are as follows:

• quoted(+Bool). If Bool = true, then atoms and functors that can’t be read
back by read/1 are quoted, if Bool = false, each atom and functor is written
as its unquoted name. Default value is false.

• ignore_ops(+Bool). If Bool = true each compound term is output in func-
tional notation; curly brackets and list braces are ignored, as are all explicitly
defined operators. If Bool = false, curly bracketed notation and list notation
is enabled when outputting compound terms, and all other operator notation is
enabled. Default value is false.

• numbervars(+Bool). If Bool = true, a term of the form ’$VAR’(N) where N

is an integer, is output as a variable name consisting of a capital letter possibly
followed by an integer. A term of the form ’$VAR’(Atom) where Atom is an atom,
is output as itself (without quotes). Finally, a term of the form ’$VAR’(String)

where String is a character string, is output as the atom corresponding to this
character string. If bool is false this cases are not treated in any special way.
Default value is false.

• max_depth(+Depth). Depth is a positive integer or zero. If positive, it denotes
the depth limit on printing compound terms. If Depth is zero, there is no limit.
Default value is 0 (no limit).

• priority(+Prio) Prio is an integer between 1 and 1200. If the term to be
printed has higher priority than Prio, it will be printed parenthesized. Default
value is 1200 (no term parenthesized).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 140

From the following examples it can be seen that write_term/[2,3] can duplicate the
behavior of a number of other I/O predicates such as write/[1,2], writeq/[1,2],
write_canonical/[1,2], etc.

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),[]).

f(1 + 2,A,"string",$VAR(3),$VAR(Temp),(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true)]).

f(1 + 2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true),ignore_ops(true),numbervars(true)]).

f(+(1,2),’A’,’.’(115,’.’(116,’.’(114,’.’(105,’.’(110,’.’(103,[])))))),D,Temp,(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true),ignore_ops(true),numbervars(true),priority(1000)]).

f(+(1,2),’A’,’.’(115,’.’(116,’.’(114,’.’(105,’.’(110,’.’(103,[])))))),D,Temp,multifile(foo))

yes

Error Cases

• Options is a variable

– instantiation_error

• Options neither a variable nor a list

– type_error(list,Options)

• Options contains a variable element, O

– instantiation_error

• Options contains an element O that is neither a variable nor a write option.

– domain_error(write_option,O)

ISO Compatability Note: In Version 3.3, write_term/[2,3] do not properly han-
dle operators.

write_term(+Stream_or_alias,?Term,+Options) ISO
Behaves as write_term/2, but writes to Stream_or_alias.

Error Cases are the same as write_term/2 but with these additions.

• Stream_or_alias is a variable

– instantiation_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 141

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

write(?Term) ISO
Semantically, write/1 behaves as if write_term/1 were invoked using quoted(false),
ignore_ops(false), and numbervars(false). Attributed variables are written ac-
cording to the value of the Prolog flag write_attributes (cf. current_prolog_flag/2).

The HiLog term Term is written to the current output stream, according to the oper-
ator declarations in force. Any uninstantiated subterm of term Term is written as an
anonymous variable (an underscore followed by a token).

All proper HiLog terms (HiLog terms which are not also Prolog terms) are not written
in their internal Prolog representation. write/1 always succeeds without producing
an error.

HiLog (or Prolog) terms that are output by write/1 cannot in general be read back
using read/1. This happens for two reasons:

• The atoms appearing in term Term are not quoted. In that case the user must use
writeq/1 or write_canonical/1 described below, which quote around atoms
whenever necessary.

• The output of write/1 is not terminated by a full-stop; therefore, if the user
wants the term to be accepted as input to read/1, the terminating full-stop
must be explicitly sent to the current output stream.

write/1 treats terms of the form ’$VAR’(N), which may be generated by numbervars/[1,3]

specially: it writes ’A’ if N=0, ’B’ if N=1, . . ., ’Z’ if N=25, ’A1’ if N=26, etc.
’$VAR’(-1) is written as the anonymous variable ’_’.

write(+Stream_or_alias, ?Term) ISO
write/2 has the same behavior as write/1 but the output stream is explicitly desig-
nated using the first argument.

Error Cases are the same as read_term/2, but with the additional errors that may
arise in stream checking.

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

CHAPTER 6. STANDARD AND GENERAL PREDICATES 142

– existence_error(stream,Stream_or_alias)

writeq(?Term) ISO
Acts as write_term/1 when defined with the options quoted(true), numbervars(true),
and ignore_ops(false). In other words, atoms and functors are quoted whenever
necessary to make the result acceptable as input to read/1 writeq/1 also treats terms
of the form ’\VAR’(N) specially, writing A if N= 0, etc., and output is in accordance
with current operator definitions. writeq/1 always succeeds without producing an
error.

writeq(+Stream_or_alias, ?Term) ISO
writeq/2 has the same behavior as writeq/1 but the output stream is explicitly
designated using the first argument.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

write_canonical(?Term) ISO
This predicate is provided so that the HiLog term Term, if written to a file, can be
read back using read_canonical/[1,2] or read/[1,2] regardless of special char-
acters appearing in Term or prevailing operator declarations. Like write_prolog/1,
write_canonical/1 writes all proper HiLog terms to the current output stream using
the standard Prolog syntax (see Section 4.1 on the standard syntax of HiLog terms).
write_canonical/1 also quotes atoms and functors as writeq/1 does, to make them
acceptable as input of read/1. Except for list-notation ([]) and infix comma-list
notation, operator declarations are not taken into consideration, so that apart from
these exceptions compound terms are written in the form:

〈predicate name〉(〈arg1〉, . . . , 〈argn〉)

Unlike writeq/1, write_canonical/1 does not treat terms of the form ’$VAR’(N)

specially. It writes square bracket lists using ’.’/2 and [] (that is, [foo, bar] is
written as ’.’(foo,’.’(bar,[]))).

Finally, write canonical/2 writes attributed variables as simple variables.

ISO Compatability Note: In XSB, list notation and infix comma-list notation
are considered canonical both for reading and writing. We find that this improves
readability, and that these operators are so standard that there is little likelihood

CHAPTER 6. STANDARD AND GENERAL PREDICATES 143

that they will not be in effect by any Prolog reader. We therefore deviate from the
ISO standard definition of canonical in these cases.

write_canonical(+Stream_or_alias, ?Term) ISO
write_canonical/2 has the same behavior as write_canonical/1 but the output
stream is explicitly designated using the first argument.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

writeln(?Term)

writeln(Term) can be defined as write(Term), nl.

writeln(+Stream,?Term)

writeln(Term) can be defined as write(Stream,Term), nl(Stream).

write_prolog(?Term) HiLog

write_prolog(+Stream_or_alias,?Term) HiLog
write_prolog/1 acts as write/1 except that any proper HiLog term Term is written
using Prolog syntax – i.e. as a term whose outer functor is apply. write_prolog/1

outputs Term according to the operator declarations in force. Because of this, it differs
from write_canonical/1 described above, despite the fact that both predicates write
HiLog terms as Prolog terms.

write_prolog/2 has the same behavior as write_prolog/1 but the output stream is
explicitly designated using the first argument. Error Cases for write_prolog/2 are
the same as for write/2.
Examples:

| ?- write_prolog(X(a,1+2)).

apply(_h120,a,1 + 2)

yes

| ?- write(X(a,1+2)).

_h120(a,1 + 2)

yes

| ?- write_canonical(X(a,1+2)).

apply(_h120,a,+(1,2))

yes

CHAPTER 6. STANDARD AND GENERAL PREDICATES 144

numbervars(+Term, +FirstN,?LastN,+Options) module: num_vars

This predicate provides a mechanism for grounding a (HiLog) term so that it may
be analyzed. Each variable in the (HiLog) term Term is instantiated to a term of the
form ’$VAR’(N), where N is an integer starting from FirstN. FirstN is used as the
value of N for the first variable in Term (starting from the left). The second distinct
variable in Term is given a value of N satisfying "N is FirstN + 1" and so on. The
last variable in Term has the value LastN-1.

In numbervars/4, Options can be used to indicate the action to take upon encoun-
tering an attributed variable. Currently, Options must be either be the empty list,
or the list [attvar(Action)] or the term attvar(Action), where Action is

• error Throw a type error if an attributed variable is encountered.

• bind Bind attributed variables by unifying them with terms of the form ’$VAR’(N).

• skip Skip over attributed variables, performing no action on these variables.

Error Cases

• Options is a variable

– instantiation_error

• Options is not an empty list, the list [attvar(Action)] or the term attvar(Action)

where Action is one of bind, error or skip:

– domain_error

numbervars(+Term, +FirstN, ?LastN) module: num_vars

Acts as numbervars(+Term, +FirstN, ?LastN,attvar(error)).

numbervars(+Term) module: num_vars

This predicate is defined as: numbervars(Term, 0, _). It is included solely for
convenience.

unnumbervars(+Term, +FirstN, ?Copy) module: num_vars

This predicate is a partial inverse of predicate numbervars/3. It creates a copy of
Term in which all subterms of the form ’$VAR’(<int>) where <int> is not less than
FirstN are uniformly replaced by variables. ’$VAR’’ subterms with the same integer
are replaced by the same variable. Also a version unnumbervars/2 is provided which
calls unnumbervars/3 with the second parameter set to 0.

Term Writing to Designated I/O Streams

While XSB has standard I/O streams for errors, warnings, messages, and feedback (cf.
Section 6.1.1), the predicates above write to STDOUT which is the standard output for the
process. Most of the time there is no issue with this as these streams are aliased to STDOUT.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 145

However in a number of circumstances, STDOUT may be redirected: a user may have invoked
tell/1, XSB may be invoked through C or interprolog, etc. In such cases, it may be useful
to ensure that output goes to one of the other I/O streams.

error_write(?Message) module: standard
error_writeln(?Message) module: standard

These predicates output Message to XSB’s STDERR stream, rather than to XSB’s
STDOUT stream, as does write/1 and writeln/1. In addition, if Message is a list or
comma list, the elements in the comma list are output as if they were concatenated
together. Each of these predicates must be imported from the module standard.

console_write(?Message) module: standard
console_writeln(?Message) module: standard

As above, but writes to STDFDBK, the console feedback stream.

warning(?Message) module: standard

By default, this predicate outputs Message to XSB’s STDWARN stream, rather than
to XSB’s STDOUT stream, as does write/1 and writeln/1. In addition, if Message

is a list or comma list, the elements in the comma list are output as if they were
concatenated together. Each of these predicates must be imported from the module
standard.

The default behavior for warnings can be altered by setting the value of the Pro-
log flag warning_action to either silent_warning which performs no action when
warning/1 is called. or error_warning which throws a miscellaneous exception when
warning/1 is called (WARNING: this includes compiler warnings). The default be-
havior can be restored by setting warning_action to print_warning.

message(?Message) module: standard
messageln(?Message) module: standard

As above, but writes to STDMSG the standard stream for messages.

6.1.6 Special I/O

fmt_read(+Fmt,-Term,-Ret)

fmt_read(+Stream,+Fmt,-Term,-Ret)

These predicates provides a routine for reading data from the current input file (which
must have been already opened by using see/1) according to a C format, as used in
the C function scanf. Fmt must be a string of characters (enclosed in ") representing
the format that will be passed to the C call to scanf. See the C documentation for
scanf for the meaning of this string. The usual alphabetical C escape characters (e.g.,
\n) are recognized, but not the octal or the hexadecimal ones. Another difference with
C is that, unlike most C compilers, XSB insists that a single % in the format string
signifies format conversion specification. (Some C compilers might output % if it is

CHAPTER 6. STANDARD AND GENERAL PREDICATES 146

not followed by a valid type conversion spec.) So, to output % you must type %%.
Format can also be an atom enclosed in single quotes. However, in that case, escape
sequences are not recognized and are printed as is.

Term is a term (e.g., args(X,Y,Z)) whose arguments will be unified with the field
values read in. (The functor symbol of Term is ignored.) Special syntactic sugar is
provided for the case when the format string contains only one format specifier: If
Term is a variable, X, then the predicate behaves as if Term were arg(X).

If the number of arguments exceeds the number of format specifiers, a warning is
produced and the extra arguments remain uninstantiated. If the number of format
specifiers exceeds the number of arguments, then the remainder of the format string
(after the last matching specifier) is ignored.

Note that floats do not unify with anything. Ret must be a variable and it will be
assigned a return value by the predicate: a negative integer if end-of-file is encountered;
otherwise the number of fields read (as returned by scanf.)

fmt_read cannot read strings (that correspond to the %s format specifier) that are
longer than 16K. Attempting to read longer strings will cause buffer overflow. It
is therefore recommended that one should use size modifiers in format strings (e.g.,
%2000s), if such long strings might occur in the input.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

If the number of arguments in Term is greater than the number of conversion specifiers
in Fmt no error is thrown, but a warning is issued.

fmt_write(+Fmt,+Term)

fmt_write(+Stream_or_alias,+Fmt,+Term)

These predicates provide routines for writing formatted data to a given output stream
(fmt_write/3) or the current output stream (fmt_write/2).

Fmt should be a Prolog character list (string) or atom. A Prolog character list is
preferred, as space can be more easily reclaimed for character lists than for atoms.
Term is a Prolog term (e.g., args(X,Y,Z)) whose arguments will be output. The
number of arguments in Term should equal the number of conversion specifiers in Fmt.
The functor symbol of Term is ignored 2.

2In the case where Fmt contains only a single conversion specifier, Term may be a string, integer or a float,
and is considered to be equivalent to specifying arg(Term).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 147

Allowable syntaxes for Fmt reflect the syntax of the C function printf() on a given
platform, with the following exceptions

• The usual alphabetical C escape characters (e.g., \n) are recognized, but not the
octal or the hexadecimal ones.

• %S is supported, in addition to the usual C conversion specifiers. The correspond-
ing argument can be any Prolog term. This provides an easy way to print the
values of Prolog variables, etc.

• %! is supported and indicates that the corresponding argument is to be ignored
and will generate nothing in the output.

• A single % in the format string must be followed by a conversion operator (e.g. d,
s, etc.). (Some C compilers output % if the percentage character is not followed
by a valid type conversion spec.) However, to output %, fmt_write must contain
%%.

Example

| ?- fmt_write("%d %f %s %S \n",args(1,3.14159,ready,hello(world))).

1 3.141590 ready hello(world)

yes

XSB also offers an alternate version of formatted output in the format library de-
scribed in volume 2. While not as efficient as fmt_write/[2,3], the format library
is more compatable with the formatted output found in other Prologs.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open output stream

– existence_error(stream,Stream_or_alias)

• Fmt is uninstantiated or not a character string or atom

– type_error(’character string or atom’,Fmt)

• A format specifier in Fmt and its corresponding argument in Term are of incom-
patable types.

– misc_error

• Term contains fewer arguments than Fmt has format specifiers or Term is unin-
stantiated

CHAPTER 6. STANDARD AND GENERAL PREDICATES 148

– misc_error

If the number of arguments in Term is greater than the number of conversion specifiers
in Fmt no error is thrown, but a warning is issued.

Caution for 64-bit Platforms As discussed, fmt_write/[2,3] calls printf() and
inherits the flexibility of that function, but also its “features”. One of these features
is that in most 64-bit platforms, large integers that behave perfectly well otherwise
are not printed out properly by printf() with the %d format – rather another format
string needs to be used (such as %ld on Linux). fmt_write/[1,2] recognizes the %ld

option and passes it onto fprintf(), but the proper format string for 64-bit integers
may be different on other platforms.

fmt_write_string(-String,+Fmt,+Term)

This predicate works like the C function sprintf. It takes the format string and sub-
stitutes the values from the arguments of Term (e.g., args(X,Y,Z)) for the formatting
instructions %s, %d, etc. Additional syntactic sugar, as in fmt_write, is recognized.
The result is available in String. Fmt is a string or an atom that represents the
format, as in fmt_write.

If the number of format specifiers is greater than the number of arguments to be
printed, an error is issued. If the number of arguments is greater, then a warning is
issued.

fmt_write_string requires that the printed size of each argument (e.g., X,Y,and Z
above) must be less than 16K. Longer arguments are cut to that size, so some loss
of information is possible. However, there is no limit on the total size of the output
(apart from the maximum atom size imposed by XSB).

file_read_line_list(-String)

A line read from the current input stream is converted into a list of character codes.
This predicate avoids interning an atom as does file_read_line_atom/3, and so is
recommended when speed is important. This predicate fails on reaching the end of
file.

file_read_line_list(Stream_or_alias,-CharList)

Acts as does file_read_line_list, but uses Stream_or_atom.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 149

file_read_line_atom(-Atom)

Reads a line from the current (textual) input stream, returning it as Atom. This
predicate fails on reaching the end of file.

file_read_line_atom(+Stream_or_alias,-Atom)

Like file_read_line_atom/1 but reads from Stream_or_alias. Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

file_write_line(+String, +Offset) module: file_io
file_write_line(+Stream_or_alias, +String, +Offset) module: file_io

These predicates write String beginning with character Offset to the current output
stream. String can be an atom or a list of ASCII character codes. This does not
put the newline character at the end of the string (unless String already had this
character). Note that escape sequences, like \n, are recognized if String is a character
list, but are output as is if String is an atom.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

• String is neither a Prolog character list not an atom

– misc_error

file_getbuf_list(+Stream_or_alias, +BytesRequested, -CharList, -BytesRead) module:
file_io

Read BytesRequested bytes from file represented by Stream_or_alias (which must
already be open for reading) into variable String as a list of character codes. This
is analogous to fread in C. This predicate always succeeds. It does not distinguish
between a file error and end of file. You can determine if either of these conditions
has happened by verifying that BytesRead < BytesRequested.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 150

file_getbuf_list(+BytesRequested, -String, -BytesRead) module: file_io

Like file_getbuf_list/3, but reads from the currently open input stream (i.e., with
see/1).

file_getbuf_atom(+Stream_or_alias, +BytesRequested, -String, -BytesRead) module:
file_io

Read BytesRequested bytes from file represented by Stream_or_alias (which must
already be open for reading) into variable String. This is analogous to fread in C.
This predicate always succeeds. It does not distinguish between a file error and end
of file. You can determine if either of these conditions has happened by verifying that
BytesRead < BytesRequested.

Note: because XSB does not have an atom table garbage collector yet, this predicate
should not be used to read large files. Use read_getbuf_list or another predicate
in this case.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

file_getbuf_atom(+BytesRequested, -String, -BytesRead) module: file_io

Like file_getbuf_atom/4, but reads from the currently open input stream.

file_putbuf(+Stream_or_alias, +BytesRequested, +String, +Offset, -BytesWritten)

module: file_io

Write BytesRequested bytes into file represented by I/O port Stream_or_alias

(which must already be open for writing) from variable String at position Offset.
This is analogous to C fwrite. The value of String can be an atom or a list of ASCII
characters.

Error Cases

• Stream_or_alias is a variable

– instantiation_error

• Stream_or_alias is neither a variable nor a stream term nor an alias.

– domain_error(stream_or_alias,Stream_or_alias)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 151

• Stream_or_alias is not associated with an open input stream

– existence_error(stream,Stream_or_alias)

file_putbuf(+BytesRequested, +String, +Offset, -BytesWritten) module:
file_io

Like file_putbuf/3, but output goes to the currently open output stream.

6.2 Interactions with the Operating System

XSB provides a number of facilities for interacting with the UNIX and Windows operating
systems. This section describes basic facilities for invoking shell commands and file manip-
ulation. Chapter 1 of Volume 2 discusses more advanced commands for process spawning
and control, along with interprocess communication.

shell(+SystemCall)

Calls the operating system with the atom SystemCall as argument, using the libc

function system(). The predicate succeeds if SystemCall is executed successfully,
otherwise it fails. As a notational convenience, the user can also supply SystemCall

either as a list. In this case, elements of the list will be concatenated together to form
the system call.

For example, the call:

| ?- shell(’echo $HOME’).

will output in the current output stream of XSB the name of the user’s home directory;
while the call:

| ?- File = ’test.c’, shell([’cc -c ’, File]).

will call the C compiler to compile the file test.c.

Note that in UNIX systems, since system() (and shell/1) executes by forking off a
shell process. Thus it cannot be used, for example, to change the working directory
of the program. For that reason the standard predicate cd/1 described below should
be used.

Error Cases

• SystemCall is a variable

– instantiation_error

• SystemCall is neither an atom nor a list

– type_error(atom_or_list,SystemCall)

• SystemCall is longer than the maximum command length allowed by shell/1

– resource_error(memory)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 152

shell(+SystemCall, -Result)

Calls the operating system with the atom SystemCall as argument, using the libc

function system(). As a notational convenience, the user can also supply SystemCall

as a list. In in this case, elements of the list will be concatenated together to form
the system call. shell/2 always succeeds instantiating Result to the exit code of
system(). Thus Result will be 0 if ⁀SystemCall executed properly, and non-0 other-
wise: the specific return values of system() may be platform-dependent.

Error Cases

• SystemCall is a variable

– instantiation_error

• SystemCall is neither an atom nor a list

– type_error(atom_or_list,SystemCall)

• Result is not a variable

– type_error(variable,Result)

• SystemCall is longer than the maximum command length allowed by shell/2

– resource_error(memory)

shell_to_list(+SystemCall,-StdOut,-ErrOut,-Result)

shell_to_list(+SystemCall,-StdOut,-Result)

Behaves as shell/2 in its 1st and 4th arguments, and like shell/2 always succeeds.
Both StdOut and ErrOut are lists of lists: each element of the outer list corresponds
to a line of output from SystemCall, while each element of an inner list corresponds
to a token in that line. shell_to_list/3 is thus a sort of Prolog analog of the shell
command ‘SystemCall‘.

Examples:

?- shell_to_list(sw_vers,Stdout,Ret).

Stdout = [[ProductName:,Mac,OS,X],[ProductVersion:,10.4.9],[BuildVersion:,8P2137]]

Ret = 0

?- shell_to_lists(’gcc -c nofile.c’,StdOut,StdErr,Ret).

Stdout = []

StdErr = [[i686-apple-darwin8-gcc-4.0.1:,nofile.c:,No,such,file,or,directory]]

Ret = 256

Error cases are as with shell/2

CHAPTER 6. STANDARD AND GENERAL PREDICATES 153

datime(?Date) module: standard

Unifies Date to the current date, returned as a Prolog term, suitable for term com-
parison. Note that datime/1 must be explicitly imported from the module standard.
Example:

> date

Mon Aug 9 16:19:44 EDT 2004

> nxsb1

XSB Version 2.6 (Duff) of June 24, 2003

[i686-pc-cygwin; mode: optimal; engine: slg-wam; gc: indirection; scheduling: local]

| ?- import datime/1 from standard

yes

| ?- datime(F).

F = datime(2004,8,9,20,20,23)

yes

6.2.1 The path_sysop/2 interface

In addition, XSB provides the following unified interface to the operations on files. All these
calls succeed iff the corresponding system call succeeds. These calls work on both Windows
and Unixes unless otherwise noted.

path_sysop(isplain, +Path)

Succeeds, if Path is a plain file.

path_sysop(isdir, +Path)

Succeeds, if Path is a directory.

path_sysop(rename, +OldPath, +NewPath)

Renames OldPath into NewPath.

path_sysop(copy, +FromPath, +ToPath)

Copies FromPath into ToPath.

path_sysop(rm, +Path)

Removes the plain file Path.

path_sysop(rmdir, +Path)

Deletes the directory Path, succeeding only if the directory is empty.

path_sysop(rmdir_rec, +Path)

Deletes the directory Path along with any of its contents.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 154

path_sysop(link, +SrsPath, +DestPath)

Creates a hard link from SrsPath to DestPath. UNIX only.

path_sysop(cwd, -Path)

Binds Path to the current working directory.

path_sysop(chdir, +Path)

Changes the current working directory to Path.

path_sysop(mkdir, +Path)

Creates a new directory, Path.

path_sysop(exists, +Path)

Succeeds if the file Path exists.

path_sysop(readable, +Path)

Succeeds if Path is a readable file.

path_sysop(writable, +Path)

Succeeds if Path is a writable file.

path_sysop(executable, +Path)

Succeeds if Path is an executable file.

path_sysop(modtime, +Path, -Time)

Returns a list that represents the last modification time of the file. Succeeds if file
exists. In this case, Time is bound to a list [high,low] where low is the least signifi-
cant 24 bits of the modification time and high is the most significant bits (25th) and
up. Time represents the last modification time of the file. The actual value is thus
high ∗ 224 + low, which represents the number of seconds elapsed since 00:00:00 on
January 1, 1970, Coordinated Universal Time (UTC).

path_sysop(newerthan, +Path1, +Path2)

Succeeds is the last modification time of Path1 is higher than that of Path2. Also
succeeds if Path1 exists but Path2 does not.

path_sysop(size, +Path, -Size)

Returns a list that represents the byte size of Path. Succeeds if the file exists. In
this case Size is bound to the list of the form [high,low] where low is the least
significant 24 bits of the byte-size and high is the most significant bits (25th) and up.
The actual value is thus high ∗ 224 + low.

path_sysop(tmpfilename, -Name)

Returns the name of a new temporary file. This is useful when the application needs
to open a completely new temporary file.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 155

path_sysop(extension, +Name, -Ext)

Returns file name extension.

path_sysop(basename, +Name, -Base)

Returns the base name of the file name (i.e., the name sans the directory and the
extension).

path_sysop(dirname, +Name, -Dir)

Returns the directory portion of the filename. The directory is slash or backslash
terminated.

path_sysop(isabsolute, +Name)

Succeeds if Name is an absolute path name. File does not need to exist.

path_sysop(expand, +Name, -ExpandedName)

Binds ExpandedName to the expanded absolute path name of Name. The file does not
need to exist. Duplicate slashes, references to the current and parent directories are
factored out.

6.3 Evaluating Arithmetic Expressions through is/2

Before describing is/2 and the expressions that it can evaluate, we note that in Version 3.3
of XSB, integers in XSB are represented using a single word of 32 or 64 bits, depending on the
machine architecture. Floating point values are, by default, stored as word-sized references
to double precision values, regardless of the target machine. Direct (non-referenced, tagged)
single precision floats can be activated for speed purposes by passing the option –enable-
fast-floats to the configure script at configuration time. This option is not recommended
when any sort of precision is desired, as there may be as little as 28 bits available to represent
a given number value under a tagged architecture.

All of the evaluable functors described below throw an instantiation error if one of
their evaluated inputs is a variable, and an evaluation(undefined) error if one of their
evaluated inputs is instantiated but non-numeric. With this in mind, we describe below
only their behavior on correctly typed input.

ISO Compatability Note: In addition, evaluation of arithmetic expressions through
is/2 does not check for overflow or underflow. As a result, XSB’s floating point operations
do not conform to IEEE floating point standards, and deviates in this regard from the ISO
Prolog standard (see [34] Section 9) We hope to fix these problems in a future release 3.

3We also note that the ISO Prolog evaluable functorsfloat_integer_part/1 (which can be obtained
via truncate/1), float_fractional_part/1 (which can be obtained via X - truncate(X)), and bitwise
complement (which is implementation dependent in the ISO standard) are not implemented in Version 3.3.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 156

is(?Result,+Expression) ISO
is(Result,Expression) is true iff the result of evaluating Expression as a sequence
of evaluable functors unifies with Result. As mentioned in Section 3.10.5, is/2 is
an inline predicate, so calls to is/2 within compiled code will not be visible during a
trace of program execution.

Error Cases

instantiation_error Expression contains an uninstantiated value

domain_error(< function >, < value > Expression contains a function applied to
value, but value is not part of the domain of function.

For is/2 the action for the above error cases can be altered so that the is/2 literal
is treated as having a truth value of undefined in the well-founded semantics. This is
done via the Prolog flag exception_action.

6.3.1 Evaluable Functors for Arithmetic Expressions

+(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 +

Number2, performing any necessary type conversions.

-(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 -

Number2, performing any necessary type conversions.

*(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 *

Number2 (i.e. multiplies them), performing any necessary type conversions.

/(+Expr1,Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 /

Number2 (i.e. divides them), performing any necessary type conversions.

div(+Expr1,Expr2) ISO

//(+Expr1,Expr2) Evaluable Functor
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1

// Number2 (i.e. integer division), performing any necessary type conversions, and
rounding to 0 if necessary.
Example:

| ?- X is 3/2.

X = 1.5000

CHAPTER 6. STANDARD AND GENERAL PREDICATES 157

yes

| ?- X is 3 // 2.

X = 1

yes

| ?- X is -3 // 2.

X = -1

yes

-(+Expr1) Evaluable Functor (ISO)
If +Expr evaluates to Number, returns -Number1, performing any necessary type con-
versions.

’∧’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the bitwise
conjunction of Number1 and Number2.

’∨’(+Expr1,+Expr2) Evaluable Functor (ISO)

If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the bitwise
disjunction Number1 and Number2.

’»’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the logical
shift right of Number1, Number2 places.

’«’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the logical
shift left of Number1, Number2 places.

xor(+Expr1,+Expr2) ISO

’><’(+Expr1,+Expr2) Evaluable Functor
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the bitwise
exclusive or of Number1 and Number2.

min(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the minimum
of the two.

max(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the maxi-
mum of the two.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 158

ceiling(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, ceiling(Number) returns the integer ceiling of Number

if Number is a float, and Number itself if Number is an integer.

float(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, float(Number) converts Number to a float if Number is
an integer, and returns Number itself if Number is a float.

floor(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, floor(Number) returns the integer floor of Number if
Number is a float, and Number itself if Number is an integer.

mod(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1 and Expr2 evaluates to Number2 where Number2 is not
0, mod(Number1,Number2) returns

Number1 − (⌊(Number1/Number2)⌋) × Number2)

rem(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1 and Expr2 evaluates to Number2 where Number2 is not
0, rem(Number1,Number2) returns

Number1 − (Number1//Number2) × Number2)

Example:

| ?- X is 5 mod 2.

X = 1

yes

| ?- X is 5 rem 2.

X = 1

yes

| ?- X is 5 mod -2.

X = -1

yes

| ?- X is 5 rem -2.

X = 1

yes

CHAPTER 6. STANDARD AND GENERAL PREDICATES 159

round(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, round(Number) returns the nearest integer to Number

if Number is a float, and Number itself if Number is an integer.

^/2 Evaluable Functor (ISO)
If Expr1 and Expr2 both evaluate to numbers, the infix function ^/2 raises Expr1 to
the Expr2 power. If Expr1 and Expr2 both evaluate to integers, an integer is returned;
otherwise a float is returned.

’**’(+Expr1,+Expr2) Evaluable Functor (ISO)
If Expr1 and Expr2 both evaluate to numbers, the infix function **/2 raises Expr1 to
the Expr2 power. A floating-point number is always returned.

sqrt(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sqrt(Number) returns the square root of Number.

truncate(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, truncate(Number) truncates Number if Number is a
float, and returns Number itself if Number is an integer.

sign(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sign(Number) returns 1 if Number is greater than 0, 0

if Number is equal to 0, and -1 if Number is less than 0.

pi Evaluable Functor (ISO)
Evaluates to π within an arithmetic expression.

e Evaluable Functor (ISO)
Evaluates to e, the base of the natural logarithm, within an arithmetic expression.

epsilon Evaluable Functor
Evaluates to epsilon, the difference between the float 1.0 and the first larger floating
point number.

Mathematical Functions from math.h

XSB also allows as evaluable functors, many of the functions from the C library math.h.
Functions included in XSB Version 3.3 are cos/1, sin/1, tan/1, acos/1, asin/1, atan/1,
log/1 (natural logarithm), log10/1, and atan/2 (also available as atan2/2). For their
semantics, see documentation to math.h.

6.4 Convenience

These predicates are standard and often self-explanatory, so they are described only briefly.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 160

true ISO
Always succeeds.

otherwise

Same as true/0.

fail ISO
Always fails.

false

Same as fail/0.

6.5 Negation and Control

’!’/0 ISO
Cut (discard) all choice points made since the parent goal started execution. Cuts

across tabled predicates are not valid. The compiler checks for such cuts, although
whether the scope of a cut includes a tabled predicate is undecidable in the presence
of meta-predicates like call/1. Further discussion of conditions allowing cuts and of
their actions can be found in Section 5.1.

\+ +P ISO
If the goal P has a solution, fails, otherwise it succeeds. Equivalently, it is true iff

call(P) (see Section 6.11) is false. Argument P must be ground for sound negation
as failure, although no runtime checks are made.

Error Cases

instantiation_error P is not instantiated.

type_error(callable,P) P is not callable.

fail_if(+P)

not +P

Like \+/1 and provided for compatibility with legacy code. Compilation of \+/1 and
fail_if/1 is optimized by XSB’s compiler, while that of not/1 is not – therefore the
first two syntactical forms are preferred in terms of efficiency, while \+/1 is preferred
in terms of portability.

All error cases are the same as call/1 (see Section 6.11).

tnot(+P) Tabling
The semantics of tnot/1 allows for correct execution of programs with according to

the well-founded semantics. P must be a tabled predicate, For a detailed description of
the actions of tabled negation for in XSB Version 3.3 see [62, 64]. Chapter 5 contains
further discussion of the functionality of tnot/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 161

Error Cases

• P is not ground (floundering occurs)

– instantiation_error

• P is not callable

– type_error(callable,P)

• P is not a call to a tabled predicate

– table_error

not_exists(+P) Tabling
If +P is a tabled predicate, not_exists/1 acts as tnot/1 but permits variables in its
subgoal argument The semantics in the case of unbound variables is as follows:

... :- ..., not_exists(p(X)), ...

is equivalent to

... :- ..., tnot(pp), ...

pp :- p(X).

where pp is a new proposition. Thus, the unbound variable X is treated as tnot(∃X(p(X))).

If +P is a non-tabled predicate not_exists/1 ensures that +P is ground and called via
a tabled predicate so that not_exists/1 can be used with non-tabled predicates as
well, regardless of whether +P is ground or not 4.

not_exists/1 uses an auxiliary tabled predicate, tunnumcall/1 in its execution.
Therefore to reclaim space at the predicate or call level (e.g. using abolish_table_pred/1

or similar predicates), tunnumcall/1 must be explicitly abolished.

Error Cases

• P is not instantiated

– instantiation_error

• P is not callable

– type_error(callable,P)

u_not(+P) module: tables

If P is ground (or cyclic), u_not(P) is equivalent to tnot(P); but u_not/1 provides
a different semantics than tnot/1 or not_exists/1 if P is non-ground. In this latter
case, u_not(P) applies SLG delay to the goal P, explicitly indicating that the default
negation of P is floundered. This action is safe because any answer that relies on not
P will be undefined, rather than true or false. A current limitation of u_not/1 is

4In previous versions of XSB, not_exists/1 was called sk_not/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 162

that while floundering correctly causes a literal to be delayed, no simplification is ever
performed if the delayed literal ever becomes ground (see the example below). u_not/1

thus provides an informationally sound but incomplete semantics for floundering.

Thus, the use of tnot/1, not_exists/1, or u_not/1 depends on two conditions.
not_exists/1 is the only one of these predicates that allows P to be a non-tabled
predicate. However as mentioned, their main difference is in handling non-ground
negative subgoals. If an error should be thrown for a non-ground negative subgoal,
tnot/1 should be used; if it is semantically correct to skolemize if P is not ground,
not_exists/1 should be used; if it is semantically correct to treat the truth value of
the negative subgoal as undefined, u_not/1 should be used. From the perspective of
performance, tnot/1 is fastest followed by u_not/1 and then not_exists/1.

The following examples should clarify the behavior of u_not/1. For the program
fragment:

:- table p/1,q/1.

p(1):- u_not(q(X)).

q(1).

the goal p(V) returns

V = 1 undefined

Examining this answer shows the following:

| ?- get_residual(p(1),Res).

Res = [floundered(q(_h258))].

The program fragment

:- table r/1,q/1.

r(1):- u_not(q(X)),s(X).

q(1).

s(1).

shows a limitation in the current implementation of u_not/1. The goal r(V) returns

V = 1 undefined

as before. However, examining the answer shows

| ?- get_residual(r(1),Res

Res = [floundered(q(1))]

CHAPTER 6. STANDARD AND GENERAL PREDICATES 163

Note that the binding X=1 is propagated to the delayed literal after the resulution of
s(X). However, the call tnot(q(1)) is not made once X is bound, so that the delayed
literal does not fail.

Error Cases are the same as for tnot/1.

P -> Q ; R ISO
Analogous to if P then Q else R, i.e. defined as if by

(P -> Q ; R) :- P, !, Q.

(P -> Q ; R) :- R.

P -> Q ISO
When occurring other than as one of the alternatives of a disjunction, is equivalent

to:

P -> Q ; fail.

repeat

Generates an infinite sequence of choice points (in other words it provides a very
convenient way of executing a loop). It is defined by the clauses:

repeat.

repeat :- repeat.

between(+L,+U,B) module: basics

For L and U integers, with L less than or equal to U, successive calls to between/3

unify B with all integers between L and U inclusively. If L is less than U the predicate
fails.

Error Cases:

• L (or U) is a not an integer

– type_error(integer,L)

6.6 Unification and Comparison of Terms

The predicates described in this section allow unification and comparison of terms 5.

Like most Prologs, default unification in XSB does not perform a so-called occurs check
— it does not handle situations where a variable X may be bound to a structure containing
X as a proper subterm. For instance, in the goal

5Arithmetic comparison predicates that may evaluate terms before comparing them are described in
Section 6.3.1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 164

X = f(X) % incorrect!

X is bound to f(X) creating a term that is either cyclic or infinite, depending on one’s
point of view. Prologs in general perform unification without occurs check since without
occurs check unification is linear in the size of the largest term to be unified, while unifi-
cation with occurs check may be exponential in the size of the largest term to be unified.
Most Prolog programmers will rarely, need to concern themselves with cyclic terms or uni-
fication with occurs check. However, unification with occurs check can be important for
certain applications, in particular when Prolog is used to implement theorem provers or
sophisticated constraint handlers. As a result XSB provides an ISO-style implementation
of the predicate unify_with_occurs_check/2 described below, as well as a Prolog flag
unify_with_occurs_check that changes the behavior of unification in XSB’s engine.

As opposed to unification predicates, term comparison predicates described below take
into account a standard total ordering of terms, which has as follows:

variables @ < floating point numbers @ < integers @ < atoms @ < compound terms

Within each one of the categories, the ordering is as follows:

• ordering of variables is based on their address within the SLG-WAM — the order
is not related to the names of variables. Thus note that two variables are identical
only if they share the same address – only if they have been unified or are the same
variable to begin with. As a corollary, note that two anonymous variables will not
have the same address and so will not be considered identical terms. As with most
WAM-based Prologs, the order of variables may change as variables become bound to
one another. If the order is expected to be invariant across variable bindings, other
mechanisms, such as attributed variables, should be used.

• floating point numbers and integers are put in numeric order, from −∞ to +∞.
Note that a floating point number is always less than an integer, regardless of their
numerical values. If comparison is needed, a conversion should be performed (e.g.
through float/1).

• atoms are put in alphabetical (i.e. ASCII) order;

• compound terms are ordered first by arity, then by the name of their principal functor
and then by their arguments (in a left-to-right order).

• lists are compared as ordinary compound terms having arity 2 and functor ’.’.

For example, here is a list of terms sorted in increasing standard order:

[X, 3.14, -9, fie, foe, fum(X), [X], X = Y, fie(0,2), fie(1,1)]

The basic predicates for unification and comparison of arbitrary terms are:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 165

X = Y

Unifies X and Y without occur check.

unify_with_occurs_check(One,Two)

Unifies One and Two using an occur check, and failing if One is a proper subterm of
Two or if Two is a proper subterm of One.
Example:

| ?- unify_with_occurs_check(f(1,X),f(1,a(X))).

no

| ?- unify_with_occurs_check(f(1,X),f(1,a(Y))).

X = a(_h165)

Y = _h165

yes

| ?- unify_with_occurs_check(f(1,a(X)),f(1,a(X))).

X = _h165

yes

T1 == T2

Tests if the terms currently instantiating T1 and T2 are literally identical (in particular,
variables in equivalent positions in the two terms must be identical). For example,
the goal:

| ?- X == Y.

fails (answers no) because X and Y are distinct variables. However, the question

| ?- X = Y, X == Y.

succeeds because the first goal unifies the two variables.

X \ = Y ISO
Succeeds if X and Y are not unifiable, fails if X and Y are unifiable. It is thus equivalent
to \+(X = Y).

T1 \== T2 ISO
Succeeds if the terms currently instantiating T1 and T2 are not literally identical.

Term1 ?= Term2

Succeeds if the equality of Term1 and Term2 can be compared safely, i.e. whether the
result of Term1 = Term2 can change due to further instantiation of either term. It is
defined as by ?=(A,B) :- (A==B ; A B̄), !.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 166

unifiable(X, Y, -Unifier) module: constraintLib

If X and Y can unify, succeeds unifying Unifier with a list of terms of the form Var =

Value representing a most general unifier of X and Y. unifiable/3 can handle cyclic
terms. Attributed variables are handles as normal variables. Associated hooks are
not executed 6.

T1 @< T2

Succeeds if term T1 is before term T2 in the standard order.

T1 @> T2

Succeeds if term T1 is after term T2 in the standard order.

T1 @=< T2

Succeeds if term T1 is not after term T2 in the standard order.

T1 @>= T2

Succeeds if term T1 is not before term T2 in the standard order.

T1 @= T2

Succeeds if T1 and T2 are identical variables, or if the main structure symbols of T1

and T2 are identical.

compare(?Op, +T1, +T2)

Succeeds if the result of comparing terms T1 and T2 is Op, where the possible values
for Op are:

‘=’ if T1 is identical to T2,

‘<’ if T1 is before T2 in the standard order,

‘>’ if T1 is after T2 in the standard order.

Thus compare(=, T1, T2) is equivalent to T1==T2. Predicate compare/3 has no
associated error conditions.

ground(+X)

Succeeds if X is currently instantiated to a term that is completely bound (has no
uninstantiated variables in it); otherwise it fails. While ground/1 has no associated
error conditions, it is not safe for cyclic terms: if cyclic terms may be an issue use
ground_or_cyclic/1.

ground_and_acyclic(+X)

ground_or_cyclic(+X)

ground_or_cyclic/1 succeeds if X is currently instantiated to a term that is com-
pletely bound (has no uninstantiated variables in it) or is a cyclic term; otherwise it

6In Version 3.3, unifiable/3 is written as a Prolog predicate and so is slower than many of the predicates
in this section.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 167

fails. Alternately, ground_and_acyclic/1 succeeds if X is currently instantiated to an
acyclic term that is completely bound (has no uninstantiated variables in it). Neither
predicate has no associated error conditions.

Both predicates are written to be as efficient as possible, and each requres a single
traversal of a term, regardless of whether the term is ground, nonground or cyclic.
However, due to the nature of checking for cyclicity, these predicates are somewhat
slower than the unsafe ground/1.

subsumes(?Term1, +Term2) module: subsumes

Term subsumption is a sort of one-way unification. Term Term1 and Term2 unify if
they have a common instance, and unification in Prolog instantiates both terms to
that (most general) common instance. Term1 subsumes Term2 if Term2 is already
an instance of Term1. For our purposes, Term2 is an instance of Term1 if there is
a substitution that leaves Term2 unchanged and makes Term1 identical to Term2.
Predicate subsumes/2 does not work as described if Term1 and Term2 share common
variables.

subsumes_chk(+Term1, +Term2) module: subsumes
subsumes_term(+Term1, +Term2) ISO

The subsumes_chk/2 predicate is true when Term1 subsumes Term2; that is, when
Term2 is already an instance of Term1. This predicate simply checks for subsumption
and does not bind any variables either in Term1 or in Term2. Term1 and Term2 should
not share any variables.
Examples:

| ?- subsumes_chk(a(X,f,Y,X),a(U,V,b,S)).

no

| ?- subsumes_chk(a(X,Y,X),a(b,b,b)).

X = _595884

Y = _595624

variant(?Term1, ?Term2) module: subsumes

This predicate is true when Term1 and Term2 are alphabetic variants. That is, you
could imagine that variant/2 as being defined like:

variant(Term1, Term2) :-

subsumes_chk(Term1, Term2),

subsumes_chk(Term2, Term1).

but the actual implementation of variant/2 is considerably more efficient. However,
in general, it does not work for terms that share variables; an assumption that holds
for most (reasonable) uses of variant/2.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 168

check_variant(?Term1) module: tables
check_variant(+Term1,+DontCares) module: tables

check_variant/[1,2] provide efficient means of checking whether the variant of a
term has been asserted to a trie indexed predicate. A call ?- check_variant(Term)

thus succeeds if a variant of Term has been trie indexed and asseerted, and fails
otherwise; the check performs no unification, and no backtracking is possible.

check_variant/2 allows the user to specify that the last n arguments of Term are not
to be checked for variance. This check_variant(Term,N) succeeds of there is a trie
indexed term whose first arity − n arguments are variants of those in term.

These predicates exploit the trie data structure to obtain their efficiency; as a re-
sult our implementation does not allow don’t care arguments apart from the final n
arguments. More importantly, for efficiency, no check is made to deter-
mine whether a predicate has been trie-indexed. If unsure, the user should call
current_index/2.

Example 6.6.1 ?- import check_variant/1 from tables.

yes

?- index(cmp/3, trie).

yes

| ?- assert(cmp(a,b,c)),assertcmp(d,e,f)).

yes

| ?- check_variant(cmp(a,b,c)).

yes

| ?- check_variant(cmp(a,b,1)).

no

| ?- check_variant(cmp(a,b,X)).

no

| ?- check_variant(cmp(a,b,X),1).

X = _h183

Error Cases

type_error Argument 1 of check_variant/[1,2] is not a callable structure.

type_error Argument 2 of check_variant/[2] is not an integer

CHAPTER 6. STANDARD AND GENERAL PREDICATES 169

6.6.1 Sorting of Terms

Sorting routines compare and order terms without instantiating them. Users should be
careful when comparing the value of uninstantiated variables. The actual order of unin-
stantiated variables may change in the course of program evaluation due to variable aliasing,
garbage collection, or other reasons.

sort(+L1, ?L2)

The elements of the list L1 are sorted into the standard order, and any identical (i.e.
‘==’) elements are merged, yielding the list L2. The time to perform the sorting is
O(nlogn) where n is the length of list L1.
Examples:

| ?- sort([3.14,X,a(X),a,2,a,X,a], L).

L = [X,3.14,2,a,a(X)];

no

Exceptions:

instantiation_error Argument 1 of sort/2 is a variable or is not a proper list.

keysort(+L1, ?L2)

The list L1 must consist of elements of the form Key-Value. These elements are sorted
into order according to the value of Key, yielding the list L2. The elements of list L1

are scanned from left to right. Unlike sort/2, in keysort/2 no merging of multiple
occurring elements takes place. The time to perform the sorting is O(n log n) where
n is the length of list L1. Note that the elements of L1 are sorted only according to
the value of Key, not according to the value of Value. The sorting of elements in L1

is not guaranteed to be stable in the presence of uninstantiated variables..
Example:

| ?- keysort([3-a,1-b,2-c,1-a,3-a], L).

L = [1-b,1-a,2-c,3-a,3-a]

yes

Error Cases:

instantiation_error L1 keysort/2 is a variable or is not a proper list.

domain_error(key_value_pair,Element) L1 contains an element Element that is
not of the form Key-Value.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 170

parsort(+L1, +SortSpec, +ElimDupl, ?L2) module: machine

parsort/4 is a very general sorting routine. The list L1 may consist of elements
of any form. SortSpec is the atom asc, the atom desc, or a list of terms of the
form asc(I) or desc(I) where I is an integer indicating a sort argument position.
The elements of list L1 are sorted into order according to the sort specification. asc

indicates ascending order based on the entire term; desc indicates descending order.
For a sort specification that is a list, the individual elements indicate subfields of the
source terms on which to sort. For example, a specification of [asc(1)] sorts the list
in ascending order on the first subfields of the terms in the list. [desc(1),asc(2)]

sorts into descending order on the first subfield and within equal first subfields into
ascending order on the second subfield. The order is determined by the standard
predicate compare. If ElimDupl is nonzero, merging of multiple occurring elements
takes place (i.e., duplicate (whole) terms are eliminated in the output). If ElimDupl

is zero, then no merging takes place. A SortSpec of [] is equivalent to “asc”. The
time to perform the sorting is O(nlogn) where n is the length of list L1. The sorting
of elements in L1 is not guaranteed to be stable. parsort/4 must be imported from
module machine.
Example:

| ?- parsort([f(3,1),f(3,2),f(2,1),f(2,2),f(1,3),f(1,4),f(3,1)],

[asc(1),desc(2)],1,L).

L = [f(1,4),f(1,3),f(2,2),f(2,1),f(3,2),f(3,1)];

no

Error Cases:

instantiation_error L1 is a variable or not a proper list.

6.7 Meta-Logical

To facilitate manipulation of terms as objects in themselves, XSB provides a number meta-
logical predicates. These predicates include the standard meta-logical predicates of Prolog,
along with their usual semantics. In addition are provided predicates which provide special
operations on HiLog terms. For a full discussion of Prolog and HiLog terms see Section 4.1.

var(?X) ISO
Succeeds if X is currently uninstantiated (i.e. is still a variable); otherwise it fails.

Term X is uninstantiated if it has not been bound to anything, except possibly another
uninstantiated variable. Note in particular, that the HiLog term X(Y,Z) is considered
to be instantiated. There is no distinction between a Prolog and a HiLog variable.
Examples:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 171

| ?- var(X).

yes

| ?- var([X]).

no

| ?- var(X(Y,Z)).

no

| ?- var((X)).

yes

| ?- var((X)(Y)).

no

nonvar(?X) ISO
Succeeds if X is currently instantiated to a non-variable term; otherwise it fails. This
has exactly the opposite behaviour of var/1.

atom(?X) ISO
Succeeds only if the X is currently instantiated to an atom, that is to a Prolog or
HiLog non-numeric constant.
Examples:

| ?- atom(HiLog).

no

| ?- atom(10).

no

| ?- atom(’HiLog’).

yes

| ?- atom(X(a,b)).

no

| ?- atom(h).

yes

| ?- atom(+).

yes

| ?- atom([]).

yes

integer(?X) ISO
Succeeds if X is currently instantiated to an integer; otherwise it fails.

float(?X) ISO
float/1 Same as real/1. Succeeds if X is currently instantiated to a floating point
number; otherwise it fails.

real(?X)

Succeeds if X is currently instantiated to a floating point number; otherwise it fails.
This predicate is included for compatibility with earlier versions of XSB.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 172

number(?X) ISO
Succeeds if X is currently instantiated to either an integer or a floating point number
(real); otherwise it fails.

atomic(?X) ISO
Succeeds if X is currently instantiated to an atom or a number; otherwise it fails.
Examples:

| ?- atomic(10).

yes

| ?- atomic(p).

yes

| ?- atomic(h).

yes

| ?- atomic(h(X)).

no

| ?- atomic("foo").

no

| ?- atomic(’foo’).

yes

| ?- atomic(X).

no

| ?- atomic(X((Y))).

no

compound(?X) ISO
Succeeds if X is currently instantiated to a compound term (with arity greater that
zero), i.e. to a non-variable term that is not atomic; otherwise it fails.
Examples:

| ?- compound(1).

no

| ?- compound(foo(1,2,3)).

yes

| ?- compound([foo, bar]).

yes

| ?- compound("foo").

yes

| ?- compound(’foo’).

no

| ?- compound(X(a,b)).

yes

| ?- compound((a,b)).

yes

structure(?X)

Same as compound/1. Its existence is only for compatibility with previous versions.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 173

is_list(?X)

Succeeds if X is a proper list. In other words if it is either the atom [] or [H|T] where
H is any Prolog or HiLog term and T is a proper list; otherwise it fails.
Examples:

| ?- is_list([p(a,b,c), h(a,b)]).

yes

| ?- is_list([_,_]).

yes

| ?- is_list([a,b|X]).

no

| ?- is_list([a|b]).

no

is_charlist(+X)
Succeeds if X is a Prolog string, i.e., a list of characters. Examples:

| ?- is_charlist("abc").

yes

| ?- is_charlist(abc).

no

is_charlist(+X,-Size)

Works as above, but also returns the length of that string in the second argument,
which must be a variable.

is_attv(+Term)

Succeeds is Term is an attributed variable, and fails otherwise.

is_most_general_term(?X)
Succeeds if X is compound term with all distinct variables as arguments, or if X is an
atom. (It fails if X is a cons node.)

| ?- is_most_general_term(f(_,_,_,_)).

yes

| ?- is_most_general_term(abc).

yes

| ?- is_most_general_term(f(X,Y,Z,X)).

no

| ?- is_most_general_term(f(X,Y,Z,a)).

no

| ?- is_most_general_term([_|_]).

no

is_number_atom(?X)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 174

Succeeds if X is an atom (e.g. ’123’) (as opposed to a number 123) which can be
converted to a numeric atom (integer or float) and fails otherwise. In particular, if
is_number_atom(X) succeeds, then

| ?- atom_codes(X,Codes),number_codes(N,Codes).

will succeed.

callable(?X)

Succeeds if X is currently instantiated to a term that standard predicate call/1 could
take as an argument and not give an instantiation or type error. Note that it only
checks for errors of predicate call/1. In other words it succeeds if X is an atom or
a compound term; otherwise it fails. Predicate callable/1 has no associated error
conditions.
Examples:

| ?- callable(p).

yes

| ?- callable(p(1,2,3)).

yes

| ?- callable([_,_]).

yes

| ?- callable(_(a)).

yes

| ?- callable(3.14).

no

proper_hilog(?X) HiLog
Succeeds if X is a proper HiLog term – i.e. a HiLog term that is not a Prolog term;
otherwise the predicate fails.

Examples: (In this example and the rest of the examples of this section we assume
that h is the only parameter symbol that has been declared a HiLog symbol).

| ?- proper_hilog(X).

no

| ?- proper_hilog(foo(a,f(b),[A])).

no

| ?- proper_hilog(X(a,b,c)).

yes

| ?- proper_hilog(3.6(2,4)).

yes

| ?- proper_hilog(h).

no

| ?- proper_hilog([a, [d, e, X(a)], c]).

yes

| ?- proper_hilog(a(a(X(a)))).

yes

CHAPTER 6. STANDARD AND GENERAL PREDICATES 175

functor(?Term, ?Functor, ?Arity) ISO
Succeeds if the functor of the Prolog term Term is Functor and the arity (number of
arguments) of Term is Arity. Functor can be used in either the following two ways:

1. If Term is initially instantiated, then

• If Term is a compound term, Functor and Arity are unified with the name
and arity of its principal functor, respectively.

• If Term is an atom or a number, Functor is unified with Term, and Arity is
unified with 0.

2. If Term is initially uninstantiated, then either both Functor and Arity must be
instantiated, or Functor is instantiated to a number, and

• If Arity is an integer in the range 1..255, then Term becomes instantiated
to the most general Prolog term having the specified Functor and Arity

as principal functor and number of arguments, respectively. The variables
appearing as arguments of Term are all distinct.

• If Arity is 0, then Functor must be either an atom or a number and it is
unified with Term.

• If Arity is anything else, then functor/3 aborts.

Error Cases

atom_or_variable Functor is not an atom or variable.

instantiation_error Both Term, and either Functor, or Arity are uninstantiated.

Examples:

| ?- functor(p(f(a),b,t), F, A).

F = p

A = 3

| ?- functor(T, foo, 3).

T = foo(_595708,_595712,_595716)

| ?- functor(T, 1.3, A).

T = 1.3

A = 0

| ?- functor(foo, F, 0).

F = foo

| ?- functor("foo", F, A).

F = .

A = 2

| ?- functor([], [], A).

A = 0

CHAPTER 6. STANDARD AND GENERAL PREDICATES 176

| ?- functor([2,3,4], F, A).

F = .

A = 2

| ?- functor(a+b, F, A).

F = +

A = 2

| ?- functor(f(a,b,c), F, A).

F = f

A = 3

| ?- functor(X(a,b,c), F, A).

F = apply

A = 4

| ?- functor(map(P)(a,b), F, A).

F = apply

A = 3

| ?- functor(T, foo(a), 1).

++Error: Wrong type in argument 2 of functor/3

Aborting...

| ?- functor(T, F, 3).

++Error: Uninstantiated argument 2 of functor/3

Aborting...

| ?- functor(T, foo, A).

++Error: Uninstantiated argument 3 of functor/3

Aborting...

hilog_functor(?Term, ?F, ?Arity) HiLog
The XSB standard predicate hilog_functor/3 succeeds

• when Term is a Prolog term and the principal function symbol (functor) of Term

is F and the arity (number of arguments) of Term is Arity, or

• when Term is a HiLog term, having name F and the number of arguments F is
applied to, in the HiLog term, is Arity.

The first of these cases corresponds to the “usual” behaviour of Prolog’s functor/3,
while the second is the extension of functor/3 to handle HiLog terms. Like the
Prolog’s functor/3 predicate, hilog_functor/3 can be used in either of the following
two ways:

1. If Term is initially instantiated, then

• If Term is a Prolog compound term, F and Arity are unified with the name
and arity of its principal functor, respectively.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 177

• If Term is an atom or a number, F is unified with Term, and Arity is unified
with 0.

• If Term is any other HiLog term, F and Arity are unified with the name and
the number of arguments that F is applied to. Note that in this case F may
still be uninstantiated.

2. If Term is initially uninstantiated, then at least Arity must be instantiated, and

• If Arity is an integer in the range 1..255, then Term becomes instantiated to
the most general Prolog or HiLog term having the specified F and Arity as
name and number of arguments F is applied to, respectively. The variables
appearing as arguments are all unique.

• If Arity is 0, then F must be a Prolog or HiLog constant, and it is unified
with Term. Note that in this case F cannot be a compound term.

• If Arity is anything else, then hilog_functor/3 aborts.

In other words, the standard predicate hilog_functor/3 either decomposes a given
HiLog term into its name and arity, or given an arity —and possibly a name— con-
structs the corresponding HiLog term creating new uninstantiated variables for its
arguments. As happens with functor/3 all constants can be their own principal
function symbols.
Examples:

| ?- hilog_functor(f(a,b,c), F, A).

F = f

A = 3

| ?- hilog_functor(X(a,b,c), F, A).

X = _595836

F = _595836

A = 3

| ?- hilog_functor(map(P)(a,b), F, A).

P = _595828

F = map(_595828)

A = 2

| ?- hilog_functor(T, p, 2).

T = p(_595708,_595712)

| ?- hilog_functor(T, h, 2).

T = apply(h,_595712,_595716)

| ?- hilog_functor(T, X, 3).

T = apply(_595592,_595736,_595740,_595744)

X = _595592

| ?- hilog_functor(T, p(f(a)), 2).

T = apply(p(f(a)),_595792,_595796)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 178

| ?- hilog_functor(T, h(p(a))(L1,L2), 1).

T = apply(apply(apply(h,p(a)),_595984,_595776),_596128)

L1 = _595984

L2 = _595776

| ?- hilog_functor(T, a+b, 3).

T = apply(a+b,_595820,_595824,_595828)

arg(+Index, +Term, ?Argument) ISO
Unifies Argument with the Indexth argument of Term, where the index is taken to start
at 1. In accordance with ISO semantics, Index must be instantiated to a non-negative
integer, and Term to a compound term, otherwise an error is thrown as described
below. If Index is 0 or a number greater than the arity of Term, the predicate quietly
fails.
Examples:

| ?- arg(2, p(a,b), A).

A = b

| ?- arg(2, h(a,b), A).

A = a

| ?- arg(0, foo, A).

no

| ?- arg(2, [a,b,c], A).

A = [b,c]

| ?- arg(2, "HiLog", A).

A = [105,108,111,103]

| ?- arg(2, a+b+c, A).

A = c

| ?- arg(3, X(a,b,c), A).

X = _595820

A = b

| ?- arg(2, map(f)(a,b), A).

A = a

| ?- arg(1, map(f)(a,b), A).

A = map(f)

| ?- arg(1, (a+b)(foo,bar), A).

A = a+b

Error Cases

CHAPTER 6. STANDARD AND GENERAL PREDICATES 179

• Index is a variable

– instantiation_error

• Index neither a variable nor an integer

– type_error(integer,Index)

• Index is less than 0

– domain_error(not_less_than_zero,Index)

• Term is a variable

– instantiation_error

• Term neither a variable nor a compound term

– type_error(integer,Index)

arg0(+Index, +Term, ?Argument)

Unifies Argument with the Indexth argument of Term if Index > 0, or with the functor
of Term if Index = 0.

hilog_arg(+Index, +Term, ?Argument) HiLog
If Term is a Prolog term, it has the same behaviour as arg/3, but if Term is a proper
HiLog term, hilog_arg/3 unifies Argument with the (Index + 1)th argument of the
Prolog representation of Term. Semantically, Argument is the Indexth argument to
which the HiLog functor of Term is applied. The arguments of the Term are numbered
from 1 upwards. An atomic term is taken to have 0 arguments.

Initially, Index must be instantiated to a positive integer and Term to any non-variable
Prolog or HiLog term. If the initial conditions are not satisfied or I is out of range, the
call quietly fails. Note that like arg/3 this predicate does not succeed for Index=0.
Examples:

| ?- hilog_arg(2, p(a,b), A).

A = b

| ?- hilog_arg(2, h(a,b), A).

A = b

| ?- hilog_arg(3, X(a,b,c), A).

X = _595820

A = c

| ?- hilog_arg(1, map(f)(a,b), A).

A = a

| ?- hilog_arg(2, map(f)(a,b), A).

A = b

| ?- hilog_arg(1, (a+b)(foo,bar), A).

A = foo

CHAPTER 6. STANDARD AND GENERAL PREDICATES 180

| ?- hilog_arg(1, apply(foo), A).

A = foo

| ?- hilog_arg(1, apply(foo,bar), A).

A = bar

Note the difference between the last two examples. The difference is due to the fact
that apply/1 is a Prolog term, while apply/2 is a proper HiLog term.

?Term =.. ?List ISO
Given proper instantiation of the arguments, =../2 (pronounced univ) succeeds when
(1) Term unifies with a compound Prolog or HiLog term and List unifies with a list
whose head is the functor of Term and whose tail is a list of the arguments of Term;
or (2) when Term unifies with an atomic term and List unifies with a list whose only
element is Term. More precisely,

• If initially Term is uninstantiated, then List must be instantiated either to a
proper list (list of determinate length) whose head is an atom, or to a list of
length 1 whose head is a number.

• If the arguments of =../2 are both uninstantiated, or if either of them is not
what is expected, =../2 throws the appropriate error message.

Examples:

| ?- X - 1 =.. L.

X = _h112

L = [-,_h112,1]

| ?- p(a,b,c) =.. L.

L = [p,a,b,c]

| ?- h(a,b,c) =.. L.

L = [apply,h,a,b,c]

| ?- map(p)(a,b) =.. L.

L = [apply,map(p),a,b]

| ?- T =.. [foo].

T = foo

| ?- T =.. [apply,X,a,b].

T = apply(X,a,b)

| ?- T =.. [1,2].

++Error[XSB/Runtime/P]: [Type (1 in place of atomic)] in arg 2 of predicate =../2

| ?- T =.. [a+b,2].

CHAPTER 6. STANDARD AND GENERAL PREDICATES 181

++Error[XSB/Runtime/P]: [Type (a + b in place of atomic)] in arg 2 of predicate =../2

| ?- X =.. [foo|Y].

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate =../2

Error Cases

• Term is a variable and List is a variable, a partial list, a or a list whose head is
a variable

– instantiation_error

• List is neither a variable nor a non-empty list

– type_error(list, H)

• List is a list whose head H is neither an atom nor a variable, and whose tail is
not the empty list

– type_error(atomic, H)

• Term is a variable and the tail of List has a length greater than XSB’s maximum
arity for terms (256)

– representation_error(max_arity)

?Term ˆ=.. [?F |?ArgList]

HiLog When Term is a Prolog term, this predicate behaves exactly like the Prolog
=../2. However when Term is a proper HiLog term, ^=../2 succeeds unifying F to its
HiLog functor and ArgList to the list of the arguments to which this HiLog functor
is applied. Like =../2, the use of ^=../2 can nearly always be avoided by using
the more efficient predicates hilog_functor/3 and hilog_arg/3. The behaviour of
^=../2, on HiLog terms is as follows:

• If initially Term is uninstantiated, then the list in the second argument of ^=../2

must be instantiated to a proper list (list of determinate length) whose head can
be any Prolog or HiLog term.

• If the arguments of ^=../2 are both uninstantiated, or if the second of them is
not what is expected, ^=../2 aborts, producing an appropriate error message.

Examples:

| ?- p(a,b,c) ^=.. L.

L = [p,a,b,c]

| ?- h(a,b,c) ^=.. L.

L = [h,a,b,c]

| ?- map(p)(a,b) ^=.. L.

L = [map(p),a,b]

CHAPTER 6. STANDARD AND GENERAL PREDICATES 182

| ?- T ^=.. [X,a,b].

T = apply(X,a,b)

| ?- T ^=.. [2,2].

T = apply(2,2)

| ?- T ^=.. [a+b,2].

T = apply(a+b,2)

| ?- T ^=.. [3|X].

++Error: Argument 2 of ^=../2 is not a proper list

Aborting...

Error Cases

instantiation_error Argument 2 of ^=../2 is not a proper list.

copy_term(+Term, -Copy) ISO
Makes a Copy of Term in which all variables have been replaced by brand new variables
which occur nowhere else. It can be very handy when writing (meta-)interpreters for
logic-based languages. The version of copy_term/2 provided is space efficient in the
sense that it never copies ground terms. Predicate copy_term/2 has no associated
errors or exceptions.
Examples:

| ?- copy_term(X, Y).

X = _598948

Y = _598904

rr | ?- copy_term(f(a,X), Y).

X = _598892

Y = f(a,_599112)

term_depth(+Term, -Depth)

term_depth/2 provides an efficient way to find the maximal depth of a term. Term
depth is defined recursively as follows:

• The depth of a structure is defined as 1 + the maximal depth of any argument
of that structure.

• The depth of an attributed variable is the depth of the attribute structure asso-
ciated with that variable.

• The depth of a list [H|T] is defined as 1 + the maximal depth of H and T.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 183

• The depth of any other element is 1.

Note that according to this definition, the depth of the list [a,b] is 3, since the list
is equivalent to the structure .(a,.(b,[])) whose depth is 3.

term_depth/2 does not check for cyclic structures, so it must be ensured that Term

is acyclic.

term_size(+Term, -Size)

term_size/2 provides an efficient way to find the total number of constituents of a
term. Term size is defined recursively as follows:

• The size of an attributed variable is 1 (the variable size) + the size of the attribute
structure.

• The size of a non-compound term is 1.

• The size of a compound term is defined as 1 + the sum of the sizes of all arguments
of that term.

• The size of a list [H|T] is defined as the size of the term ’.’(H,T).

term_size/2 does not check for cyclic structures, so it must be ensured that Term is
acyclic.

6.8 Cyclic Terms

6.8.1 Unification with and without Occurs Check

Cyclic terms are created when Prolog unifies two terms whose variables have not been
standardized apart: for instance

X = f(X)

will produce the cyclic term f(f(f(f(f(f(...)))))) – in other words, a term with an “infinite”
depth. Note that according to the mathematical definition of unification, X should not unify
with a term containing itself. There are two reasons why XSB (along with virtually all other
Prologs) has this default behavior.

• The default unification algorithm, when it unifies a variable V with a term T, does not
check for the occurrence of V in T, in other words it does not perform an occurs check.
Unification without an occurs check is linear in the sizes of the terms to be unified,
while unification with an occurs check is exponential in the sizes of the terms. This
complexity is not just theoretical: it can slow down programs that perform unification
of large non-ground terms – sometimes drastically.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 184

• Some programs purposefully construct cyclic terms: this occurs with various con-
straint libraries such as CHR. These libraries do not perform as expected when a
mathematically correct unification algorithm is used.

XSB provides two mechanisms for overriding this default behavior for unification.

• First, there is a Prolog flag unify_with_occurs_check which when set to on ensures
that all unification is mathematically correct. Care should be taken when using this
flag, for the above two reasons.

• For more detailed usages, the ISO predicate unify_with_occurs_check/2 can be
used syntactically rather than Prolog’s default unification operator =/2.

6.8.2 Cyclic Terms

Fortunately, the creation of cyclic terms is uncommon for most types of programming; even
when cyclic terms arise they can often be avoided by the proper use of copy_term/2 or other
predicates. Nevertheless cyclic terms do arise when XSB is used for meta-programming or if
XSB is used as the basis of a high-level knowledge representation language such as Flora-2
or Silk. It is important that XSB’s behavior be cycle-safe in the sense that the creation of
cyclic terms per se will not create infinite loops in XSB’s tabling or XSB’s builtins. Like
some other Prologs, XSB supports unification of cyclic terms. In addition, most predicates
like functor/3, or =../2 that either take non-compound terms or that do not require term
traversal are cycle-safe. A few builtins that require term-traversal are “safe” for cyclic terms.
For instance writing in XSB is subject to a depth check, which terminates for cyclic terms.
Most importantly, the XSB heap garbage collector is guarenteed to be safe for cyclic terms.

Variant tabling can also handle cyclic terms if the proper flags are set. These flags are
max_table_subgoal_depth which determines the maximal “reasonable” depth of a subgoal;
and max_table_answer_depth, max_table_answer_list_depth which determine the max-
imal “reasonable” depth for non-list terms or lists (respectively) in answers. These last two
flags also determine a “reasonable” depth for interned tries. Each of these depth flags have
an associated answer flag: max_table_subgoal_action, max_table_answer_action and
max_table_answer_list_action respectively. The actions can be of three types: error

which throws an error if a term with a certain depth is encountered as a tabled subgoal or
answer (regardless of whether that term is tabled); failure which causes failure for these
cases; and fail_on_cycles which fails on cyclic terms, and otherwise throws an error for
a term of a certain depth 7.

While the above operations cycle-safe, cyclic terms can cause problems in XSB for
builtins or predicates that require term traversal. For instance the library predicates

7We hope to efficiently integrate cycle checking into XSB’s subsumptive tabling in the reasonably near
future.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 185

length/2 and append/2 currently go into infinite loops with cyclic terms; unless otherwise
specified it is the user’s responsibility to check library predicates (as opposed to standard
builtins) for acyclicity using is_acyclic/1 or is_cyclic/1. In addition the following XSB
builtins are not cycle-safe:

• bagof/3, copy_term/2, ground/1 numbervars/[1,3,4], setof/3, subsumes/2, subsumes_chk/2,
term_depth/2, term_size/2, term_to_atom/[2,3], term_to_codes/[2,3], term_variables/2,
unifiable/2 and variant/2 8.

• Various table inspection builtins based on get_call/2 or similar routines (including
get_residual/2).

Arguably, programs should not intentionally create cyclic terms, and the above flags, as
well as the following predicates, can help debug when cyclic terms are created.

is_cyclic(?X)

Succeeds if X is a cyclic term.

is_acyclic(?X)

acyclic_term(?X) ISO
Succeeds if X is not a cyclic term.

6.9 Manipulation of Atomic Terms

This section lists some of XSB’s standard predicates for manipulating atomic terms. See
also in Volume 2, Section 1.5 for other library predicates. Section 7 for wildcard matching,
and Section 8 for an interfae to the PCRE library.

atom_codes(?Atom, ?CharCodeList) ISO
The standard predicate atom_codes/2 performs the conversion between an atom and
its character list representation. If Atom is supplied (and is an atom), CharList is
unified with a list of ASCII codes representing the “name” of that atom. In that
case, CharList is exactly the list of ASCII character codes that appear in the printed
representation of Atom. If on the other hand Atom is a variable, then CharList must
be a proper list of ASCII character codes. In that case, Atom is instantiated to an
atom containing exactly those characters, even if the characters look like the printed
representation of a number.
Examples:

8The predicate ground_or_cyclic/1 is safe for cyclic terms.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 186

| ?- atom_codes(’Foo’, L).

L = [70,111,111]

| ?- atom_codes([], L).

L = [91,93]

| ?- atom_codes(X, [102,111,111]).

X = foo

| ?- atom_codes(X, []).

X = ’’

| ?- atom_codes(X, "Foo").

X = ’Foo’

| ?- atom_codes(X, [52,51,49]).

X = ’431’

| ?- atom_codes(X, [52,51,49]), integer(X).

no

| ?- atom_codes(X, [52,Y,49]).

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate atom_codes/2

Forward Continuation...

| ?- atom_codes(431, L).

++Error[XSB/Runtime/P]: [Type (431 in place of atom)] in arg 1 of predicate

atom_codes/2

Forward Continuation...

| ?- atom_codes(X, [52,300,49]).

[Representation (300 is not character code)] in arg 2 of predicate

atom_codes/2

Forward Continuation...

Error Cases

• Atom is a variable and CharCodeList is a partial list or a list with an element
which is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom, Atom)

• Atom is a variable and CharCodeList is neither a list nor a partial list

– type_error(list, CharCodeList)

• Atom is a variable and an element E of CharCodeList is neither a variable nor a
character code

– representation_error(character_code, E)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 187

number_codes(?Number, ?CharCodeList) ISO
The standard predicate number_codes/2 performs the conversion between a number
and its character list representation. If Number is supplied (and is a number), CharList

is unified with a list of ASCII codes comprising the printed representation of that
Number. If on the other hand Number is a variable, then CharList must be a proper
list of ASCII character codes that corresponds to the correct syntax of a number
(either integer or float) In that case, Number is instantiated to that number, otherwise
number_codes/2 will simply fail.
Examples:

| ?- number_codes(123, L).

L = [49,50,51];

| ?- number_codes(N, [49,50,51]), integer(N).

N = 123

| ?- number_codes(31.4e+10, L).

L = [51,46,49,51,57,57,57,55,69,43,49,48]

| ?- number_codes(N, "314e+8").

N = 3.14e+10

| ?- number_codes(foo, L).

++Error[XSB/Runtime/P]: [Type (foo in place of

number)] in arg 1 of predicate

number_codes

Forward Continuation...

Error Cases

• Number is a variable and CharCodeList is a partial list or a list with an element
which is a variable

– instantiation_error

• Number is neither a variable nor a number

– type_error(number, Number)

• Number is a variable and CharCodeList is neither a list nor a partial list

– type_error(list, CharCodeList)

• Number is a variable and an element E of CharCodeList is neither a variable nor
a character code

– representation_error(character_code, E)

name(?Constant, ?CharList)

The standard predicate name/2 performs the conversion between a constant and its
character list representation. If Constant is supplied (and is any atom or number),

CHAPTER 6. STANDARD AND GENERAL PREDICATES 188

CharList is unified with a list of ASCII codes representing the “name” of the constant.
In that case, CharList is exactly the list of ASCII character codes that appear in the
printed representation of Constant. If on the other hand Constant is a variable,
then CharList must be a proper list of ASCII character codes. In that case, name/2

will convert a list of ASCII characters that can represent a number to a number
rather than to a character string. As a consequence of this, there are some atoms
(for example ’18’) which cannot be constructed by using name/2. If conversion to
an atom is preferred in these cases, the standard predicate atom_codes/2 should be
used instead. The syntax for numbers that is accepted by name/2 is exactly the one
which read/1 accepts.
Examples:

| ?- name(’Foo’, L).

L = [70,111,111]

| ?- name([], L).

L = [91,93]

| ?- name(431, L).

L = [52,51,49]

| ?- name(X, [102,111,111]).

X = foo

| ?- name(X, []).

X = ’’

| ?- name(X, "Foo").

X = ’Foo’

| ?- name(X, [52,51,49]).

X = 431

| ?- name(X, [45,48,50,49,51]), integer(X).

X = -213

| ?- name(3.14, L).

++Error[XSB/Runtime/P]: [Miscellaneous] Predicate name/2 for reals is not implemented yet

Aborting...

• Constant is a variable and CharCodeList is a partial list or a list with an element
which is a variable

– instantiation_error

• Constant is neither a variable nor atomic

– type_error(atomic, Constant)

• Constant is a variable and CharCodeList is neither a list nor a partial list

CHAPTER 6. STANDARD AND GENERAL PREDICATES 189

– type_error(list, CharCodeList)

• Constant is a variable and an element E of CharCodeList is neither a variable
nor a character code

– representation_error(character_code, E)

atom_chars(?Number, ?CharList) ISO
Like atom_codes/2, but the list returned (or input) is a list of characters as atoms
rather than ASCII codes. For instance, atom_chars(abc,X) binds X to the list
[a,b,c] Instead of [97,98,99].

Error Cases

• Atom is a variable and CharList is a partial list or a list with an element which
is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom, Atom)

• Atom is a variable and CharList is neither a list nor a partial list

– type_error(list, CharList)

• An element E of CharList is not a single-character atom

– type_error(character, E)

• Atom is a variable and an element E of CharCodeList is not a single-character
atom

– representation_error(character, E)

number_chars(?Number, ?CharList) ISO
Like number_codes/2, but the list returned (or input) is a list of characters as atoms
rather than ASCII codes. For instance, number_chars(123,X) binds X to the list
[’1’,’2’,’3’] instead of [49,50,51].

Error Cases

• Number is a variable and CharList is a partial list or a list with an element which
is a variable

– instantiation_error

• Number is neither a variable nor a number

– type_error(number, Number)

• Number is a variable and CharList is neither a list nor a partial list

– type_error(list, CharList)

• An element E of CharList is not a single-character atom

CHAPTER 6. STANDARD AND GENERAL PREDICATES 190

– type_error(character, E)

• CharList is a list of single-character atoms but is not parsable as a number (by
XSB)

– syntax_error(CharList)

number_digits(?Number, ?DigitList)

Like number_codes/2, but the list returned (or input) is a list of digits as numbers
rather than ASCII codes (for floats, the atom ’.’, ’+’ or ’-’, and ’e’ will also be present in
the list). For instance, number_digits(123,X) binds X to the list [1,2,3] instead of
[’1’,’2’,’3’], and number_digits(123.45,X) binds X to [1,.,2,3,4,5,0,0,e,+,0,2].

Error cases are the same as number_chars/2.

char_code(?Character, ?Code) ISO
The standard predicate char_code/2 is true if Code is the current code for Character.
In XSB it is defined as atom_codes(Character,[Code]).

atom_length(+Atom1,?Length) ISO
This standard predicate succeeds if Length unifies with the length of (the name of)
Atom.

Example

|?- atom_length(trilobyte,L).

L = 9

Error Cases

• Atom is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom,Atom)

• Length is neither a variable nor an integer

– type_error(integer,Length)

concat_atom(+AtomList,?Atom) module: string

AtomList must be a list structure containing atoms, integers and/or floats. This
predicate flattens AtomList and concatenates the atoms and integers into a single
atom, returned in Atom. Integers and floats are converted to character strings using
number_codes/2.

This is a somewhat more general predicate than the ISO atom_concat/2 described
below, and can be more efficient if numerous atoms are to be concatenated together.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 191

concat_atom(+AtomList,+Sep,?Atom) module: string

AtomList must be a list containing atoms, integers and/or floats, and Sep must be
an atom. This predicate concatenates the atoms and integers into a single atom,
separating each by Sep, return the resulting atom in Atom. Integers and floats are
converted to character strings using number_codes/2.

This is a somewhat more general predicate than the ISO atom_concat/2 described
below, and can be more efficient if numerous atoms are to be concatenated together.

atom_concat(Atom1,Atom2,Atom3) ISO

• Usage: atom_concat(?Atom,?Atom,+Atom)

• Usage: atom_concat(+Atom,+Atom,-Atom)

Succeeds if Atom12 is the concatenation of Atom1 and Atom2.

Examples

| ?- atom_concat(hello,world,F).

F = hello world

| ?- atom_concat(X,Y,’hello world’).

X =

Y = hello world;

X = h

Y = ello world

The last query will re-succeed for all combinations of atoms that produce hello

world.

Error Cases

• Atom1 and Atom3 are both variables

– instantiation_error

• Atom2 and Atom3 are both variables

– instantiation_error

• Atom1 is neither a variable nor an atom

– type_error(atom,Atom1)

• Atom2 is neither a variable nor an atom

– type_error(atom,Atom2)

CHAPTER 6. STANDARD AND GENERAL PREDICATES 192

• Atom3 is neither a variable nor an atom

– type_error(atom,Atom3)

sub_atom(+Atom,?LeftLength,?CenterLength,?RightLength,?CenterAtom ISO
Succeeds if Atom can be broken into three pieces: A left atom of length LeftLength, a
center atom CenterAtom of length CenterLength and a right atom of length RightLength.
If sufficient arguments are uninstantiated to produce CenterAtom in non-deterministic
starting positions, the predicate will backtrack through all center atoms for which the
left atom length is the smallest , up to those whose left atom length is greatest (see
examples below).

Examples

| ?- sub_atom(trilobyte,5,4,RL,CA).

RL = 0

CA = byte

| ?- sub_atom(trilobyte,1,CL,2,CA).

CL = 6

CA = riloby

| ?- sub_atom(trilobyte,LL,6,RL,riloby).

LL = 1

RL = 2

| ?- sub_atom(trilobyte,RL,4,LL,CA).

RL = 0

LL = 5

CA = tril;

RL = 1

LL = 4

CA = rilo;

RL = 2

CL = 3

CA = ilob

| ?- sub_atom(trilobyte,LL,CL,RL,CA).

LL = 0

CL = 0

RL = 9

CA = ;

LL = 0

CL = 1

RL = 8

CHAPTER 6. STANDARD AND GENERAL PREDICATES 193

CA = t;

LL = 0

CL = 2

RL = 7

CA = tr;

: /* after more backtracking */

LL = 0

CL = 9

RL = 0

CA = trilobyte;

LL = 1

CL = 0

RL = 8

CA = ;

Ll = 1

CL = 1

RL = 7

CA = r;

Error Cases

• Atom is a variable

– instantiation_error

• Atom is neither a variable nor an atom

– type_error(atom, Atom)

• CenterAtom is neither a variable nor an atom

– type_error(atom, CenterAtom)

• LeftLength is neither a variable nor an integer

– type_error(integer, LeftLength)

• CenterLength is neither a variable nor an integer

– type_error(integer, CenterLength)

• RightLength is neither a variable nor an integer

– type_error(integer, RightLength)

• LeftLength is an integer that is less than zero

– domain_error(not_less_than_zero, LeftLength)

• CenterLength is an integer that is less than zero

CHAPTER 6. STANDARD AND GENERAL PREDICATES 194

– domain_error(not_less_than_zero, CenterLength)

• RightLength is an integer that is less than zero

– domain_error(not_less_than_zero, RightLength)

string_substitute(+InpStr, +SubstrList, +SubstitutionList, -OutStr) module:
string

InputStr can an atom or a list of characters. SubstrList must be a list of terms of
the form s(BegOffset, EndOffset), where the name of the functor is immaterial.
The meaning of the offsets is the same as for substring/4. (In particular, negative
offsets represent offsets from the first character past the end of String.) Each such
term specifies a substring (between BegOffset and EndOffset; negative EndOffset

stands for the end of string) to be replaced. SubstitutionList must be a list of
atoms or character lists.

Offsets start from 0, as in C/Java.

This predicate replaces the substrings specified in SubstrList with the corresponding
strings from SubstitutionList. The result is returned in OutStr. OutStr is a list of
characters, if so is InputStr; otherwise, it is an atom.

If SubstitutionList is shorter than SubstrList then the last string in SubstitutionList

is used for substituting the extra substrings specified in SubstitutionList. As a spe-
cial case, this makes it possible to replace all specified substrings with a single string.

As in the case of re_substring/4, if OutStr is an atom, it is not interned. The user
should either intern this string or convert it into a list, as explained previously.

The string_substitute/4 predicate always succeeds.

Here are some examples:

| ?- string_substitute(’qaddf’, [s(2,4)], [’123’] ,L).

L = qa123f

| ?- string_substitute(’qaddf’, [s(2,-1)], [’123’] ,L).

L = qa123

| ?- string_substitute("abcdefg", [s(4,-1)], ["123"],L).

L = [97,98,99,100,49,50,51]

| ?- string_substitute(’1234567890123’, [f(1,5),f(5,7),f(9,-2)], ["pppp", lll],X).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 195

X = 1pppplll89lll

| ?- string_substitute(’1234567890123’, [f(1,5),f(6,7),f(9,-2)], [’---’],X).

X = 1---6---89---

term_to_atom(+Term,-Atom,+Options) module: string

Converts +Term to an atomic form according to a list of write options, Options, that
are similar to those used by write_term/[2,3]. The various options of term_to_atom/[2,3]

are especially useful for the interface from C to XSB (see Calling XSB from C in Vol-
ume 2 of this manual).

• quoted(+Bool). If Bool = true, then atoms and functors that can’t be read
back by read/1 are quoted, if Bool = false, each atom and functor is written
as its unquoted name. Default value is false.

• ignore_ops(+Bool). If Bool = true each compound term is output in func-
tional notation; list braces are ignored, as are all explicitly defined operators. If
Bool = canonical, bracketed list notation is used. Default value is canonical.
The corresponding value of false, that would enable operator precedence, is not
yet implemented.

• numbervars(+Bool). If Bool = true, a term of the form ’$VAR’(N) where N

is an integer, is output as a variable name consisting of a capital letter possibly
followed by an integer. A term of the form ’$VAR’(Atom) where Atom is an atom,
is output as itself (without quotes). Finally, a term of the form ’$VAR’(String)

where String is a character string, is output as the atom corresponding to this
character string. If bool is false this cases are not treated in any special way.
Default value is false.

Error Cases

• Options is a variable

– instantiation_error

• Options neither a variable nor a list

– type_error(list,Options)

• Options contains a variable element, O

– instantiation_error

• Options contains an element O that is neither a variable nor a write option.

– domain_error(write_option,O)

Examples:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 196

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[]).

X = _h131

F = f(a,1,_h0,[3cpio,d(3),$VAR([70,111,111])])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true)]).

X = _h131

F = f(a,1,_h0,[3cpio,d(3),Foo])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true),quoted(true)]).

X = _h131

F = f(a,1,_h0,[’3cpio’,d(3),Foo])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true),quoted(true),ignore_ops(true)]).

X = _h131

F = f(a,1,_h0,’.’(’3cpio’,’.’(d(3),’.’(Foo,[]))))

yes

term_to_atom(+Term,-Atom) module: string

This predicate converts an arbitrary Prolog term Term into an atom, putting the
result in Atom. It is defined using the default options for term_to_atom/3, e.g.
ignore_ops(canonical), quoted(false), and numbervars(false).

term_to_codes(+Term,-CodeList,+OptionList) module: string

This predicate is used in the definition of term_to_atom/3 but only converts a term
into a list of ASCII codes, and does not intern the list as an atom. Allowed values for
OptionList and error cases are the same as in term_to_atm/3.

term_to_codes(+Term,-CodeList) module: string

This predicate converts a term to a list of ASCII codes. It is defined using the
default options for term_to_atom/3, e.g. ignore_ops(canonical), quoted(false),
and numbervars(false).

gc_atoms

Explicitly invokes the garbage collector for atoms that are created, but no longer
needed. By default, gc_atoms/1 is called automatically, unless the Prolog_flag
atom_garbage_collection is set to false, or if more than one thread is active.
However there are reasons why a user may need to invoke atom table garbage collec-
tion. First, in Version 3.3, if atom table garbage collection is invoked automatically,
it occurs periodically on heap garbage collection, or if numerous asserts and retracts
have taken place. These heuristics overlook certain cases where numerous atoms may

CHAPTER 6. STANDARD AND GENERAL PREDICATES 197

be created without invoking the garbage collector – e.g. through repeated uses of
format_write_string/3. In addition if user-defined C code contains pointers to
XSB’s atom table, atom table garbage collection will be unsafe, as Version 3.3 of XSB
does not detect such pointers in external code. In such cases, atom table garbage
collection should be turned off via the Prolog flag atom_garbage_collection, and
reinvoked at a point where the external pointers are no longer used.

6.10 All Solutions and Aggregate Predicates

Often there are many solutions to a problem and it is necessary somehow to compare
these solutions with one another. The most general way of doing this is to collect all the
solutions into a list, which may then be processed in any way desired. So XSB provides
ISO-standard predicates such as setof/3, bagof/3, and findall/3 to collect solutions into
lists. Sometimes however, one wants simply to perform some aggregate operation over the
set of solutions, for example to find the maximum or minimum of the set of solutions. XSB
uses answer subsumption to produce a powerful aggregation facility as discussed in Section
5.4

setof(?Template, +Goal, ?Set) ISO
This predicate may be read as “Set is the set of all instances of Template such that
Goal is provable”. If Goal is not provable, setof/3 fails. The term Goal specifies
a goal or goals as in call(Goal). Set is a set of terms represented as a list of
those terms, without duplicates, in the standard order for terms (see Section 6.6).
If there are uninstantiated variables in Goal which do not also appear in Template,
then a call to this evaluable predicate may backtrack, generating alternative values
for Set corresponding to different instantiations of the free variables of Goal. Variables
occurring in Goal will not be treated as free if they are explicitly bound within Goal

by an existential quantifier. An existential quantification can be specified as:

Y ˆ G

meaning there exists a Y such that G is true, where Y is some Prolog term (usually, a
variable).

Error cases are the same as predicate call/1 (see Section 6.11).

Example: Consider the following predicate:

p(red,high,1).

p(green,low,2).

p(blue,high,3).

p(black,low,4).

p(black,high,5).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 198

The goal ?- setof(Color,Height^Val^p(Color,Height,Val),List) returns a sin-
gle solution:

Color = _h73

Height = _h87

Val = _h101

L = [black,blue,green,red]

If Height is removed from the sequence of existential variables, so that the goal
becomes:

?- setof(Color,Val^p(Color,Height,Val),List)

the first solution is:

Color = _h73

Val = _h87

Height = high

L = [black,blue,red];

upon backtracking, a second solution is produced:

Color = _h73

Val = _h87

Height = low

L = [black,green]

bagof(?Template, +Goal, ?Bag) ISO
This predicate has the same semantics as setof/3 except that the third argument
returns an unsorted list that may contain duplicates.

Error Cases are the same as predicate call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
?- bagof(Color,Height^Val^p(Color,Height,Val),L) returns the single solution:

Color = _h73

Height = _h87

Val = _h101

L = [red,green,blue,black,black];

If Height is removed from the sequence of existential variables, so that the goal
becomes: ?- bagof(Color,Val^p(Color,Height,Val),List), the first solution is:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 199

Color = _h73

Val = _h87

Height = high

L = [red,blue,black];

upon backtracking, a second solution is produced:

Color = _h73

Val = _h87

Height = low

L = [green,black];

findall(?Template, +Goal, ?List) ISO
Similar to predicate bagof/3, except that variables in Goal that do not occur in
Template are treated as existential, and alternative lists are not returned for different
bindings of such variables. Note that this means that Goal should not contain exis-
tential variables. This makes findall/3 deterministic (non-backtrackable). Unlike
setof/3 and bagof/3, if Goal is unsatisfiable, findall/3 succeeds binding List to
the empty list.

Error cases are the same as call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
findall(Color,p(Color,Height,Val),L) returns a single solution:

Color = _h73

Height = _h107

Val = _h121

F = [red,green,blue,black,black]

findall(?Template, +Goal, ?List,?Tail)

Acts as findall/3, but returns the result as the difference-list Bag-Tail. In fact, the
3-argument version is defined in terms of the 4-argument version:

findall(Templ, Goal, Bag) :- findall(Templ, Goal, Bag, [])

Error cases are the same as findall/3 (or call/1).

tfindall(?Template, +Goal, ?List) Tabling

Like findall/3, tfindall/3 treats all variables in Goal that do not occur in Template

as existential. However, in tfindall/3, the Goal must be a call to a single tabled
predicate.

tfindall/3 allows findall functionality to be used safely with tabling by throwing
an error if it is called recursively. Its use can be seen by considering the following
series of programs.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 200

p1(X):- findall(Y,p1(Y),X).

When executing the goal p(X), XSB will throw an error when it reaches the maximum
number of recursive invocations of findall.
Next, consider the program

:- table t/1.

t(X):- findall(Y,t(Y),X).

t(a).

The query t(X) will terminate without error, but will return two answers: X = []
and X = a. These answers are hard to defend semantically, since there is an implicit
domain closure axiom in findall-like predicates. On the other hand, for the program

:- table t2/1.

t2(X):- tfindall(Y,t2(Y),X).

t2(a).

the query t2(X) will throw a table error, indicating that a call to tfindall/3 is
apparently non-stratified footnoteDetection of non-stratification is based on the ap-
proximate detection of dependencies among subgoals maintained by XSB. This ap-
proximation is quite close for local evaluation, but is less close for batched evaluation..
Other behavior for tabled aggregation is provided by answer subsumption as discussed
in Section 5.4

Other differences between predicates findall/3 and tfindall/3 can be seen from
the following example:

| ?- [user].

[Compiling user]

:- table p/1.

p(a).

p(b).

[user compiled, cpu time used: 0.639 seconds]

[user loaded]

yes

| ?- p(X), findall(Y, p(Y), L).

X = a

Y = _922928

L = [a];

X = b

Y = _922820

L = [a,b];

CHAPTER 6. STANDARD AND GENERAL PREDICATES 201

no

| ?- abolish_all_tables.

yes

| ?- p(X), tfindall(Y, p(Y), L).

X = b

Y = _922820

L = [b,a];

X = a

Y = _922820

L = [b,a];

no

Error cases include those of findall/3 (see above), along with

table_error Upon execution Goal is not a subgoal of a tabled predicate.

table_error A call to tfindall/3 is apparently non-stratified

X ˆ Goal ISO
Within setof/3, bagof/3 and the like, the ˆ /2 operator means there exists an X

such that Goal is true.

excess_vars(+Term, +ExistVarTerm, +AddVarList, -VarList) module: setof

Returns in VarList the list of (free) variables found in Term concatenated to the
end of AddVarList. (In normal usage AddVarList is passed in as an empty list.)
ExistVarTerm is a term containing variables assumed to be quantified in Term so none
of these variables are returned in the resulting list (unless they are in AddVarList.)
Subterms of Term of the form (VarTerm ˆ SubTerm) are treated specially: all vari-
ables in VarTerm are assumed to be quantified in SubTerm, and so no occurrence of
these variables in SubTerm is collected into the resulting list.

Error Cases

type_error AddVarList is not a list of variables

memory Not enough memory to collect the variables.

find_n(+N,?Template, +Goal, ?List) module: setof

Acts as findall/3 but returns only the first N bindings of Template to List.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 202

6.11 Meta-Predicates

call(#X) ISO
If X is a non-variable term in the program text, then it is executed exactly as if X

appeared in the program text instead of call(X), e.g.

. . ., p(a), call((q(X), r(Y))), s(X), . . .

is equivalent to

. . ., p(a), q(X), r(Y), s(X), . . .

However, if X is a variable in the program text, then if at runtime X is instantiated to a
term which would be acceptable as the body of a clause, the goal call(X) is executed
as if that term appeared textually in place of the call(X), except that any cut (‘!’)
occurring in X will remove only those choice points in X. If X is not instantiated as
described above, an error message is printed and call/1 fails.

Error Cases

instantiation_error X is a variable

type_error(callable,X) X is not callable.

#X

(where X is a variable) executes exactly the same as call(X). However, the explicit use
of call/1 is considered better programming practice. The use of a top level variable
subgoal elicits a warning from the compiler.

call(Goal,Arg,...) ISO
call(Goal,Arg) where Goal is an N-ary callable term first constructs a new N+1-ary
term NewGoal with the same functor and first N arguments as Goal and with Arg as
its N+1th argument, and then calls NewGoal. As an example,

call(member(X),[a,b,c])

is equivalent to call(member(X,[a,b,c]). Goal must be a callable term, but can
be prepended by a module name using the :/2 symbol. call(Goal,Arg1,Arg2,...)

will act similarly. Note that Goal should usually be atomic – if the outer functor of
Goal is, say, ,/2, call/[2-10] will try to add the extra argument(s) to the comma
functor, which is generally not the intended behavior.

While meta calls are generally fast in XSB, the extra term manipulation of call/[2-10]

makes it somewhat slower than call/1.

call_tv(#Goal,-TV) Tabling
Calls Goal just as with call/1, and if Goal does not fail, instantiates TV with either

CHAPTER 6. STANDARD AND GENERAL PREDICATES 203

true or undefined, depending on the value of Goal in the well-founded semantics.
Goal need not be tabled itself.

Error cases are the same as call/1.

timed_call(#Goal,+Interval,#Handler,+Option)

timed_call(#Goal,+Interval,#Handler)

This predicate calls Goal and, if Goal is still being evaluated after Interval millisec-
onds, Goal will be interrupted and Handler executed. In the case where Handler

succeeds or fails, the execution of Goal will be continued; if Handler throws an un-
caught exception the execution of Goal may be aborted. In this way timed_call/3

can be used enforce a time-out on Goal.

Interval can be either a positive integer or the term repeating(Int) where Int is
a non-negative integer. In this latter case, Goal is interrupted every Int milliseconds
until it terminates (whether by normal termination or by Handler throwing an ex-
ception). In the case of repeated interrupts, the time taken to execute Handler is not
counted as part of Interval milliseconds.

Nested calls to timed_call/3 are not allowed unless Option is set to nested.

• If Option is not equal to nested, or if timed_call/3 is used, then a nested call
to timed_call/4 will throw a permission error.

• If Option is equal to nested then the nested timed call is simply treated as a call
to Goal: in other words the interval and handler for the nested call is ignored.

As an implementation note, timed_call/[3,4] is based on XSB’s internal interrupt
mechanism, used for attributed variable handlers and thread signalling. As such,
the ability to execute complex actions upon interrupt and to resume is very robust.
However, checks for interrupts are only made whenever XSB’s SLG-WAM engine is
executing. Because of this, if XSB is suspended on I/O, calling a C or java function,
in a C-implemented builtin, or otherwise outside of its virtual machine, the interrupt
will not be executed until computation is back within XSB’s virtual machine.

timed_call/3 is not yet implemented for the multi-threaded engine but its function-
ality is easily duplicated using thread signalling (Section‘7.5).

Examples Consider the simple (and non-tabled) program fragment

loop :- loop.

which goes into an infinite loop on the query ?- loop. However, the query

timed_call(loop,repeating(500),abort).

will interrupt loop and abort its computation after 500 milliseconds. Alternately, the
query

CHAPTER 6. STANDARD AND GENERAL PREDICATES 204

timed_call(loop,500,statistics).

will interrupt the computation after 500 seconds, print out statistics, and resume the
computation where it left off.

timed_call(loop,repeating(500),statistics).

will interrupt the computation every 500 milliconds tp print statistics. More sophisti-
cated interrupt handlers could introspect a computation (e.g., using statistics/2 or
table_dump/[1,3]) and possibly modify parameters of the computation when possi-
ble (e.g., by changing one form of tabling to another, when permitted).

Error Cases Error cases are the same as in call/1 for the first and third arguments
of timed_call/3, along with these other errors.

Interval is not an integer

• type_error(integer,Interval)

Interval is not a positive integer

• domain_error(positive_integer,Interval)

A call C to timed_call/3 is made within the scope of some other call to timed_call/3

• permission_error(nested_call,predicate,Goal)

timed_call/3 is called from the multi-threaded engine

• misc_error

bounded_call(#Goal,+MaxMemory,+MaxCPU,#Handler) module: standard
bounded_call(#Goal,+MaxMemory,+MaxCPU) module: standard

These predicates call Goal and check once per second whether the total CPU time to
execute Goal is greater than MaxCPU seconds, and whether the total memory taken
by XSB is greater than MaxMemory bytes. Under bounded_call/4 if either of these
conditions arise, Handler is called; under bounded_call/3 a resource exception is
thrown for memory or CPU time.

These predicates are implemented directly using timed_call/3 and inherit the ad-
vantages and limitations of that predicate. As an advantage, the ability to execute
complex actions upon interrupt and to resume is very robust. However, checks for
interrupts are only made whenever XSB’s SLG-WAM engine is executing. Because of
this, if XSB is suspended on I/O, calling a C or java function, in a C-implemented
builtin, or otherwise outside of its virtual machine, the interrupt will not be executed
until computation is back within XSB’s virtual machine.

Handler cannot cause timed_call/3 to be executed as a subgoal; but otherwise
Handler has no restrictions.

bounded_call/[3,4] is not yet implemented for the multi-threaded engine but its
functionality is easily duplicated using thread signalling (Section‘7.5).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 205

Error Cases Error cases are the same as in call/1 for the first argument of bounded_call/3,
and are the same as that of timed_call for Handler.

MaxCPU or MaxMemory is not an integer

• type_error(integer)

MaxCPU or MaxMemory is not a positive integer

• domain_error(positive_integer)

once(#X) ISO
once/1 is defined as once(X):- call(X),!. once/1 should be used with care in
tabled programs. The compiler can not determine whether a tabled predicate is
called in the scope of once/1, and such a call may lead to runtime errors. If a tabled
predicate may occur in the scope of once/1, use table_once/1 instead.

Error cases are the same as call/1.

forall(Generate,Test)

forall(Generate, Test) is true iff for all possible bindings of Generate, the goal
Test is true. Procedurally, abstracting error checking, the predicate shall behave as
being defined by \+ (call(Generator), \+ call(Test)).

Error cases are the same as call/1.

table_once(#X) Tabling
table_once/1 is a weaker form of once/1, suitable for situations in which a single
solution is desired for a subcomputation that may involve a call to a tabled predicate.
table_once(?Pred) succeeds only once even if there are many solutions to the subgoal
Pred. However, it does not “cut over” the subcomputation started by the subgoal
Pred, thereby ensuring the correct evaluation of tabled subgoals.

call_cleanup(#Goal,#Handler) ISO
call_cleanup(Goal, Cleanup) calls Goal just as if it were called via call/1, but it
is ensures that Handler will be called after Goal finishes execution. call_cleanup/2

is thus useful when Goal uses a resource, (such as a stream, mutex, database cursor,
etc.) that should be released when Goal finishes execution.

More precisely, Goal finishes execution either 1) by failure, 2) by determining that the
success of Goal is deterministic, 3) when an error is thrown and not handled by Goal

or one of its subgoals; or 4) when Goal is cut over. In all of these cases, Handler will
be called and will succeed non-deterministically. We illustrate these cases through
examples.

• Failure of Goal:

?- call_cleanup(fail,writeln(failed(Goal))).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 206

In this case, Goal has no solutions, and the handler is invoked when the engine
backtracks out of Goal.

• Deterministic success of Goal. Assume that p(1) and p(2) have been asserted.
Then

?- call_cleanup((p(X),writeln(got(p(X)))),writeln(handled(p(X)))).

got(p(1))

X = 1;

got(p(2))

handled(p(2))

X = 2;

no

Note that Handler is called only after the last solution of the goal p(X) has been
obtained. XSB decides to call Handler only when it can be determined that the
success of Goal has left no choice points. In such a case, the final solution has
been obtained for Goal. Of course, it may be that a solution S to Goal leaves a
choice point but the choice point will produce no further solutions for Goal. XSB
will not call Handler in this case, rather it will wait until there are no choice
points left for Goal.

• An uncaught error E is thrown out of Goal. In this case, Handler will be called,
and then, if E is uncaught, E will be rethrown. This is illustrated in the following
example (Error handling is discussed further in Section 12.3.2):

?- catch(call_cleanup(throw(my_error),writeln(invoking_handler)),Ball,write(Ball)).

invoking_handler

my_error

yes

Of course, Handler itself can be wrapped in a catch/3 so that any errors will
be caught by call_cleanup/2.

• Choice points for Goal are removed via a cut. Consider an example in which p/1

has the same extension as above (p(1),p(2):

call_cleanup(p(X),writeln(handled_1)),!.

handled_1

X = 1

yes

CHAPTER 6. STANDARD AND GENERAL PREDICATES 207

The handler is invoked immediately when the choice point laid down by p(X) is
cut over – before returning to the command line. If a cut cuts over more than
goal to be cleaned, more than one handler will be executed:

?-call_cleanup(p(X),writeln(handled_4_1)),

call_cleanup(p(Y),writeln(handled_4_2)),

call_cleanup(p(Z),writeln(handled_4_3)),

!.

handled_4_3

handled_4_2

handled_4_1

X = 1

Y = 1

Z = 1

call_cleanup/2 is thus an extremely powerful and flexible mechanism when used in a
simple manner. While Handler is “guaranteed” to be invoked whenever Goal finishes
execution 9, it may be difficult to predict when Handler will be invoked, as Handler

may be invoked because of deeply non-local cuts over Goal, and even when such cuts
are not present, the invocation depends on XSB determining when the last solution
for Goal has been obtained. Baroque usages, such as invoking call_cleanup/2 and
cuts in the handler are supported, but may lead to code that is difficult to debug,
since handlers may be invoked based on the state of XSB’s choice point stack.

Error Cases

Goal is a variable

• instantiation error

Goal is neither a variable nor a callable term

• type error(callable, Goal)

Handler is a variable

• instantiation error

Handler is neither a variable nor a callable term

• type error(callable, Handler)

6.12 Information about the System State

Various aspects of the state of an instance of XSB — information about what predicates,
modules, or dynamic clauses have been loaded, their object files, along with other infor-
mation can be inspected in ways similar to many Prolog systems. However, because the

9In fact we don’t guarantee anything, see XSB’s license.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 208

atom-based module system of XSB may associate structures with particular modules, pred-
icates are provided to inspect these elements as well. The following descriptions of state
predicates use the terms predicate indicator, term indicator and current module to mean
the following:

• By predicate indicator we mean a compound term of the form M:F/A or simply F/A.
When the predicate indicator is fully instantiated, M and F are atoms representing the
module name and the functor of the predicate respectively and A is a non negative
integer representing its arity.

Example: usermod:append/3

• By term indicator we mean a predicate or function symbol of arity N followed by a
sequence of N variables (enclosed in parentheses if N is greater than zero). A term
indicator may optionally be prefixed by the module name, thus it can be of the form
M:Term.

Example: usermod:append(_,_,_)

• A module M becomes a current (i.e. “known”) module as soon as it is loaded in the
system or when another module that is loaded in the system imports some predicates
from module M.

Note that due to the dynamic loading of XSB, a module can be current even if it has
not been loaded, and that some predicates of that module may not be defined. In
fact, a module can be current even if it does not exist. This situation occurs when a
predicate is improperly imported from a non-existent module. Despite this, a module
can never lose the property of being current.

current_input(?Stream) ISO
Succeeds iff stream Stream is the current input stream, or procedurally unifies Stream

with the current input stream.

Error Cases

• Stream is neither a variable nor a stream identifier

– domain_error(stream_or_variable,Stream))

current_output(?Stream) ISO
current_output/1 Succeeds iff stream Stream is the current output stream, or proce-
durally unifies Stream with the current output stream.

Error Cases

• Stream is neither a variable nor a stream identifier

– domain_error(stream_or_variable,Stream))

CHAPTER 6. STANDARD AND GENERAL PREDICATES 209

ISO Compatability Note: In XSB current_input/1 does not throw an error if
Stream is not a current input stream, but quietly fails instead.

current_prolog_flag(?Flag_Name, ?Value) ISO
current_prolog_flag/2 allows the user to examine both dynamic aspects of XSB
along with certain non-changeable ISO flags and non-changeable Prolog-commons
flags. Calls to current_prolog_flag/2 will unify against ISO, Prolog-commons, and
XSB-specific flags.

ISO and Prolog-commons flags are as follows:

• bounded Indicates whether integers in XSB are bounded. This flag always has
the value true

• min_integer, max_integer The minimum integer available in the current XSB
configuration (differs between 32- and 64-bits).

• max_arity Indicates the maximum arity of terms in XSB. This flag always has
the value 255

• integer_rounding_function This flag always has the value toward_zero

• debug Indicates whether trace or debugging is turned on or off

• unknown Indicates the behavior taken when calling an unknown predicate. Values
can be set to fail, warning, or error, indincating that calls to unknown pred-
icates fail, produce a warning message to user_warning or throw an existence
error. The default setting is error.

• double_quotes Indicates that double-quoted terms in XSB represent lists of
character codes. Value is codes

• dialect indicates the implementation of Prolog that is running. Using this flag,
applications intended to run on more than one Prolog can take actions that
conditional on the executing Prolog. The value is xsb.

• version_data indicates the version of XSB that is running. Using this flag,
applications intended to run on more than one Prolog can take actions that
conditional on the executing Prolog. The value is xsb.

ISO Compatability Note: The ISO flags char_conversion is not available – XSB
does not use character conversion. XSB reads double quoted strings as lists of char-
acter codes, so that the value of the flag double_quotes is always codes, and this
flag is not settable.

Non-standard flag names may be specific to XSB or may be common to XSB and
certain other Prolog. These flag names are:

• backtrace_on_error on iff system-handled errors automatically print out the
trace of the execution stack where the error arose, off otherwise. Default is on.
In the multi-threaded engine, this flag is thread-specific and controls whether the
backtrace for a current execution will be printed to STDERR.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 210

• dcg_style the DCG style currently used; xsb or standard (standard is used in
Quintus, SICSTUS, etc.). See Section 11.4 for more details. Default is xsb. This
flag affects all threads in the process.

• heap_garbage_collection indirection, none, sliding, or copying depending
on the heap garbage collection strategy that is currently being employed (see also
Section 3.7). Default is indirection. This flag is private to each thread.

• heap_margin Specifies the size in bytes of the margin used to determine whether
to perform heap garbage collection or reallocation of the environment stack. The
default is 8192 (8K) bytes for 32-bit platforms 16384 (16K) for 64-bit platforms.
Setting this field to a large value (e.g. in the megabyte range) can cause XSB to
be more aggressive in terms of expanding heap and local stack and to do fewer
heap garbage collections than with the default value. However heap_margin

should not be set lower than its default, as this may prevent XSB from properly
creating large terms on the heap.

• clause_garbage_collection on if garbage collection for retracted clauses is
allowed, and off otherwise. Default is on. This flag is private to each thread.

• atom_garbage_collection on if garbage collection for atomic constants is al-
lowed, and off otherwise. Default is on. This flag is global for all threads (cur-
rently, string garbage collection will only be invoked if there is a single active
thread.)

• table_gc_action The setting abolish_tables_transitively causes predicates
or subgoals that depend on a conditional answer of an abolished table to be abol-
ished automatically; the setting abolish_tables_singly not does not cause this
action. The distinction is important, since if table T1 depends on table T2, and
T2 is abolished but T1 is not, then predicates that introspect the dependen-
cies of T1 could cause memory violations (e.g., get_residual/2). Default is
abolish_tables_transitively. This flag affects all threads in the process.

• goal the goal passed to XSB on command line with the ‘-e’ switch; ‘true.’ if
nothing is passed. This flag may be examined, but not set.

• tracing on iff trace mode is on; off otherwise. This flag affects all threads in
the process.

• write_depth The depth to which a term is written by write-like predicates.
Default is 64. This flag affects all threads in the process.

• warning_action The action to take on warnings: the default value print_warning

prints a warning message to the XSB STDWARN stream when warning/1 is called;
silent_warning silently succeeds when warning/1 is called; and error_warning/1

throws a miscellaneous exception.

• write_attributes Determines the action to take by write/1 when it writes
an attributed variable. By default write/1 portrays attributed variables using
module-specific routines (cf. Volume 2 of this manual) as V ariable{Module :

CHAPTER 6. STANDARD AND GENERAL PREDICATES 211

PA_Output} where PA_Output is the output of the portray_attrubutes/2

clause for Module. However the value ignore causes an attributed variable to be
written simply as a variable; and dots causes V ariable{< modulename >: ...}
to be written. Finally, the value write causes a variables attribute to be written
as a term 10. The default behavior is set to the value portray.

• max_table_subgoal_action The action to take when a tabled subgoal of max-
imum depth is encountered. To understand the use of this flag, consider that if
a predicate such as

p(X):- p(f(X)).

is tabled, it can (semantically) create subgoals of infinite depth. When the
maximum subgoal depth is reached, XSB can either throw a miscellaneous error
(the default action); or XSB can fail – an action that may be valid for certain
programs. The action is set to fail by the value failure while the action of
throwing an error can be (re-)set using the value error.

• max_table_subgoal_depth The maximum depth of a subgoal argument that can
be added to a table: when the depth is reached, an action is taken as indicated
for the previous flag. The default value is maximum_integer.

• max_table_answer_action The action to take when a tabled answer of max-
imum depth is encountered. To understand the use of this flag, consider the
program fragment:

:- table p/1.

p(f(X)):- p(X). p(a).

is tabled, the model for the goal ?- p(X) is infinite, so that this program will
not terminate. When the maximum answer depth is reached, XSB can either

1. Throw a miscellaneous error, set using the value error. This is the default
action.

2. Apply bounded rationality by abstracting the answer with a truth value of
undefined; settable using the value bounded_rationality.

3. Issue a warning, settable using the value warning.
4. Fail the answer addition, an action that may be valid for certian programs,

settable using the value fail.

Note that this flag affects only structures that are not lists (since large
lists are more common than other large structures).

• max_table_answer_depth The maximum depth of an answer argument that can
be added to a table: when the depth is reached, an action is taken as indicated
for the previous flag. The default value is maximum_integer.

10When writing an attribute, any attributed variables in the attribute itself are written just as variables
with their attributes ignored.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 212

Note that this flag affects only structures that are not lists (since large
lists are more common than other large structures).

• max_table_answer_list_action The action to take when a tabled answer of
maximum list depth is encountered. To understand the use of this flag, consider
the program fragment:

:- table l/1.

l([a|X]):- l(X). l([a]).

is tabled, the model for the goal ?- l(X) is infinite, so that this program will
not terminate. When the maximum answer list depth is reached, XSB can either
throw a miscellaneous error (the default action); emit a warning; or XSB can fail
– an action that may be valid for certain programs 11. The action is set to fail
by the value failure while the action of throwing an error can be (re-)set using
the value error, and the action of warning is set by the value warning.

• max_table_answer_list_depth The maximum list depth of an answer argument
that can be added to a table: when the depth is reached, an action is taken as
indicated for the previous flag. The default value is maximum_integer.
Note that this flag affects only structures that are lists (since large lists are more
common than other large structures).

• max_memory The maximum amount of memory in kilobytes that an XSB thread
(in the single-threaded engine) or all XSB threads (in the multi threaded engine)
can use for their combined execution stacks, program space, tables, or any other
purpose. If a query exceeds this amount, XSB will abort the query with a
resource exception and then try to reclaim space used by the query. As with
other flags, this flag can be set during an XSB session. The value of 0 effectively
disables the flag, allowing XSB to allocate as much memory as the underlying
OS will grant. The default value is 0, so that the flag is disabled.

• unify_with_occurs_check If set to on, perform all unification using an oc-
curs check, which makes unification mathematically correct, but computationally
complex. Without the occurs check, the unification

X = f(X)

will produce a cyclic term X = f(f(f(f(...)))); with the occurs check this
unification will fail. Setting the flag to on may slow down programs, perhaps
drastically, and may be incompatable with some constraint libraries such as CHR.
An alternate to this flag is the ISO predicate unify_with_occurs_check/2: see
Section 6.8 for further discussion. The default for this flag is off.

• exception_action If set to iso then ISO-style exceptions will be thrown when-
ever an error condition arises. However, if exception_action is set to undefined_truth_value

11Failure in this case can be seen as an implicit form of answer abstraction.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 213

then certain goals will succeed with an undefined truth value rather than throw-
ing an error. When this occurs, a literal is added to the delay list of the current
evaluation. Later, it can be determined if an undefined answer depends on an ex-
ceptional condition through explain_u_val/[3.6], get_residual_sccs/[3,5]

or via a justification system that depends on these predicates. The default for
this flag is iso

• exception_pre_action If set to print_incomplete_tables, then the predicate
print_incomplete_tables/0 is called before throwing an exception. The exe-
cution of print_incomplete_tables/0 causes the stack of incomplete tables to
be printed to a temporary file in $XSBDIR/etc. The file can be obtained via
the predicate get_scc_dumpfile/1; information in the file can be used to help
understand the context in which the exception arose. The file will be created
only if an exception is thrown over at least one incomplete table. The default
for this flag is off.

• max_tab_usage If set to on, maintains the maximal table usage (in bytes) for
display in statistics/[0,1]. This information can be useful if a program per-
forms various types of table abolishes. Setting this flag to on may slightly slow
down computation. Defailt is off.

The following flags affect only the multi-threaded engine.

• thread_glsize In the multi-threaded engine, the initial size, in kbytes, of the
global and local stack area of a newly created thread if no such option is explicitly
passed. By default this is 768 (or 1536 for 64-bit configurations), or whatever
was passed in if the command-line option -m was used, but that value may be
modified at any time by resetting the flag. This flag affects a thread created by
any thread in the process.

• thread_tcpsize In the multi-threaded engine, the initial size, in kbytes, of the
trail and choice point area of a newly created thread if no such option is explicitly
passed. By default this is 768 (or 1536 for 64-bit configurations), or whatever
was passed in if the command-line option -c was used, but that value may be
modified at any time by resetting the flag. This flag affects a thread created by
any thread in the process.

• thread_complsize In the multi-threaded engine, the initial size, in kbytes, of the
completion stack area of a newly created thread if no such option is explicitly
passed. By default this is 64 (or 128 for 64-bit configurations), or whatever
was passed in if the command-line option -0 was used, but that value may be
modified at any time by resetting the flag. This flag affects a thread created by
any thread in the process.

• thread_pdlsize In the multi-threaded engine, the initial size, in kbytes, of the
unification stack area of a newly created thread if no such option is explicitly
passed. By default this is 64 (or 128 for 64-bit configurations), or whatever

CHAPTER 6. STANDARD AND GENERAL PREDICATES 214

was passed in if the command-line option -m was used, but that value may be
modified at any time by resetting the flag. This flag affects a thread created by
any thread in the process.

• thread_detached In the multi-threaded engine, this specifies whether threads
are to be created as detached or joinable if no explicit option is passed. A value of
true indicates that threads are to be created as detached, and false as joinable.
If this flag is not set, its default is false.

• max_threads In the multi-threaded engine, the maximum number of valid threads.
By default this is 1024 and this value may not be reset at runtime, but it may
be set by the command-line option –max_threads. This option is settable only
by a command-line argument, and has no effect in the single-threaded engine.

• max_queue_size In the multi-threaded engine, the default maximum number of
terms a message queue contains before writes to the message queue block. By
default this is 1000. If set to 0, queues by default will be unbounded. This option
has no effect in the single-threaded engine.

• shared_predicates In the multi-threaded engine, indicates whether predicates
are considered thread-shared by default – that is, whether tables or dynamic
predicates are shared among threads. By default this is false, and predicates are
considered thread-private by default. This option is settable only by a command-
line argument, and has no effect in the single-threaded engine.

Note that the non-standard flags are used only for dynamic XSB settings, i.e., settings
that might change between sessions (via command line arguments) or within the same
session (via modifiable flags). For static configuration information, the predicate
xsb_configuration/2 is used. xsb_configuration/2.

Error Cases

• Flag_Name is neither a variable nor an atom.

– domain_error(atom_or_variable,Flag_Name)

set_prolog_flag(?Flag_Name, ?Value) ISO
set_prolog_flag/2 allows the user to change settable prolog flags. Currently the
only settable ISO flag is the unknown flag. Setting the flag unknown to fail results
in calls to undefined predicates to quietly fail. Setting it to warning causes calls to
undefined predicates to generate a warning (to STDWARN) and then fail. Setting it to
error (the default) causes calls to undefined predicates to throw an existence error.

Dynamic XSB settings can also be changed, as described in current_prolog_flag/2.

Error Cases

• Flag_Name or Value is a variable.

– instantiation_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 215

• Flag_Name is not the name of a recognized Prolog flag.

– domain_error(prolog_flag,Flag_Name)

current_predicate(?Predicate_Indicator) ISO
current_predicate/1 can be used to backtrack through indicators for loaded user
or system predicates. If Predicate_Indicator unifies with Module:F/A all loaded
predicates unifying with this indicator is returned. If Predicate_indicator is F/A,
current_predicate/1 behaves as if it were called with the form usermod:F/A. Unlike
current_functor/1 current_predicate/1 does not return indicators for predicates
that have been imported but not actually loaded into code space. For more detailed
analysis of predicate properties, the predicate predicate_property/2 can be used.

As an example to backtrack through all of the predicates defined and loaded in module
blah, regardless of whether blah is a system or a user defined module, use:

| ?- current_predicate(blah:Predicate).

In this case Predicate will have the form: Functor/Arity.

To backtrack through all predicates defined and loaded in any current module, use:

| ?- current_predicate(Module:Functor/Arity).

This succeeds once for every predicate that is loaded in XSB’s database.

To find the predicates having arity 3 that are loaded in usermod, use:

| ?- current_predicate(usermod:Functor/3).

while to find all predicates loaded in the global modules of the system regardless of
their arity, use:

| ?- current_predicate(usermod:Predicate).

Error Cases

• Predicate_indicator is neither a variable nor a predicate indicator

– type_error(predicate_indicator,Predicate_indicator))

ISO Compatability Note: In XSB, current_predicate will backtrack through
system predicates as well as user predicates.

current_module(?Module)

The standard predicate current_module/1 allows the user to check whether a given
module is current or to generate (through backtracking) all currently known modules.
Succeeds iff Module is one of the modules in the database. This includes both user
modules and system modules. For more detailed analysis of module properties, the
predicate module_property/2 can be used.

Note that predicate current_module/1 succeeds for a given module even if that
module does not export any predicates. There are no error conditions associated

CHAPTER 6. STANDARD AND GENERAL PREDICATES 216

with this predicate; if its argument does not unify with one of the current modules,
current_module/1 simply fails.

current_module(?Module, ?ObjectFile)

Predicate current_module/2 gives the relationship between the modules and their
associated object file names. The file name ObjectFile must be absolute and end
with the object file extension for the system (by default, .xwam). It is possible for a
current module to have no associated file name (as is the case for "usermod"), or for
the system to be unable to determine the file name of a current module. In both cases,
predicate current_module/1 will succeed for this module, while current_module/2

will fail. The system is unable to determine the file name of a given module if that
module is not in one of the directories of the search path (see Section 3.6). Once
again, there are no error conditions associated with this predicate; if the arguments of
current_module/2 are not correct, or Module has no associated File, the predicate
will simply fail.

current_functor(?Predicate_Indicator)

current_predicate/1 can be used to backtrack through indicators for all non-atomic
terms occurring in loaded modules. If Predicate_Indicator unifies with Module:F/A

all term indicators unifying with F/A in a module unifying with Module are returned. If
Predicate_indicator is F/A, current_predicate/1 behaves as if it were called with
the form usermod:F/A. Unlike current_predicate/1 current_functor/1 returns
not only structures occurring in predicates but predicates that are imported into
loaded modules but are not yet themselves loaded.

As an example, to backtrack through all of the functors of positive arity (function
and predicate symbols) that appear in the global modules of the system regardless of
whether they are system or a user defined, use:

| ?- current_functor(Functor/Arity), Arity > 0.

There are no error conditions associated with this predicate; if its argument is not a
predicate indicator the predicate simply fails.

current_index(Functor/Arity,IndexSpec)

XSB has a variety of ways to index dynamic predicate including alternate argument
indexing, multiple argument indexing, star-indexing, and tries, as discussed in Sec-
tion 6.14. In addition XSB allows a choice of which argument to index for compiled
predicates as well. current_index/2 returns the index specification for each func-
tor/arity pair unifying with Functor/Arity and visible from the calling context of
current_index/2.

current_atom(?Atom_Indicator)

Generates (through backtracking) all currently known atoms, and unifies each in turn
with Atom_Indicator.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 217

predicate_property(?Term_Indicator, ?Property)

The standard predicate predicate_property/2 can be used to find the properties of
any predicate that is visible to a particular module. Succeeds iff Term_Indicator is
a term indicator for a current predicate whose principal functor is a predicate having
Property as one of its properties. Or procedurally, Property is unified with the
currently known properties of the predicate having Term_Indicator as its skeletal
specification.

A brief description of predicate_property/2 is as follows:

• If Term_Indicator is not a variable, and is a structure or atom, then Property is
successively unified with the various properties associated with Term_Indicator.
If Term_Indicator is not a known to the system, the call succeeds with Property

successively unified to exported and unclassified. These properties can be
considered as a default for any structure or atom.

• If Property is bound to a valid predicate property, then predicate_property/2

successively unifies Term_Indicator with the skeletal specifications of all predi-
cates known to the system having the specified Property.

• If Term_Indicator is a variable, then it is unified (successively through back-
tracking) with the most general term for a predicate whose known properties are
unified with Property.

• If Term_Indicator is not a term indicator, or if Property is not a valid predicate
property, the call fails.

For example, all the loaded predicate skeletal specifications in module "usermod" may
be enumerated using:

| ?- predicate_property(Pred, loaded).

Also the following query finds all predicate skeletal specifications that are exported
by module blah:

| ?- predicate_property(blah:Pred, exported).

Currently, the following properties are associated with predicates either implicitly or
by declaration. Double lines show property categories, and a predicate can have at
most one property of each category.

• Execition Type which is one of

– unclassified The predicate symbol is not yet classified according to this cat-
egory. This property has various meanings. Usually for exported predicate
symbols in system or user defined modules it means that the predicate is yet
unloaded (because it has not been used). In usermod it usually means that
the predicate is either a function symbol, or an unloaded predicate symbol
(including constants).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 218

– dynamic The predicate is dynamic.
– loaded The predicate (including internal predicates) is a Prolog predicate

loaded into the module in question; this is always the case for predicates in
usermod.

– unloaded The predicate is yet unloaded into the module in question.
– foreign The predicate is a foreign predicate. This implies that the predicate

is already loaded in the system, because currently there is no way for XSB to
know that a predicate is a foreign predicate until it is loaded in the system.

• Visibility Type which can be one of

– exported The predicate symbol is exported by the module in question; in
other words the predicate symbol is visible to any other module in the system.

– local The predicate symbol is local to the module in question.
– imported_from(Mod) The predicate symbol is imported into the module in

question from module Mod.

• Tabling Call Behavior which can be one of

– tabled(variant) The predicate has been declared tabled and to use call
variance.

– tabled(subsumptive) The predicate has been declared tabled and to use
call subsumption

– tabled(default) The predicate has been declared tabled and to use the
default tabling strategy of the session, which can be either call variance or
call subsumption.

• Incremental Tabling Behavior which can be one of

– incremental The predicate was declared as either incremental dynamic or
as incremental tabled; or

– opaque The predicate was declared as opaque to incremental updates.

• spied The predicate symbol has been declared spied (either conditionally or
unconditionally).

• shared The predicate has been declared shared in the multi-threaded engine.
This means that any dynamic code or tables for this predicate will be shared
among threads, but it does not affect static, non-tabled code.

• built_in The predicate symbol has the same Functor and Arity as one of XSB’s
standard predicates, and is available tothe user without needing to load a file or
import th epredicate from a module.

• meta_predicate(Template) The predicate is a meta-predicate. This property
provides compatibility with other Prolog compilers and with forthcoming ISO
Prolog standards.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 219

Finally, since dynamic is usually declared as an operator with precedence greater than
999, writing the following:

| ?- predicate_property(X, dynamic).

will cause a syntax error. The way to achieve the desired result is to parenthesize the
operator like in:

| ?- predicate_property(X, (dynamic)).

module_property(?Module, ?Property)

The standard predicate module_property/2 can be used to find the properties of any
current module. Succeeds iff Module is the name of a current module having Property

as one of its properties. Or procedurally, Property is unified with the currently known
properties of the module having Module as its name.

Currently, the following properties are associated with modules implicitly

Property Explanation

unloaded The module (including system modules) though it is
current, is yet unloaded in the system.

loaded The module (including system modules) is loaded in the
system; this is always the case for usermod.

listing

Lists in the current output stream the clauses for all dynamic predicates found in
module usermod. Note that listing/0 does not list any compiled predicates unless
they have the dynamic property (see predicate_property/2). A predicate gets the
dynamic property when it is explicitly declared as dynamic, or automatically acquires
it when some clauses for that predicate are asserted in the database. In cases where a
predicate was compiled but converted to dynamic by asserting additional clauses for
that predicate, listing/0 will just display an indication that there exist compiled
clauses for that predicate and only the dynamically created clauses of the predicate
will be listed. For example:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 220

| ?- [user].

[Compiling user]

a(X) :- b(X).

a(1).

[user compiled, cpu time used: 0.3 seconds]

[user loaded]

yes

| ?- assert(a(3)).

yes

| ?- listing.

a(A) :-

$compiled.

a(3).

yes

Predicate listing/0 always succeeds. The query:

| ?- listing.

is just a notational shorthand for the query:

| ?- listing(X).

listing(+Predicate_Indicator)

If Predicate_Indicator is a variable then listing/1 is equivalent to listing/0. If
Predicate_Indicator is an atom, then listing/1 lists the dynamic clauses for all
predicates of that name found in module usermod of the database. The argument
Predicate_Indicator can also be a predicate indicator of the form Name/Arity in
which case only the clauses for the specified predicate are listed. Finally, it is possible
for Predicate_Indicator to be a list of predicate indicators and/or atoms; e.g.

| ?- listing([foo/2, bar, blah/4]).

If Predicate_Indicator is not a variable, an atom or a predicate indicator (or list of
predicate indicators) of the form Name/Arity, predicate listing/1 will simply fail.

In future releases of XSB, we intend to allow the user to specify a predicate indicator
of the form Module:Name/Arity as argument of listing/1.

xsb_configuration(Feature_Name, ?Value)

Succeeds iff the current value of the XSB feature Feature_Name is Value.

This predicate provides information on a wide variety of features related to how XSB
was built, including the compiler used, the compiler and loader flags, the machine

CHAPTER 6. STANDARD AND GENERAL PREDICATES 221

and OS on which XSB was built, the release number, the various directories that XSB
uses to find its libraries, etc.

To find all features and their values, ask the following query:

| ?- xsb_configuration(FeatureName, Value), fail.

Here is how xsb_configuration might look like:

xsb_configuration(architecture, ’i386-apple-darwin8.9.1’).

%% configuration is usualy the same as architecture, but it can also

%% contain special tags, {\it e.g.}, i386-apple-darwin8.9.1-dbg, for a verion

%% built with debugging enabled.

xsb_configuration(configuration, ’i386-apple-darwin8.9.1-dbg’).

xsb_configuration(host_os, ’darwin8.9.1’).

xsb_configuration(os_version, ’8.9.1’).

xsb_configuration(os_type, ’darwin’).

xsb_configuration(host_vendor, ’apple’).

xsb_configuration(host_cpu, ’i386’).

xsb_configuration(compiler, ’gcc’).

xsb_configuration(compiler_flags, ’-faltivec -fPOC -Wall -pipe -g’).

xsb_configuration(loader_flags, ’-g -lm ’).

xsb_configuration(compile_mode, ’debug’).

%% The type of XSB engine configured.

xsb_configuration(scheduling_strategy, ’(local)’).

xsb_configuration(engine_mode, ’slg-wam’).

xsb_configuration(word_size, ’32’).

%% The following is XSB release information

xsb_configuration(major_version, ’3’).

xsb_configuration(minor_version, ’3’).

xsb_configuration(patch_version, ’1’).

xsb_configuration(beta_version, ’’).

xsb_configuration(version, ’3.3.1’).

xsb_configuration(codename, ’Pignoletto’).

xsb_configuration(release_date, date(2011, 04, 12)).

%% Support for other languages

xsb_configuration(perl_support, ’yes’).v

xsb_configuration(perl_archlib, ’/usr/lib/perl5/i386-linux/5.00404’).

xsb_configuration(perl_cc_compiler, ’cc’).

xsb_configuration(perl_ccflags, ’-Dbool=char -DHAS_BOOL -I/usr/local/include’).

xsb_configuration(perl_libs, ’-lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt’).

xsb_configuration(javac, ’/usr/bin/javac’).

/* Tells where XSB is currently residing; can be moved */

xsb_configuration(install_dir, InstallDir) :- ...

/* User home directory. Usually HOME. If that is null, then it would

be the directory where XSB is currently residing.

This is where we expect to find the .xsb directory */

xsb_configuration(user_home, Home) :- ...

/* Where XSB invocation script is residing */

CHAPTER 6. STANDARD AND GENERAL PREDICATES 222

xsb_configuration(scriptdir, ScriptDir) :- ...

/* where are cmplib, syslib, lib, packages, etc live */

xsb_configuration(cmplibdir, CmplibDir) :- ...

xsb_configuration(libdir, LibDir) :- ...

xsb_configuration(syslibdir, SyslibDir) :- ...

xsb_configuration(packagesdir, PackDir) :- ...

xsb_configuration(etcdir, EtcDir) :- ...

/* architecture and configuration specific directories */

xsb_configuration(config_dir, ConfigDir) :- ...

xsb_configuration(config_libdir, ConfigLibdir) :- ...

/* site-specific directories */

xsb_configuration(site_dir, ’/usr/local/XSB/site’).

xsb_configuration(site_libdir, SiteLibdir) :- ...

/* site and configuration-specific directories */

xsb_configuration(site_config_dir, SiteConfigDir) :- ...

xsb_configuration(site_config_libdir, SiteConfigLibdir) :- ...

/* Where user’s arch-specific libraries are found by default. */

xsb_configuration(user_config_libdir, UserConfigLibdir) :- ...

hilog_symbol(?Symbol)

Succeeds iff Symbol has been declared as a HiLog symbol, or procedurally unifies
Symbol with one of the currently known (because of a prior declaration) HiLog sym-
bols. The HiLog symbols are always atoms, but if the argument of hilog_symbol,
though instantiated, is not an atom the predicate simply fails. So, one can enumerate
all the HiLog symbols by using the following query:

| ?- hilog_symbol(X).

current_op(?Precedence, ?Specifier, ?Name) ISO
This predicate is used to examine the set of operators currently in force. It succeeds
when the atom Name is currently an operator of type Specifier and precedence
Precedence. None of the arguments of current_op/3 need to be instantiated at the
time of the call, but if they are, they must be of the following types:

Precedence must be an integer in the range from 1 to 1200.

Specifier must be one of the atoms:

xfx xfy yfx fx fy hx hy xf yf

Name it must be an atom.

Error Cases

• Precedence is neither a variable nor an integer in the range from 1 to 1200.

– domain_error(operator_priority,Precedence)

• Specifier is neither a variable nor an operator specifier of the types above.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 223

– domain_error(operator_specifier,Specifier)

• Name is neither a variable nor an atom.

– domain_error(atom_or_variable,Name)

hilog_op(?Precedence, ?Type, ?Name)

This predicate has exactly the same behaviour as current_op/3 with the only differ-
ence that Type can only have the values hx and hy.

6.13 Execution State

break

Causes the current execution to be suspended at the beginning of the next call. The
interpreter then enters break level 1 and is ready to accept input as if it were at top
level. If another call to break/0 is encountered, it moves up to break level 2, and so
on. While execution is done at break level n > 0 the prompt changes to n: ?-.

To close a break level and resume the suspended execution, the user can type the
the atom end_of_file or the end-of-file character applicable on the system (usually
CTRL-d on UNIX systems). Predicate break/0 then succeeds (note in the following
example that the calls to break/0 do not succeed), and the execution of the inter-
rupted program is resumed. Alternatively, the suspended execution can be abandoned
by calling the standard predicate abort/0, which causes a return to the top level.

An example of break/0 ’s use is the following:

| ?- break.

[Break (level 1)]

1: ?- break.

[Break (level 2)]

2: ?- end_of_file.

[End break (level 2)]

yes

1: ?-

Entering a break closes all incomplete tables (those which may not have a complete
set of answers). Closed tables are unaffected, even if the tables were created during
the computation for which the break was entered.

halt ISO
halt/0 Exits the XSB session regardless of the break level. On exiting the system cpu
and elapsed time information is displayed.

halt(Code) ISO
halt/1 Exits the XSB session regardless of the break level, sending the integer Code

CHAPTER 6. STANDARD AND GENERAL PREDICATES 224

to the parent process. Normally 0 is considered to indicate normal termination, while
other exit codes are used to report various degrees of abnormality.

Error Cases

• Code is not an integer

– type_error(Integer,Code)

prompt(+NewPrompt, ?OldPrompt)

Sets the prompt of the top level interpreter to NewPrompt and returns the old prompt
in OldPrompt.

An example of prompt/2 ’s use is the following:

| ?- prompt(’Yes master > ’, P).

P = | ?- ;

no

Yes master > fail.

no

Yes master >

trimcore module: machine

A call to trimcore/0 reallocates an XSB thread’s execution stacks (and some tabling
stacks) to their initial allocation size, the action affecting only the memory areas for
the calling thread. When XSB is called in standalone or server mode, trimcore/0 is
automatically called when the top interpreter level is reached. When XSB is embedded
in a process, trimcore/0 is called at the top interpreter level for any thread created
through xsb_ccall_thread_create() (see Volume 2, Chapter 3 Embedding XSB in a
Process).

gc_heap

Explicitly invokes the garbage collector for a thread’s heap. By default, heap garbage
collection is called automatically for each thread upon stack expansion, unless the Pro-
log flag heap_garbage_collection is set to none. Automatic heap garbage collection
should rarely need to be turned off, and should rarely need to be invoked manually.

statistics

Displays usage information on the current output stream, including:

• Process-level information about allocated memory excluding execution stacks but
including:

– atoms Space used to maintain global information about predicates and struc-
tures.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 225

– string Space used to maintain information about atomic constants in XSB.
– asserted Space allocated for dynamic code.
– asserted Space allocated for static code.
– foreign Space allocated for foreign predicates.
– table Space allocated for XSB’s tables.
– findall Space allocated for buffers to support findall/3 and similar pred-

icates.
– mt-private Private space used by threads.
– profiling Space used to maintain profiling information, if XSB is called

with profiling on.
– gc temp Temporary space for used for heap garbage collector.
– interprolog space allocated for the Interprolog XSB/Java interface.
– thread space allocated for the thread table
– the space occupied by subgoal and answer tables (in the form of tries) [58, 18,

37]. In the multi-threaded configuration process level table space includes
shared tables but not private tables.

• Thread-specific information about allocation of memory for the calling thread
including the

– Global stack (heap) and local (environment) stack (see e.g. [1]) for the call-
ing thread. Memory for these two WAM stacks is allocated as a single unit so
that each stack grows together; information is provided on the current allo-
cation for the stacks as well as on the stack sizes themselves. (See Section 3.7
for the memory re-allocation algorithm).

– Trail and choice point stack (see e.g. [1]) for the calling thread. Memory
for these two WAM stacks is allocated as a single unit so that each stack
grows together; information is provided on the current allocation for the
stacks as well as on the stack sizes themselves. The (re-)allocation follows
the algorithm sketched in Section 3.7). (See Section 3.7 for the memory
re-allocation algorithm).

– SLG unification stack for the calling thread This stack is used as a space
to copy terms from the execution stacks into table space, or back out. This
stack will not be reallocated unless extremely large terms are tabled.

– SLG completion stack for the calling thread. The completion stack is used
to perform incremental completion for sets of mutually dependent tabled
subgoals. One completion stack frame is allocated per tabled subgoal [62]
but the size of these frames is version-dependent.

– the space occupied by private subgoal and answer tables for the calling
thread.

In XSB’s single-threaded configuration, maximum space used by each of will be
output if the ’-s’ command-line option is used

CHAPTER 6. STANDARD AND GENERAL PREDICATES 226

• Information about the number of tabling operations performed in the session
by any thread. Note that the statistics are divided up between calls to predi-
cates that use variant tabling and those that use (call) subsumptive tabling (see
Section 5.2.1 and [37]).

– Call Subsumption Subgoal Operations. For predicates that use subsump-
tive tabling, the total number of subsumptive subgoal calls is given, as is
the number of new calls (producers) and the number of repeated calls to
non-completed tables (variants). Furthermore, the number of properly
subsumed calls to incomplete tables is given, along with the number of sub-
sumed calls to completed tables. Finally, the total number of subsumptive
table entries overall is given, including all producer and consumer calls.

– Call Subsumption Answer Operations. In call subsumptive tabling, answer
lists are copied from producer subgoals to subsumed consumer subgoals (this
operation is not required in variant tabling). The number of answer ident

operations represents the number of times this copy is done. In addition,
the number of consumptions performed by all consuming subsumptive table
entries is also given.

– Call Variance Subgoal Operations. For call variance the number of subgoal
check/insert operations is given along with the unique number of subgoals
encountered (generator) and the number of redundant consumer encoun-
tered (consumer).

– Total Answer Operations. For both variant and subsumptive tables, the
number of answer check insert operations is given along with the number
of answers actually inserted into the table and the number of redundant
answers derived.

• Garbage Collection Information. Time spent garbage collecting by the calling
thread and number of heap cells collected.

• Information about process CPU and clock time, as well as the number of active
threads.

As mentioned above, if XSB is configured with the single-threaded engine and is
invoked with the ’-s’ option (see Section 3.7), additional information is printed out
about maximum use of each execution stack and table space. However, the ’-s’

option can substantially slow down the emulator so benchmarks of time should be
performed separately from benchmarks of space.

Example: The following printout shows how the statistics/0 output looks if it
is invoked with the ’-s’ option (without it the Maximum stack used, and Maximum

table space used lines are not shown). Information about the allocation size is
provided since the sizes can be changed through emulator options (see Section 3.7).

| ?- statistics.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 227

Memory (total) 2429504 bytes: 726696 in use, 1702808 free

permanent space 645520 bytes: 645520 in use, 0 free

atom 120328

string 156872

asserted 3184

compiled 358216

other 6920

glob/loc space 786432 bytes: 652 in use, 785780 free

global 456 bytes

local 196 bytes

trail/cp space 786432 bytes: 476 in use, 785956 free

trail 88 bytes

choice point 388 bytes

SLG unific. space 65536 bytes: 0 in use, 65536 free

SLG completion 65536 bytes: 0 in use, 65536 free

SLG table space 80048 bytes: 80048 in use, 0 free

Maximum stack used: global 436724, local 14780, trail 27304, cp 20292,

SLG completion 0 (0 subgoals)

Maximum table space used: 0 bytes

Tabling Operations

0 subsumptive call check/insert ops: 0 producers, 0 variants,

0 properly subsumed (0 table entries), 0 used completed table.

0 relevant answer ident ops. 0 consumptions via answer list.

0 variant call check/insert ops: 0 producers, 0 variants.

0 answer check/insert ops: 0 unique inserts, 0 redundant.

0 heap (0 string) garbage collections by copying: collected 0 cells in 0.000000 secs

Time: 0.190 sec. cputime, 13.921 sec. elapsetime

statistics(+Key)

statistics/1 allows the user to output detailed statistical information about the
atom and symbol tables, as well as about table space. The following calls to statistics/1

are supported:

• statistics(reset) Resets the CPU time as well as counts for various tabling
operations.

• statistics(atom) Outputs statistics about both the atom and symbol tables.
An example is:

| ?- statistics(atom).

Symbol table statistics:

Table Size: 8191

Total Symbols: 1188

used buckets: 1088 (range: [0, 8174])

unused buckets: 7103

CHAPTER 6. STANDARD AND GENERAL PREDICATES 228

maximum bucket size: 3 (#: 18)

String table statistics:

Table Size: 16381

Total Strings: 1702

used buckets: 1598 (range: [0, 16373])

unused buckets: 14783

maximum bucket size: 3 (#: 2318)

• statistics(table) Outputs very detailed statistics about table space, including
breakdowns into variant and subsumptive call- and answer- trie nodes and hash
tables; answer return list nodes, and structures for conditional answers (cf. [62,
58, 37, 17]). In the multi-threaded engine, these data structures are reported
both for shared tables and for private tables of the calling thread.
While this option is intended primarily for developers, it can also provide valuable
information for the serious user of tabling.

Error Cases

• Key not a valid atom for input to statistics/1

– domain_error(statisticsInputDomain,Key))

statistics(?Key,-Result)

statistics/2 allows a user to determine information about resources used by XSB.
Currently statistics/2 unifies Key with

• runtime, which instantiates Result to the structure [TotalCPU,IncrCPU] where
TotalCPU is the total (process-level) CPU time at the time of call, and IncrCPU

is the CPU time taken since the last call to statistics/2. Times are measured
in seconds. The process-level CPU time includes time taken for system calls, as
well as time taken for garbage collection and stack-shifting. Note that in the
multi-threaded engine, statistics/2 measures the time for all threads.

• walltime, which instantiates Result to the list [TotalTime,IncrTime] where
TotalTime is the total elapsed time at the time of call, and IncrTime is the
elapsed time taken since the last call to statistics/2. Times are measured in
seconds.

• tablespace which instantiates Result to the list [Alloc,Used]. In the single-
threaded engine, Alloc is the total table space allocated and Used is the total
table space used, both in bytes. In the multi-threaded engine, both refer to table
space private to the calling thread.

• shared_tablespace which instantiates Result to the list [Alloc,Used]. In the
multi-threaded engine, Alloc is the total space allocated for shared tables and
Used is the total table space used, both in bytes. An error is thrown if this option
is called by the single-threaded engine.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 229

• gl which instantiates Result to the list [Alloc,Used], where Alloc is the total
number of bytes allocated for XSB’s combined heap and local (environment)
stack, while Used is the approximate number of bytes used by both of these
stacks. In the multi-threaded engine, these numbers refer only to the stacks of
the calling thread.

• tc which instantiates Result to the list [Alloc,Used], where Alloc is the total
number of bytes allocated for XSB’s combined trail and choice point stack while
Used is the number of bytes used by both of these stacks. In the multi-threaded
engine, these numbers refer only to the stacks of the calling thread.

• heap which instantiates Result to the total number of bytes used by XSB’s heap.
In the multi-threaded engine, the number refers only to the heap of the calling
thread.

• local which instantiates Result to the total number of bytes used by XSB’s
local (environment) stack. In the multi-threaded engine, the number refers only
to the local stack of the calling thread.

• trail which instantiates Result to the total number of bytes used by XSB’s trail
stack. In the multi-threaded engine, the number refers only to the trail stack of
the calling thread.

• choice_point which instantiates Result to the total number of bytes used by
XSB’s choice point stack. In the multi-threaded engine, the number refers only
to the choice point stack of the calling thread.

• open_tables which instantiates Result to the number of uncompleted tables in
XSB’s completion stack. In the multi-threaded engine, this number refers to the
completion stack of the calling thread, which may contain both thread-private
and thread-shared tables.

• atoms which instantiates Result to the number of bytes taken by atoms in the
atom table.

Example An example of using statistics/2 to check CPU time is as follows:

?- statistics(runtime,[BeforeCumu,BeforeIncr]),spin(100000000),

statistics(runtime,[AfterCumu,AfterIncr]).

BeforeCumu = 5.0167

BeforeIncr = 5.0167

AfterCumu = 9.6498

AfterIncr = 4.6331

Note that statistics/2 can provide either cumulative or incremental times; here

AfterCumu − BeforeCumu = AfterIncr

Checking wall time is done similarly.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 230

?- statistics(walltime,Before),sleep(1),statistics(walltime,After).

Before = [35.0651,35.0651]

After = [36.0652,1.0001]

Error Cases

• Key not a valid atom for input to statistics/1

– domain_error(statisticsInputDomain,Key))

time(+Goal)

Prints both the CPU time and wall time taken by the execution of Goal. Any choice-
points of Goal are discarded. The definition of predicate is based on the SWI-Prolog
definition (minus reporting the number of inferences, which XSB does not currently
support). This predicate is also found on other Prolog compilers such as YAP.

6.14 Asserting, Retracting, and Other Database Modifica-

tions

XSB provides an array of features for modifying the dynamic database. As a default, using
assert/1, clauses can be asserted using first-argument indexing in a manner that is now
standard to Prolog implementations. However, a variety of other behaviors can be specified
using the (executable) directives index/3 and index/2. For instance, dynamic clauses can
be declared to have multiple or joint indexes, and this indexing can be either hash-based
as is typical in Prolog systems or based on tries. No matter what kind of indexing is used,
space is dynamically allocated when a new clause is asserted and, unless specified otherwise,
released after it is retracted. Furthermore, the size of any index table expands dynamically
as clauses are asserted.

All dynamic predicates are compiled into SLG-WAM code, however the manner of their
compilation may differ, and the differences in compilation affect the semantics for the pred-
icate. If a dynamic predicate P/n is given an indexing directive of trie, clauses for P/n
will be compiled using trie instructions; otherwise clauses for P/n will be compiled into
SLG-WAM instructions along the lines of static predicates.

Consider first dynamic predicates that use any indexing other than trie – including
multiple or joint indices and star indexing. XSB asserts WAM code for such clauses so that
that the execution time of dynamic code is similar to compiled code for unit and binary
clauses. Furthermore, tabling can be used by explicitly declaring a predicate to be both
dynamic and tabled. In Version 3.3, when the clause of a dynamic predicate is asserted as
WAM code, the “immediate semantics” rather than the ISO Semantics of assert/retract [46].
The immediate semantics allows assert and retract to be fast and spatially efficient, but

CHAPTER 6. STANDARD AND GENERAL PREDICATES 231

requires that significant care must be taken when modifying the definition of a predicate
which is currently being executed.

If a dynamic predicate is given an indexing directive of trie, clauses of the predicate
are compiled (upon a call assert/1) using trie instructions as described in [58]. Creation
of trie-based dynamic code is significantly faster than creation of other dynamic code, and
execution time may also be faster. However, trie-based predicates can only be used for unit
clauses where a relation is viewed as a set, and where the order of the facts is not important.

XSB does not at this time fully support dynamic predicates defined within compiled
code. The only way to generate dynamic code is by explicitly asserting it, or by using the
standard predicate load_dyn/1 to read clauses from a file and assert them (see the section
Asserting Dynamic Code in Volume 2). There is a dynamic/1 predicate (see page 237) that
declares a predicate within the system so that if the predicate is called when no clauses
are presently defining it, the call will quietly fail instead of issuing an “Undefined predicate”
error message.

asserta(+Clause) ISO
If the index specification for the predicate is not trie, this predicate adds a dynamic
clause, Clause, to the database before any other clauses for the same predicate cur-
rently in the database. If the index specification for the predicate is trie, the clause
is asserted arbitrarily within the trie, and a warning message sent to stderr.

Note that because of the precedence of :-/2, asserting a clause containing this oper-
ator requires an extra set of parentheses: assert((Head :- Body)).

Error Cases

• Clause is not instantiated

– instantiation_error

• Clause is not a callable clause.

– domain_error(callable,Clause)

• Clause has a head that is a static built-in

– permission_error(modify,builtin,Clause)

• Clause has a head that is a static user predicate

– permission_error(modify,static,Clause)

assertz(+Clause) ISO
If the index specification for the predicate is not trie, this predicate adds a dynamic
clause, Clause, to the database after any other clauses for the same predicate currently
in the database. If the index specification for the predicate is trie, the clause is
asserted arbitrarily within the trie, and a warning message sent to stderr. Error
cases are as with asserta/1.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 232

Note that because of the precedence of :-/2, asserting a clause containing this oper-
ator requires an extra set of parentheses: assert((Head :- Body)).

assert(+Clause) ISO
If the index specification for the predicate is not trie, this predicate adds a dynamic
clause, Clause, to the database after any other clauses for the same predicate currently
in the database (acting as assertz/1). If the index specification for the predicate
is trie, the clause is asserted arbitrarily within the trie. Error cases are as with
assertz/1.

Note that because of the precedence of :-/2, asserting a clause containing this oper-
ator requires an extra set of parentheses: assert((Head :- Body)).

assert(+Clause,+AorZandVar,+Index)

This is a lower-level interface to (non-trie-indexed) assert. It is normally not needed
except in one particular situation, when assert aborts because it needs too many
registers. In this case, this lower-level assert may allow the offending clause to be
correctly asserted.

The default implementation of non-trie-indexed assert generates code with a single
pass through the asserted term. Because of this, it cannot know when it has encoun-
tered the final occurrence of a variable, and thus it can never release (and thus re-use)
registers that are used to refer to variables. Since there is a limit of 255 registers
in the XSB virtual machine, asserting a clause with more than this many distinct
variables results in an error. There is an alternative implementation of assert that
initially traverses the clause to determine the number of occurrences of each variable
and thus allows better use of registers during code generation.

Clause is the clause to assert. AorZandVar is an integer whose lower 2 bits are used:
The low-order bit is 0 if the clause is to be added as the first clause, and 1 if it is to
be added as the last clause. If the second bit (2) is on, then the clause is traversed
to count variable occurrences and so improve register allocation for variables; if it is
0, the default one-pass code-generation is done. So, for example, if AorZandVar is 3,
then the clause will be asserted as the last one in the predicate and the better register
allocation will be used. Index indicates the argument(s) on which to index.

retract(+Clause) ISO
Removes through backtracking all clauses in the database that match with Clause.
Clause must be of one of the forms: Head or Head :- Body. Note, that because of
the precedence of :-/2, using the second form requires an extra set of parentheses:
retract((Head :- Body)).

The technical details on space reclamation are as follows. When retract is called, a
check is made to determine whether it is safe to reclaim space for that clause. Safety
is ensured when:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 233

• A check is made of the choice point stack indicating that no choice point will
backtrack into space that is being reclaimed; AND

– The predicate is thread-private; OR
– there is a single active thread

• AND if the predicate is tabled, there is no incomplete table for that predicate.

If it is safe to reclaim space for the clause, space is reclaimed immediately. Other-
wise the clause is marked so that its space may later be reclaimed through garbage
collection. (See gc_dynamic/1).

Error Cases

• Clause is not instantiated

– instantiation_error

• Clause is not a callable clause.

– domain_error(callable,Clause)

• Clause has a head that is a static built-in

– permission_error(modify,builtin,Clause)

• Clause has a head that is a static user predicate

– permission_error(modify,static,Clause)

retractall(+Head)

removes every clause in the database whose head matches with Head. The predicate
whose clauses have been retracted retains the dynamic property (contrast this be-
havior with that of predicates abolish/[1,2] below). Predicate retractall/1 is
determinate and always succeeds. The term Head is not further instantiated by this
call. Conditions for space reclamation and error cases are as with retract/1.

abolish(+PredSpec) ISO
Removes all information about the specified predicate. PredSpec is of the form
Pred/Arity. Everything about the abolished predicate is completely forgotten by the
system (including the dynamic or static property, whether the predicate is tabled,
and whether the predicate is thread-shared or thread-private) 12. Any completed
tables for the predicate are also removed.

It is an error to abolish a predicate when there is more than 1 active thread, regardless
of whether the predicate is thread-private or thread-shared. The reason for this is that,
even if PredInd denotes a thread-private predicate, one thread may be making use of
PredInd as another thread abolishes it. abolish/1 throws an error in such a case to
prevent such a semantic inconsistency. Similarly, if there is a non-completed table for
PredInd, an error is thrown to prevent incompleteness in the tabled computation.

12For compatibility with older Prologs, there is also an abolish/2 which takes Pred and Arity as its two
arguments.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 234

ISO Compatability Note: Version 3.3 of XSB allows static predicates to be abol-
ished and their space reclaimed. Such space is reclaimed immediately, and unlike the
case for abolished static code, no check is made to ensure that XSB’s choice point
stack is free of choice points for the abolished static predicate. Abolishing static code
is thus dangerous and should be avoided unless a user is certain it is safe to use.

Error Cases

• PredInd, Pred or Arity is not instantiated

– instantiation_error

• Arity is not in the range 0..255 (max_arity)

– domain_error(arity_indicator,Arity)

• PredInd indicates a static built-in

– permission_error(modify,builtin,Predind)

• abolish/1 is called when there is more than 1 active thread.

– misc_error

• PredInd has a non-completed table in the current thread.

– table_error

• There are active backtrack points to a (dynamic) clause for PredInd 13.

– misc_error

clause(+Head,?Body) ISO
Returns through backtracking all dynamic clauses in the database whose head matches
Head and Body matches Body. For facts the Body is true. clause/2 works properly
for all dynamically asserted clauses, even if they are trie-indexed; however clause/2

does not access trie-inserted terms. In the multi-threaded engine, when a thread
T calls clause/2 it accesses both thread-shared dynamic code and thread-private
dynamic code for T .

Error Cases

• Head is not instantiated

– instantiation_error

• Head (or Body) is not a callable clause.

– domain_error(callable,Head)

• Head is a static built-in

– permission_error(access,builtin,Head)

13XSB throws an error in this case because garbage collection for abolished predicates has not been
implemented (unlike for retract(all) and various table abolishes). Besides, you shouldn’t be abolishing a
predicate that you could backtrack into. What were you thinking?

CHAPTER 6. STANDARD AND GENERAL PREDICATES 235

• Head is a static user predicate

– permission_error(access,static,Clause)

gc_dynamic(-N)

Invokes the garbage collector for dynamic clauses that have been retracted, or
whose predicate has been abolished. When called with more than 1 active thread,
gc_dynamic/1 will always perform garbage collection for that thread’s private re-
tracted clauses; however in Version 3.3, it will only perform garbage collection for
retracted thread-shared clauses if there is a single active thread. N is the number or
shared and/or private frames left to be collected – if N is unified to 0, then all possible
garbage collecting has been performed. N is unified to -1 garbage collection was not
attempted (due to multiple active threads).

By default, gc_dynamic/1 is called automatically at the top level of the XSB inter-
preter, when abolishing a predicate, and when calling retractall for an “open” term
containing no variable bindings.

index(+PredSpec, +IndexSpec)

In index(PredSpec, IndexSpec), PredSpec is a predicate indicator or term indica-
tor, and IndexSpec is a form of index specification as described below.

In general, XSB supports hash-based indexing on various arguments of clauses, on
combinations of arguments, as well as within the arguments of a clause. The avail-
ability of various kinds of indexing depends on whether code is static (e.g. compiled)
or dynamic (e.g. asserted, loaded with load_dyn/1 and so on). Index directives can
be given to the compiler as part of source code or executed during program execution
(analogously to op/3). When executed during program execution, index/2 does not
re-index an already existing predicate; however for dynamic predicates index/2 does
affect the index for clauses asserted after the directive has been given.

• Hash-based Indexing

– Static Predicates In this case IndexSpec must be a non-negative integer
which indicates the argument on which an index is to be constructed. If
IndexSpec is 0, then no index is kept (possibly an efficient strategy for
predicates with only one or two clauses.)

– Dynamic Predicates For a dynamic predicate, (to which no clauses have yet
been asserted), a wide variety of indexing techniques are possible. We discuss
their syntax first, and then their semantics. For dynamic predicates then,
IndexSpec can be either an indexing element or a list of indexing elements.
Each indexing element defines a separate index and specifies an argument
or group of arguments that make up the search key of that index. Thus an
indexing element consists of one or more argument indicators joined together
by +/2. An argument indicator is may be an integer (ArgNo) indicating an

CHAPTER 6. STANDARD AND GENERAL PREDICATES 236

argument number (starting from 1) to use in the index, or it may have the
form *(ArgNo).
If ArgNo is an integer, only the main functor symbol of argument ArgNo will
participate in the index. When annotated with the asterisk, the first 5 fields
of argument ArgNo (in a depth-first traversal of the term) will be used in the
index. If there are fewer than 5, they all will be used. If any of the first 5 is
a variable, then the index cannot be used.
An index is usually on a single argument, in which case the indexing element
consists of a single argument indicator. If an indexing element contains more
than one argument specifier, then a joint index is specified i.e. an index
will be constructed so that the values of each argument indicator are to be
concatenated to create the search key of the index.
Examples help clarify this. index(p/3,[2,1]) indicates that clauses as-
serted for the predicate p/3 should be indexed on both the second and the
first argument. A query Q to p/3 will first use the second argument index
to p/3 if the second argument of Q is non-variable, and will use the main
functor of the second argument. Otherwise, if the second argument of Q is
a variable, but not the first argument, the first argument index of p/3 will
be used. If both arguments in Q are variables, no index will be used and Q
will backtrack through all clauses for p/3.
index(p/3,[*(2),1]) would result in similar behavior as the previous ex-
ample, but the first index to be tried (on the second argument) would be
built using more of the term value in that second argument position (not
just the main functor symbol.)
As another example, one could specify: index(p/5,[1+2,1,4]). After
clauses are asserted to it, a call to p/5 would first check to see if both the first
and second arguments are non-variable and if so, use an index based on both
those values. Otherwise, it would see if the first argument is non-variable
and if so, use an index based on it. Otherwise, it would see if the fourth
argument is non-variable and if so use an index based on it. As a last resort,
it would use no index but backtrack through all the clauses in the predicate.
In each of these cases, the indexes are built using only the main functor
symbol in the indicated argument position. (Notice that it may well make
sense to include an argument that appears in a joint specification later alone,
as 1 in this example, but it never makes sense forcing the single argument
to appear earlier. In that case the joint index would never be used.)
If we want to use similar indexing on p/5 of the previous example, except say
argument 1 takes on complex term values and we want to index on more of
those terms, we might specify the index as index(p/5,[*(1)+2,*(1),4]).

• Trie-based Indexing If Predspec is dynamic, the executable directive index(Predspec,trie)

causes clauses for Predspec to be asserted using tries (see [58], which is available

CHAPTER 6. STANDARD AND GENERAL PREDICATES 237

through the XSB web page). The name trie indexing is something of a misnomer
since the trie itself both indexes the term and represents it. In XSB, a trie index
is formed using a left-to-right traversal of the unit clauses. These indexes can be
very effective if discriminating information lies deep within a term, and if there
is sharing of left-prefixes of a term, trie indexing can reduce the space needed
to represent terms. Furthermore, asserting a unit clause as a trie is much faster
than asserting it using default WAM code. Despite these advantages, represent-
ing terms as tries leads to semantic differences from asserted code, of which the
user should be aware. First, the order of clauses within a trie is arbitrary: using
asserta/1 or assertz for a predicate currently using trie indexing will give the
same behavior as using assert. Also, the current version of XSB only allows
trie indexing for unit clauses.

If in doubt what indexing is being used for a predicate, a call to current_index/2

can be made.

Error Cases

• PredSpec or IndexSpec is a variable

– instantiation_error

• PredSpec is neither a variable, a predicate indicator, nor a callable term.

– type_error(predicate_indicator_or_callable,PredSpec)

• IndexSpec is not ground

– instantiation_error

• IndexSpec is neither a properly formed indexing element nor a list of indexing
elements

– domain_error(indexing_element,IndexSpec)

• IndexSpec is a list containing an element IndexElt that not a properly formed
indexing element

– domain_error(indexing_element,IndexElt)

• PredSpec represents a predicate that has been previously defined to be static

– permission_error(modify,static_predicate)

dynamic(+Operations) ISO
dynamic/1 can be used either as a compiler declaration or as an executable directive.

Used as a compiler declaration, it indicates that all clauses for each predicate denoted
by the command are dynamic – clauses for these predicates can be asserted or re-
tracted. Without this declaration compiled clauses will be treated as static. Executed
as a directive in a state of execution where no clauses exist for each denoted predicate
dynamic/1 ensures clauses for the affected predicates are to be treated as dynamic. If
PredSpec contains a predicate that is defined as static or as foreign code, a permission
error will be thrown. Operations can take one of two forms:

CHAPTER 6. STANDARD AND GENERAL PREDICATES 238

1. Operations is a predicate indicator, a callable term, or a comma-list of predicate
indicators or callable terms.

2. Operations has the form Predspec as Options where

• PredSpec is a predicate indicator, a callable term, or comma-list of predicate
indicators or callable terms.

• Options is either a dynamic_option or a list of dynamic_options. These
dynamic options control the attributes of a dyamic predicate. In Version
3.3, the following dynamic options are supported

– intern which causes every clause for this predicate, before being as-
serted, to force all its ground subterms to be interned into a global
table.

– tabled which causes the dynamic predicate to be tabled. The decla-
ration/directive dynamic p/n as tabled has the same effect as table

p/n as dynamic.
– variant which causes the table evaluation method of the predicate(s)

to use call variance.
– incremental which allows (incremental) tables that are based on the

dynamic predicate to be automatically updated when clauses are asserted
or retracted.

– opaque. This option is essencially the same as non-incremental dynamic
code, except that opaque predicates can be made incremental by a later
dynamic/1 directive, and incremental predicates can be made opaque

by a dynamic/1 directuve.
– private which causes the predicate(s) to be treated as thread private.
– shared which causes the predicate(s) to be treated as thread shared.

If the directive

dynamic p/n.

is executed, its behavior is as follows:

• If p/n is already dynamic, the directive has no effect, regardless of wither p/n is
tabled, incremental or opaque, private or shared.

• If p/n has not already been defined, the directive makes p/n non-tabled, non-
incremental, and to use the default thread sharing strategy (private unless XSB
is called with –shared_predicates).

If the directive

dynamic PredList as Options.

is executed, various checks are performed on Options. These checks are (mostly)
performed before any predicates are declared as dynamic or options changed, and
reduce the possibility of leaving some p/n in PredList with inconsistent attributes.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 239

• If a dynamic predicate in Predlist is declared as incremental it may be changed
to opaque at any time; similarly, a dynamic predicate that is opaque may be
changed to incremental

• Otherwise, an attempt to change an attribute of p/n in PredList – i.e. whether
p/n is tabled or not, incremental/opaque or not, and thread-private or thread-
shared – will throw a permission error.

In addition, regardless of the state of predicates in PredList, if options contains an
inconstent set of declarations, a domain error will be thrown. Options is inconsistent
in the following cases:

• Options contains tabled or variant and opaque or incremental. Tabled dy-
namic incremental code is not yet supported in XSB.

• Options contains both private and shared

• Options contains both incremental and opaque

• Options contains intern and (dynamic or subsumptive or incremental or
opaque)

Error Cases

Error cases are summarized as follows. Let Operations be of the form PredSpec or
PredSpec as Options. Then if

• PredSpec or is a variable or a comma list containing a variable

– instantiation_error

• An element of PredSpec is neither a variable nor a comma list

– type_error(callable,PredSpec)

• A predicate in PredSpec has been previously defined to be static or foreign

– permission_error(modify,static_predicate)

• Options is a variable or a list containing a variable

– instantiation_error

• Options contains an element Option that isn’t a dynamic option (as described
above)

– domain_error(dynamic_option,Option)

• Options contains inconsistnet elements (as described above)

– table_error

• An option in Options would modify a predicate in predspec in a manner that is
not allowed (as described above)

– permission_error

In addition, if a predicate p/n was declared to be dynamic and a file containing clauses
for p/n is later consulted, a permission error will be thrown.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 240

6.14.1 Reading Dynamic Code from Files

Several built-in predicates are available that can assert the contents of a file into XSB’s
database. These predicates are useful when code needs to be dynamic, or when the they
contain a large number of clauses or facts. Configured properly, files containing millions of
facts can be read and asserted into memory in under a minute, making XSB suitable for
certain kinds of in-memory database operations 14.

Each of the predicates in this section allow loading from files with proper prolog exten-
sions, and makes use of the XSB library paths. See Sections 3.6 and 3.3 for details.

load_dyn(+FileName)

Asserts the contents of file FileName into the database. All existing clauses of the
predicates in the file that already appear in the database, are retracted, unless there
is a multifile/1 declaration for them. An indexing declaration of a predicate p/n

in FileName will be observed as long as the declarations occur before the first clause
of p/n. file will be observed as Clauses in FileName must be in a format that read/1

will process. So, for example, operators are permitted. As usual, clauses of predicates
are not retracted if they are compiled instead of dynamically asserted. All predicates
are loaded into usermod. Module declarations such as :- export are ignored and a
warning is issued.

Dynamically loaded files can be filtered through the XSB preprocessor. To do this,
put the following in the source file:

:- compiler_options([xpp_on]).

Of course, the name compiler_options might seem like a misnomer here (since the
file is not being compiled), but it is convenient to use the same directive both for
compiling and loading, in case the same source file is used both ways.

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom.

– type_error(atom,Filename)

• FileName has been loaded previously in the session and there is more than one
active thread.

– misc_error

14In Version 3.3, loading code dynamically can also be useful when the clauses contain atoms whose length
is more than 255 that cannot be handled by the XSB compiler.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 241

load_dyn(+FileName,+Dir)

Asserts the contents of file FileName into the database. Dir indicates whether
assertz or asserta is to be used. If Dir is z, then assertz is used and the be-
havior of load_dyn(FileName) is obtained. If Dir is a, then asserta is used to add
the clauses to the database, and clauses will be in the reverse order of their appear-
ance in the input file. asserta is faster than assertz for predicates such that their
indexing and data result in many hash collisions. Dir is ignored for facts in FileName

that are trie-indexed.

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom:

– type_error(atom,FileName)

• Dir is not equal to a or z 15:

– domain_error(a_or_z,Dir)

• FileName has been loaded previously in the session and there is more than one
active thread.

– misc_error

load_dync(+FileName)

Acts as load_dyn/1, but assumes that facts are in “canonical” format and is much
faster as a result. In XSB, a term is in canonical format if it does not use any operators
other than list notation and comma-list notation. This is the format produced by the
predicate write_canonical/1. (See cvt_canonical/2 to convert a file from the usual
read/1 format to read_canonical format.) As usual, clauses of predicates are not
retracted if they are compiled instead of dynamically asserted. All predicates are
loaded into usermod. :- export declarations are ignored and a warning is issued.

Notice that this predicate can be used to load files of Datalog facts (since they will
be in canonical format). This predicate is significantly faster than load_dyn/1 and
should be used when speed is important. (See load_dync/2 below for further efficiency
considerations.) A file that is to be dynamically loaded often but not often modified
by hand should be loaded with this predicate.

As with load_dyn/1, the source file can be filtered through the C preprocessor. How-
ever, since all clauses in such a file must be in canonical form, the compiler_options/1

directive should look as follows:

:-(compiler_options(’.’(xpp_on,[]))).

15For backward compatibility, 0 and 1 are also allowed.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 242

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom.

– type_error(atom,FileName)

• FileName has been loaded previously in the session and there is more than one
active thread.

– misc_error

load_dync(+FileName,+Dir)

Acts as load_dyn/2, but assumes that facts are in “canonical” format. Dir is ignored
for trie-asserted code, but otherwise indicates whether assertz or asserta is to be
used. If Dir is z, then assertz is used and the exact behavior of load_dync(FileName)

is obtained. If Dir is a, then asserta is used to add the clauses to the database, and
clauses will end up in the reverse order of their appearance in the input file.

Setting Dir to a for non trie-asserted code can sometimes be much faster than the
default of z. The reason has to do with how indexes on dynamic code are represented.
Indexes use hash tables with bucket chains. No pointers are kept to the ends of bucket
chains, so when adding a new clause to the end of a bucket (as in assertz), the entire
chain must be run. Notice that in the limiting case of only one populated bucket
(e.g., when all clauses have the same index term), this makes assertz-ing a sequence
of clauses quadratic. However, when using asserta, the new clause is added to the
beginning of its hash bucket, and this can be done in constant time, resulting in linear
behavior for asserta-ing a sequence of clauses.

Error Cases

• FileName is a variable

– instantiation_error

• FileName is not an atom:

– type_error(atom,FileName)

• Dir is not instantiated to a or z 16:

– domain_error(a_or_z,Dir)

• FileName has been loaded previously in the session and there is more than one
active thread.

– misc_error

16For backward compatibility, 0 and 1 are also allowed.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 243

ensure_loaded(+FileName,+Action)

This predicate does nothing if FileName has been loaded or consulted into XSB, and
has not changed since it was loaded or consulted. Otherwise

• If Action is instantiated to dyn the behavior is as load_dyn/1 (or load_dyn(FileName,z)).

• If Action is instantiated to dyna the behavior is as load_dyn(FileName,a).

• If Action is instantiated to dync the behavior is as load_dync/1 (or load_dync(FileName,z)).

• If Action is instantiated to dynca the behavior is as load_dync(FileName,a).

• If Action is instantiated to consult, FileName is consulted (action is the same
as ensure_loaded/1).

Error Cases

• FileName is not instantiated:

– instantiation_error

• FileName is not an atom:

– type_error(atom,FileName)

• Action is not a valid load action as described above

– domain_error(loadAction,Action)

cvt_canonical(+FileName1,+FileName2) module: consult

Converts a file from standard term format to “canonical” format. The input file name
is FileName1; the converted file is put in FileName2. This predicate can be used to
convert a file in standard Prolog format to one loadable by load_dync/1.

6.14.2 The storage Module: Associative Arrays and Backtrackable Up-
dates

XSB provides a high-level interface that allows the creation of “objects” that efficiently
manage the storage of facts or of associations between keys and values. Of course, facts and
associative arrays can be easily managed in Prolog itself, but the storage module is highly
efficient and supports the semantics of backtrackable updates as defined by Transaction logic
[6] in addition to immediate updates. The semantics of backtrackable updates means that
an update made by the storage module may is provisional until the update is committed.
Otherwise, if a subgoal calling the update fails, the change is undone. The commit itself
may be made either by the predicate storage_commit/1, or less cleanly by cutting over the
update itself.

A storage object O is referred to by a name, which must be a Prolog atom. O can
be associated either with a set of facts or a set of key-value pairs. Within a given storage
object each key is associated with a unique value: however since keys and values can be

CHAPTER 6. STANDARD AND GENERAL PREDICATES 244

arbitrary Prolog terms, this constraint need not be a practical restriction. A storage object
O is created on demand, simply by calling (a backtrackable or non-backtrackable) update
predicate that refers to O. However to reclaim O’s space within a running thread, the predi-
cate storage_reclaim_space/1 must be called. Both backtackable and non-backtrackable
updates can be made to the same storage object, although doing so may not always be a
good programming practice.

If multiple threads are used, each storage object is private to a thread, and space for
a storage object is reclaimed upon a thread’s exit. Thread-shared storage objects may be
supported in future versions.

All the predicates described in this section must be imported from module storage.

Non-backtrackable Storage

storage_insert_keypair(+StorageName,+Key, +Value, ?Inserted)

Insert the given Key-Value pair into StorageName. If the pair is new, then Inserted

unifies with 1. If the pair is already in StorageName, then Inserted unifies with 0.
If StorageName already contains a pair with the given key that is associated with
a different value, then Inserted unifies with -1. The first argument, StorageName,
must be an atom naming the storage to be used. Different names denote different
storages. In all cases the predicate succeeds.

storage_delete_keypair(+StorageName, +Key, ?Deleted)

Delete the key-value pair with the given key from StorageName. If the pair was
in StorageName then Deleted unifies with 1. If it was not in StorageNames then
Deleted unifies with 0. The first argument, StorageName, must be an atom naming
the storage object to be used. Different names denote different storages. In both cases
the predicate succeeds.

storage_find_keypair(+StorageName, +Key, ?Value)

If StorageName has a key pair with the given key, then Value unifies with the value
stored in StorageName. If no such pair exists in the database, then the goal fails.

Note that this predicate works with non-backtrackable associative arrays described
above as well as with the backtrackable ones, described below.

storage_insert_fact(+StorageName, +Fact, ?Inserted)

Similar to keypair insertion, but this primitive inserts facts rather than key pairs.

storage_delete_fact(+StorageName, +Fact, ?Inserted)

Similar to key-pair deletion, but this primitive deletes facts rather than key pairs.

storage_find_fact(+StorageName, +Fact)

Similar to key-pair finding, but this primitive finds facts facts rather than key pairs.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 245

Backtrackable Updates

storage_insert_keypair_bt(+StorageName, +Key, +Value, ?Inserted)

A call to this predicate inserts a key pair into StorageName as does storage_insert_keypair/4,
and the key-value pair may be queried via storage_find_keypair/3, just as with the
non-backtrackable updates described above. In addition, the key-value pair can be re-
moved from StorageName by explicit deletion. However, the key pair will be removed
from StorageName upon failing over the insertion goal unless a commit is made to
StorageName through the goal storage_commit(StorageName). The exact semantics
is defined by Transaction Logic [6].

Note it is the update itself that is backtrackable, not the key-value pair. Hence, a key-
pair may be (provisionally) inserted by a backtrackable update and deleted by a non-
backtrackable update, or inserted by a non-backtrackable update and (provisionally)
deleted by a backtrackable update. Of course, whether such a mixture makes sense
would depend on a given application.

storage_delete_keypair_bt(+StorageName, +Key, ?Deleted)

Like storage_delete_keypair/3, but backtrackable as described for storage_insert_keypair_bt/4.

storage_insert_fact_bt(+StorageName, +Goal)

Like storage_insert_fact/2, but backtrackable.

storage_delete_fact_bt(+StorageName, +Goal)

This is a backtrackable version of storage_delete_fact/2.

storage_commit(+StorageName)

Commits to StorageName any backtrackable updates since the last commit, or since
initialization if no commit has been made to StorageName. If StorageName does not
exist, the predicate silently fails.

Reclaiming Space

storage_reclaim_space(+StorageName)

This is similar to reclaim_space/1 for assert and retract, but it is used for storage
managed by the primitives defined in the storage module. As with reclaim_space/1,
this goal is typically called just before returning to the top level.

6.15 Tabling Declarations and Builtins

In XSB, tables are designed so that they can be used transparently by computations. How-
ever, it is necessary to first inform the system of which predicates should be evaluated using

CHAPTER 6. STANDARD AND GENERAL PREDICATES 246

tabled resolution (Section 3.10.2), and whether variant or subsumptive tabling should be
used (Chapter 5). Further, it is often useful to be able to explicitly inspect a table, or to
alter its state. The predicates described in this section are provided for these purposes. In
order to ground the discussion of these predicates, we continue our overview of tables and
table creation from Chapter 5. For a detailed description of the implementation of table
access routines in XSB, the reader is referred to [58, 37, 18] and other papers listed in the
bibliography.

Tables and Table Entries

Abstractly, a table can be seen as a set of entry triples 〈S, A, Status〉 where S is a subgoal, A
is its associated answer set, and Status its status — whether it is complete or incomplete.
In terms of implementation, “the table” is actually a set of mini-tables, each one containing
entries for a particular predicate. Hence, we may refer to the table containing entries for
some predicate p/n as “the table for p/n.” Further recall that a particular predicate may
be evaluated according to either a variant or subsumptive strategy as chosen by the user.
Invocation of a call during an evaluation leads to the classification of the call, as well as
its possible insertion into the table. Each call can be classified as either (a) a generator,
or producer, of an answer set, or (b) a consumer of the answer set of some subgoal in the
table. Creation of a table entry thus relies not only on the call and on the subgoals already
present in the table, but also upon whether call-variance or call-subsumption is used (cf.
[37]).

Answers, Returns, and Templates

Given a table entry (S, A, Status), the set of variables in S is sometimes called the substi-
tution factor of S. The order of arguments in the substitution factor corresponds to the
order of distinct variables in a left-to-right traversal of S. Each answer in A substitutes
values for the variables in the substitution factor of S; this substitution is sometimes called
an answer substitution. The table inspection predicates allow access to substitution factors
and answer substitutions through a family of terms whose principle functors are ret/n,
where n is the size of the substitution factor.

Example 6.15.1 Let S = p(X,f(Y)) be a producer subgoal (or simply, a subgoal if call-
variance is used). Using the ret/nnotation, the substitution factor can be depicted as
ret(X,Y), while the answer substitution {X=a,Y=b} is depicted as ret(a,b). Note that the
application of the answer substitution to the producer subgoal yields the answer p(a,f(b)).

To take a slightly more complex example, consider the subgoal q(X) where X is an at-
tributed variable whose attribute is f(Z,Y,Y). In this case the substitution factor is ret(X,Z,Y).
✷

CHAPTER 6. STANDARD AND GENERAL PREDICATES 247

In a similar manner, XSB maintains substitutions between producer subgoals and con-
suming subgoals when subsumption-based tabling is used. The return template for a con-
suming call is a substitution mapping variables of its producer to subterms of the call. This
template can then be used to select returns from the producer which satisfy the consuming
call. Note, then, that a return template of a subsumed subgoal may show partial instan-
tiations. Return templates are also represented as ret/n terms in the manner described
above.

Example 6.15.2 Let p/2 of the previous example be evaluated using subsumption and let S
be present in its table. Further, let S1: p(A,f(B)) and S2: p(g(Z),f(b)) be two consuming
subgoals of S. Then the return template of S1 is ret(A,B) and that of S2 is ret(g(Z),b).
S1, being a variant of S, selects all returns of S such that {X=A,Y=B}. S2, on the other
hand, selects only relevant answers of S, those where the returns satisfy {X=g(Z),Y=b}. ✷

Skeletons and Predicate Specifications

A skeleton for a functor f/n is a structure of the form f(Arg1,...,Argn) where each Argi

is a distinct variable. Similarly the skeleton of a term is the skeleton formed from the
principal functor of the term, so that skeletons from the terms f(1,2) and f(A,B) are the
same. A return skeleton is a specific application of this notion to answer returns. From it,
one may discern the size of the template for a given subgoal. Finally, we assume that a
predicate specification for a predicate p and arity n, represented as PredSpec below, can be
given either using the notation p/n or as a skeleton, p(t1,...,tn).

6.15.1 Declaring and Modifying Tabled Predicates

table(+Operations) Tabling
table/1 can be used either as a compiler declaration or as an executable directive.
Used as a compiler declaration, it indicates that each predicate denoted by the com-
mand is to be compiled using (a particular form of) tabling, and may indicate that the
predicate itself is dynamic or thread-shared or thread-private. Executed as a directive
in a state of execution where no clauses exist for each denoted predicate table/1

ensures that any clauses asserted for each predicate use tabling and may indicate the
mode of tabling to be used. The parameter Operations can take one of three forms:

1. Operations is a predicate indicator, a callable term, or a comma-list or list of
predicate indicators or callable terms.

2. Operations is a term indicating that a predicate is to be tabled with a particular
form of answer subsumption (cf. Section 5.4).

3. Operations has the form Predspec as Options where

CHAPTER 6. STANDARD AND GENERAL PREDICATES 248

• PredSpec is a predicate indicator, a callable term, or a comma-list or list of
predicate indicators or callable terms.

• Options is either a table option or a list of table options. In Version 3.3, the
following table options are supported

– dynamic or dyn which causes the predicate(s) to be treated as dynamic in
addition to being tabled, and is equivalent to ?- dynamic PredSpec 17

– subsumptive which causes the table evaluation method of the predi-
cate(s) to use call subsumption.

– variant which causes the table evaluation method of the predicate(s)
to use call variance.

– intern which causes all ground subterms of subgoals and answers en-
tered into the table for the predicate(s) to be interned.

– incremental which causes the table evaluation method of the predi-
cate(s) to be incremental.

– opaque which indicates that the tables predicate is used in the definition
of an incremental table, but are not to be incrementally maintained
themselves.

– private which causes the predicate(s) to be treated as thread private in
addition to being tabled.

– shared which causes the predicate(s) to be treated as thread shared in
addition to being tabled.

– subgoal_abstract(n) which enables depth-n subgoal abstraction for
the predicate(s).

– answer_abstract(n) which enables depth-n answer abstraction for the
predicate(s).

If the directive

table PredList as Options.

is executed, various checks are performed on Options. These checks are (mostly)
performed before any predicates are declared as dynamic or options changed, and
reduce the possibility of leaving some p/n in PredList with inconsistent attributes.

• If a predicate in Predlist has been declared as incremental it may be changed
to opaque at any time; similarly, a predicate that is opaque may be changed to
incremental

• If a predicate in Predlist has been declared to use call variance it may be
changed to use call subsumption at any time; similarly, a predicate that uses call
subsumption may be changed to use call variance.

17Because dynamic is an operator, the declaration requires parentheses, e.g.: table p/n as (dynamic).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 249

• Otherwise, an attempt to change an attribute of p/n in PredList – i.e. whether
p/n is tabled or not, dynamic or not and thread-private or thread-shared – will
throw a permission error.

In addition, regardless of the state of predicates in PredList, if options contains an
unsupported set of declarations, a table error will be thrown (see Table 5.1 for a
list of supported and non-supported combinations of tabling modes and predicate
properties). Options is throws a table error in the following cases:

• Options contains dynamic and either opaque or incremental. Tabled dynamic
incremental code is not yet supported in XSB.

• Options contains (incremental or opaque) and (subsumptive or shared)

• Options contains subsumptive and (variant or shared or subgoal_abstract/1

or answer_abstract/1)

• Options contains intern and (dynamic or subsumptive or approximate or
incremental or opaque or answer_abstract or subgoal_abstract)

• Options contains both private and shared

• Options contains both incremental and opaque

Error Cases

Error cases are summarized as follows. Let Operations be of the form PredSpec or
PredSpec as Options. Then if

• PredSpec or is a variable or a comma list containing a variable

– instantiation_error

• An element of PredSpec is neither a variable nor a comma list

– type_error(callable,PredSpec)

• A predicate in PredSpec has been previously defined to be static or foreign and
Options contains dynamic or dyn

– permission_error(modify,static_predicate)

• Options is a variable or a list containing a variable

– instantiation_error

• Options contains an element Option that isn’t a table option (as described
above)

– domain_error(table_option,Option)

• Options contains a non-supported combination of elements (as described above)

– table_error

• An option in Options would modify a predicate in predspec in a manner that is
not allowed (as described above)

– permission_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 250

6.15.2 Predicates for Table Inspection

The user should be aware that skeletons that are dynamically created (e.g., by functor/3)
are located in usermod (refer to Section 3.4). In such a case, the tabling predicates below
may not behave in the desired manner if the tabled predicates themselves have not been
imported into usermod.

We maintain two running examples in this section for explanatory purposes. One uses
variant-based tabling:

Variant Example

Program Table

:- table p/2 as variant.

p(1,2).

p(1,3).

p(1,_).

p(2,3).

Subgoal Answer Set Status

p(1,Y) p(1,2) complete
p(1,3)
p(1,Y)

p(X,3) p(1,3) complete
p(2,3)

and the other uses subsumption-based tabling:

Subsumptive Example

Program Table

:- table q/2 as subsumptive.

q(a,b).

q(b,c).

q(a,c).

Subgoal Answer Set Status

q(X,Y) q(a,b) complete
q(b,c)
q(a,c)

q(a,Y) q(a,b) complete
q(a,c)

q(X,c) q(b,c) complete
q(a,c)

Note that in the subsumptive example, the subgoals q(a,Y) and q(X,c) are subsumed by,
and hence obtain their answers from, the subgoal q(X,Y).

get_call(+CallTerm,-TableEntryHandle,-ReturnTemplate) Tabling

CHAPTER 6. STANDARD AND GENERAL PREDICATES 251

If call variance is used for the predicate corresponding to CallTerm, then this predicate
searches the table for an entry whose subgoal is a variant of CallTerm. If subsumption
is used, then this predicate searches for some entry that subsumes (properly or not)
CallTerm. In either case, should the entry exist, then the handle to this entry is
assigned to the second argument, while in the third, its return template is constructed.
These latter two arguments should be given as variables.

Error Cases

• CallTerm is not a callable term

– type_error(callable_term,CallTerm)

• CallTerm does not correspond to a tabled predicate

– permission_error(table access,non-tabled predicate,CallTerm)

Example 6.15.3

Variant Predicate

| ?- get_call(p(X,Y),Ent,Ret).

no

| ?- get_call(p(1,Y),Ent,Ret).

Y = _h92

Ent = 136039108

Ret = ret(_h92);

no

| ?- get_call(p(X,3),Ent,Ret).

X = _h84

Ent = 136039156

Ret = ret(_h84);

no

| ?- get_call(p(1,3),Ent,Ret).

no

Subsumptive Predicate

| ?- get_call(q(X,Y),Ent,Ret).

X = _h80

Y = _h94

Ent = 136043988

Ret = ret(_h80,_h94);

no

| ?- get_call(q(a,Y),Ent,Ret).

Y = _h88

Ent = 136069412

Ret = ret(a,_h88);

no

| ?- get_call(q(X,c),Ent,Ret).

X = _h80

Ent = 136069444

Ret = ret(_h80,c);

no

get_calls(#CallTerm,-TableEntryHandle,-ReturnSkeleton) Tabling
Identifies through backtracking each subgoal in the table which unifies with CallTerm.
For those that do, the handle to the table entry is assigned to the second argument,

CHAPTER 6. STANDARD AND GENERAL PREDICATES 252

and its return skeleton is constructed in the third. These latter two arguments should
be given as variables. The error terms are the same as for get_calls/1.
Example 6.15.4

Variant Predicate

| ?- get_calls(p(X,Y),Ent,Ret).

X = _h80

Y = 3

Ent = 136039156

Ret = ret(_h80);

X = 1

Y = _h94

Ent = 136039108

Ret = ret(_h94);

no

| ?- get_calls(p(X,3),Ent,Ret).

X = _h80

Ent = 136039156

Ret = ret(_h80);

X = 1

Ent = 136039108

Ret = ret(3);

no

| ?- get_calls(p(1,3),Ent,Ret).

Ent = 136039156

Ret = ret(1);

Ent = 136039108

Ret = ret(3);

no

Subsumptive Predicate

| ?- get_calls(q(X,Y),Ent,Ret).

X = a

Y = _h94

Ent = 136069412

Ret = ret(a,_h94);

X = _h80

Y = c

Ent = 136069444

Ret = ret(_h80,c);

X = _h80

Y = _h94

Ent = 136043988

Ret = ret(_h80,_h94);

no

| ?- get_calls(q(a,Y),Ent,Ret).

Y = _h88

Ent = 136069412

Ret = ret(a,_h88);

Y = c

Ent = 136069444

Ret = ret(a,c);

Y = _h88

Ent = 136043988

Ret = ret(a,_h88);

no

get_calls_for_table(+PredSpec,?Call) Tabling
Identifies through backtracking all the subgoals whose predicate is that of PredSpec

and which unify with Call. PredSpec is left unchanged while Call contains the
unified resultant.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 253

Example 6.15.5

Variant Predicate

|?- get_calls_for_table(p(1,3),Call).

Call = p(_h142,3);

Call = p(1,_h143);

no

| ?- get_calls_for_table(p/2,Call).

Call = p(_h137,3);

Call = p(1,_h138);

no

Subsumptive Predicate

| ?- get_calls_for_table(q(X,Y),Call).

X = _h80

Y = _h94

Call = q(a,_h167);

X = _h80

Y = _h94

Call = q(_h166,c);

X = _h80

Y = _h94

Call = q(_h166,_h167);

no

get_returns(+TableEntryHandle,#ReturnSkeleton) Tabling
Backtracks through the answers for the subgoal whose table entry is referenced through
the first argument, TableEntryHandle, and instantiates ReturnSkeleton with the
variable bindings corresponding to the return.

The supplied values for the entry handle and return skeleton should be obtained from
some previous invocation of a table-inspection predicate.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 254

Example 6.15.6

Variant Predicate

| ?- get_calls(p(X,3),Ent,Ret),

get_returns(Ent,Ret).

X = 2

Ent = 136039156 % p(X,3)

Ret = ret(2);

X = 1

Ent = 136039156

Ret = ret(1);

X = 1

Ent = 136039108 % p(1,Y)

Ret = ret(3);

X = 1

Ent = 136039108

Ret = ret(3);

no

Subsumptive Predicate

| ?- get_calls(q(a,c),Ent,Ret),

get_returns(Ent,Ret).

Ent = 136069412 % q(a,Y)

Ret = ret(a,c);

Ent = 136069444 % q(X,c)

Ret = ret(a,c);

Ent = 136043988 % q(X,Y)

Ret = ret(a,c);

no

| ?- get_calls(q(c,a),Ent,Ret),

get_returns(Ent,Ret).

no

get_returns_and_tvs(+TableEntryHandle,#ReturnSkeleton,-TruthValue) Tabling
Identical to get_returns/2, but also obtains the truth value of a given answer, setting
TruthValue to t if the answer is unconditional and to u if it is conditional. If a
conditional answer has multiple delay lists, this predicate will succeed only once, so
that using this predicate may be more efficient than get_residual/2 (although less
informative).

get_returns(+TableEntryHandle,#ReturnSkeleton,-ReturnHandle) Tabling
Functions identically to get_returns/2, but also obtains a handle to the return given
in the second argument.

get_returns_for_call(+CallTerm,?AnswerTerm) Tabling
Succeeds through backtracking for each answer of the subgoal CallTerm which unifies
with AnswerTerm. Fails if CallTerm is not a subgoal in the table or AnswerTerm does
not unify with any of its answers or the answer set is empty.

The answer is created in its entirety, including fresh variables; the call is not further
instantiated. However, an explicit unification of the call with its answer may be
performed if so desired.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 255

Example 6.15.7

Variant Predicate

| ?- get_returns_for_call(p(1,Y),

AnsTerm).

Y = _h88

AnsTerm = p(1,_h161);

Y = _h88

AnsTerm = p(1,3);

Y = _h88

AnsTerm = p(1,2);

no

| ?- get_returns_for_call(p(X,Y),

AnsTerm).

no

| ?- get_returns_for_call(p(1,2),

AnsTerm).

no

Subsumptive Predicate

| ?- get_returns_for_call(q(a,Y),

AnsTerm).

Y = _h88

AnsTerm = q(a,c);

Y = _h88

AnsTerm = q(a,b);

no

| ?- get_returns_for_call(q(X,c),

AnsTerm).

X = _h80

AnsTerm = q(b,c);

X = _h80

AnsTerm = q(a,c);

no

get_residual(#CallTerm,?DelayList) Tabling

variant_get_residual(#CallTerm,?DelayList) Tabling
get_residual/2 backtracks through the answers to each completed subgoal in the
table that unifies with CallTerm. With each successful unification, this argument is
further instantiated as well as that of the DelayList.

Example 6.15.8 For the following program and table

:- table p/2.

p(1,2).

p(1,3):- tnot(p(2,3)).

p(2,3):- tnot(p(1,3)).

Subgoal Answers

p(1,X) p(1,2)
p(1,3):- tnot(p(2,3))

p(1,3) p(1,3):- tnot(p(2,3))

p(2,3) p(2,3):- tnot(p(1,3))

the completed subgoals are p(1,X), p(1,3), and p(2,3). Calls to get_residual/2

will act as follows

| ?- get_residual(p(X,Y),List).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 256

X = 1 % from subgoal p(1,X)

Y = 2

List = [];

X = 1 % from subgoal p(1,X)

Y = 3

List = [tnot(p(2,3))];

X = 1 % from subgoal p(1,3)

Y = 3

List = [tnot(p(2,3))];

X = 2 % from subgoal p(2,3)

Y = 3

List = [tnot(p(1,3))];

no

Since the delay list of an answer consists of those literals whose truth value is unknown
in the well-founded model of the program (see Chapter 5) get_residual/2 is useful
to examin the residual program (e.g. for XASP).

For other purposes, it may be desired to examine the answers for a particular subgoal,
rather than for all subgoals that unifiy with CallTerm. In this case, variant_get_residual/2

can be used, which backtracks through all answers for CallTerm if CallTerm is a tabled
subgoal with answers, and fails otherwise. For the above example, variant_get_residual/2

behaves as follows:

| ?- variant_get_residual(p(X,Y),List).

no

| ?- variant_get_residual(p(1,Y),List).

X = 1 % from subgoal p(1,X)

Y = 2

List = [];

X = 1 % from subgoal p(1,X)

Y = 3

List = [tnot(p(2,3))];

no

Error Cases

• CallTerm is not a callable term

CHAPTER 6. STANDARD AND GENERAL PREDICATES 257

– type_error(callable_term,CallTerm)

• CallTerm does not correspond to a tabled predicate

– permission_error(table access,non-tabled predicate,CallTerm)

table_state(+CallTerm,?PredType,?CallType,?AnsSetStatus) Tabling

table_state(+TableEntryHandle,?PredType,?CallType,?AnsSetStatus) Tabling
Succeeds whenever CallTerm is a subgoal in the table, or TableEntryHandle is a
valid reference to a table entry, and its predicate type, the type of the call, and the
status of its answer set, unify with arguments 2 through 4, respectively.

XSB defines three sets of atomic constants, one for each parameter. Taken together,
they provide a detailed description of the given call. The valid combinations and
their specific meaning is given in the following table. Notice that not only can these
combinations describe the characteristics of a subgoal in the table, but they are also
equipped to predict how a new goal would have been treated had it been called at
that moment.

PredType CallType AnsSetStatus Description
complete Self explanatory.

An incremental table that has been
producer incremental_needs_reeval invalidated, and is therefore inconsistent

with a KB and needs recomputation.
variant incomplete Self explanatory.

no_entry undefined The call does not appear in the table.
complete Self explanatory.

producer
incomplete Self explanatory.

The call is in the table and is properly
complete

subsumed by a completed producer.
subsumed

The call is in the table and is properly
incomplete

subsumed by an incomplete producer.
The call is not in the table, but if it were

subsumptive complete to be called, it would consume from a
completed producer.
The call is not in the table, but if it had

no_entry incomplete been called at this moment, it would
consume from an incomplete producer.
The call is not in the table, but if it had

undefined been called at this moment, it would be
a producer.

undefined undefined undefined The given predicate is not tabled.

table_dump(+OptionList) module: dump_table
table_dump(+Stream,#Term,+OptionList) module: dump_table

table_dump/[2,3] provides an easy method to view subgoals and answers that are

CHAPTER 6. STANDARD AND GENERAL PREDICATES 258

present in a table. Given an input Term, table_dump/[2,3] provides information
about all tabled subgoals that are subsumed by Term; if Term is a variable, information
is provided about all tables.

The information is provided at three levels of aggregation, and the form of the infor-
mation is determined by the options in OptionsList.

• If the option summary(true) is set, the aggregate sum of subgoals and answers
that are subsumed by Term is collected, along with the aggregate sum of calls to
these subgoals. If Term is a variable this information is broken down by tabled
predicates.

– If details(answers) is set, a list is collected of every tabled subgoal S such
that S is subsumed by Term along with the number of answers for each S
and a list of those answers and the truth value of each answer (t if true and
u if undefined). If Term is a variable this information is broken down by
tabled predicates.

– If details(subgoals) is set, a list is collected of all subgoals S such that S
is subsumed by Term along with the number of answers for each S. However,
unlike the action for details(answers) the actual list of answers for S is
not returned. If Term is a variable this information is broken down by tabled
predicates.

– If details(false) is set, no detail information is provided for the actual
subgoals or their answers.

• If OptionsList contains the option results(X) for some variable X, X will be
instantiated upon backtracking to all infomation collected about the tables.

• If the option output(true) is set, the information is written to Stream or to
userout in Prolog-readable form.

If not otherwise specified the default options are summary(true), details(false),
output(true).

Example Consider the program:

:- table p/2.

p(1,a).

p(1,b) :- p(2,b).

p(2,b) :- p(1,a).

p(3,X) :- q(X).

:- table q/1.

q(1). q(2).

:- table r/1.

r(a).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 259

:- table s/2.

s(1,a). s(2,b). s(1,a1). s(2,b1).

and suppose the top-level query ?- p(X,Y) has been made. Then table_dump/2
provides the following information (reformatted for readability):

| ?- table_dump(_X,[summary(true)]).

summary = p(A,B) - subgoals(3) - total_times_called(4) - total_answers(7)

X = p(_h243,_h244);

summary = q(A) - subgoals(1) - total_times_called(1) - total_answers(2).

X = q(_h228)

yes

| ?- table_dump(_X,[details(answers)]).

summary = p(A,B) - subgoals(3) - total_times_called(4) - total_answers(7).

details = p(A,B) - subgoals(3) - details([

p(C,D) - times_called(1) - answers(5) - [p(3,1)-t,p(3,2)-t,p(2,b)-t,p(1,b)-t,p(1,a)-t]

- completed,

p(1,a) - times_called(2) - answers(1) - [p(1,a)-t] - completed,

p(2,b) - times_called(1) - answers(1) - [p(2,b)-t] - completed]).

X = p(_h232,_h233);

summary = q(A) - subgoals(1) - total_times_called(1) - total_answers(2).

details = q(A) - subgoals(1) - details([

q(B) - times_called(1) - answers(2) - [q(2)-t,q(1)-t] - completed]).

X = q(_h232)

yes

As the above example shows, each line of the summary has the form:

summary =
Pred/Goal - subgoals(Nsubgoals) - total_times_called(Ncalled) - total_answers(Nanswers)

where

• Pred/Goal is either a term indicator, if the Term argument of table_dump/[2,3]

was a variable (to indicate there should be no filtering of tabled calls); or Term

itself.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 260

• Nsubgoals are the total number tabled subgoals that are subsumed by Pred/Goal
(perhaps including Pred/Goal itself).

• Ncalled is the total number of times all subgoals subsumed by Pred/Goal have
been called.

• Nanswers is the total number of answers currently derived by all subgoals sub-
sumed by Pred/Goal.

Each line of details has the form:

Details =
Pred/Goal - subgoals(Nsubgoals) - details(List)

where Pred/Goal and Nsubgoals are as above. If details(answers) was an input
option

List =
Subgoal - times_called(Ncalled) - answers(Nanswers) - List_of_Answers - Status

for each Subgoal in the table subsumed by Pred/Goal. Ncalled and Nanswers are as
above, while List_of_Answers contains A − TV for each answer A with truth value
TV that is currently derived for Subgoal. On the other hand, if details(subgoals)

was an input option

List =
Subgoal - times_called(Ncalled) - answers(Nanswers) - Status

where all elements are as before. Finally Status is

• completed if Subgoal has been completed; and

• scc(NSCC) if Subgoal is incomplete. NSCC is relative: if NSCC is greater than
MSCC then NSCC is a descendent of MSCC : i.e., subgoals in SCC MSCC de-
pend on subgoals in SCC NSCC . However, these numbers should only be used
relatively: at a given state in the computation there may be fewer than MSCC

Sccs 18.

Error Cases

• OptionList is a variable, or contains a variable as an element

– instantiation_error

• OptionList is not a list

18XSB keeps track of SCCs through an algorithm similar to depth-first search: the numbers associated
with subgoals are the depth-first numbers of the minimal back-dependency of a subgoal (cf. [62])

CHAPTER 6. STANDARD AND GENERAL PREDICATES 261

– type_error(list,OptionList)

• OptionList contains an element, O, that is not a valid table_dump_option.

– domain_error(table_dump_option,O)

print_incomplete_tables module: tables

These predicates, which can be useful for debugging purposes, print out each incom-
plete subgoal in the current state, followed by the ordinal number of the SCC to which
that subgoal belongs. This information describes the dependencies among tabled pred-
icates. In local evaluation (the default evaluation method for XSB) all subgoals in SCC
m depend on all subgoals in SCC n if m < n. Furthermore, all subgoals in a given SCC
depend on one another 19. As its name implies, print_incomplete_tables/[0,1]

print out SCC information only for incomplete tables; for full information about the
SCCs of a computation, forest logging must be used (cf. Section 10.3).

In print_incomplete_tables/0, the information is output to stdout.

Example: For the program

:- table q/2.

q(0,_):- !,print_incomplete_tables.

q(3,A):- q(5,A).

q(N,A):- N1 is N - 1,q(N1,A).

the goal ?- q(5,foo) will produce the output

q(5, foo)- scc(1).

q(4, foo)- scc(1).

q(3, foo)- scc(1).

q(2, foo)- scc(2).

q(1, foo)- scc(3).

q(0, foo)- scc(4).

get_scc_dumpfile(-Filename) module: tables

If the Prolog flag exception_pre_action is set to print_incomplete_tables (its
default setting is none), then when an exception is thrown, incomplete tables and their
SCC information are printed to a “SCC dumpfile” via print_incomplete_tables/1.
(No file is generated unless the exception is thrown over at least one incomplete table.)

This predicate returns the name of the last such file generated and fails if there is no
such file. Files are written to the $XSBDIR/etc directory with the prefix scc_dump_.
Users are responsible for removing these files.

19This assumes that there is no early completion, which can remove dependencies. In batched evaluation,
the dependencies are less exact – see [62] for details, as SCCs represent a dag of dependencies rather than
a chain as in local evaluation.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 262

Note that XSB backtraces (Section 12.5) provide information about the context in
which an exception is thrown, but the SCC dumpfile provides explicit SCC information
along with parameter values for tabled predicates.

Error Cases

• Filename is a not a variable

– instantiation_error

get_residual_sccs(+Subgoal,+Answer,-SCCList) module: tables
get_residual_sccs(+Subgoal,+Answer,-SCCList,-DepList,-SignList) module:

tables

As discussed in Section 5.3.3, answers that are undefined in the well-founded semantics
are stored in XSB along with their delay lists, forming a residual program. This
residual program can be materialized through the various predicates discussed above,
in particular get_residual/2 and variant_get_residual/2.

At times it can be useful to view the residual program as a directed graph, for instance
in order to understand why a given answer might be undefined. In a manner somewhat
analogous to the incremental dependency graph (Section 5.6) the residual dependency
graph is a directed graph whose nodes are subgoal/atom pairs and whose edges are
labelled with: 1) a sign indicating whether the edge is positive or negative; and 2) the
label depends on or affects.

Example 6.15.9 Consider the program

:- table p/2.

p(1,2).

p(1,3):- tnot(p(2,3)).

p(2,3):- tnot(p(1,3)). p(2,3):- r(a).

r(a):- tnot(r(b))

r(b):- tnot(r(a)).

to which the query ?- p(1,X) was made, generating the tables:

Subgoal Answers

p(1,X) p(1,2)
p(1,3):- tnot(p(2,3))|

p(1,3) p(1,3):- tnot(p(2,3))|
p(2,3) p(2,3):- tnot(p(1,3))|

p(2,3):- tnot(r(a))|
r(a) r(a):- tnot(r(b))|
r(b) r(b):- tnot(r(a))|

CHAPTER 6. STANDARD AND GENERAL PREDICATES 263

The residual dependency graph for this program and query would have a node for
each subgoal/answer combination with an undefined truth value, and a dependency
edge for nodes S1/A1 and S2/A2 if A2 occurs in a literal in the delay list for S1/A1,
and the original subgoal for A2 was S2 in the subcomputation for S1. The edge also
has a sign indicating whether A2 occurs positively or negatively in the delay list for
A1. In this example, the residual dependency graph could be represented as

depends_on(p(1,X),p(1,3),p(2,3),p(2,3),neg).

depends_on(p(1,3),p(1,3),p(2,3),p(2,3),neg).

depends_on(p(2,3),p(2,3),p(1,3),p(1,3),neg).

depends_on(p(2,3),p(2,3),r(a),r(a),pos).

depends_on(r(a),r(a),r(b),r(b),neg).

depends_on(r(b),r(b),r(a),r(a),neg).

Using the residual dependency graph, a user may be able to determine why an answer
A to a subgoal S was unexpectedly undefined either because S/A was involved in or
depended on a loop through negation; or because S/A depended on some other answer
that was undefined because of the use of bounded rationality (Section 5.5) or because
of floundering and the use of u_not/1.

The residual dependency graph can be constructed in a straightforward way from
variant_get_residual/2. Another, slightly higher-level view can be obtained through
get_residual_sccs/[3,5]. Given a subgoal/answer pair as input, each of these
predicates constructs SCC-based information about the residual dependency graph
via structures of the form:

ret(Subgoal,Answer,SCCIndex).

where SCC is a numerical index for the SCCs of Subgoal. Two subgoals are in the
same SCC iff they have the same index, however no other dependency information
can be otherwise directly inferred from the index 20.

To obtain this information, get_residual_sccs/5 also returns a list indicating the
direct dependencies among the SCCs, along with a list indicating whether given SCCs
contain a negative edge. For the example above, the SCC information would have a
form such as:

[ret(p(1,X),p(1,3),1), ret(p(1,3),p(1,3),2), ret(p(2,3),p(2,3),2),

ret(r(a),r(a),3), ret(r(b),r(b),3)]

The dependency list would have a form such as:

20The actual number for each SCC index depends on how the residual dependency graph happens to be
traversed; as a result it is best to rely on the index only as a “generated” name for each SCC.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 264

[depends(1,2), depends(2,3)]

while the sign list would have a form such as:

[sign(1,no_neg), sign(2,neg), sign(3,neg)]

If it is necessary to know which subgoal(s) in SCC1 directly depends on which sub-
goal(s) in SCC2, the information can be easily reconstructed using variant_get_residual/2.
A similar approach can be used to determine the actual edges within a given SCC.

SCC detection is implemented using Tarjan’s algorithm [79] in C working directly
on XSB’s data structures. The algorithm is O(|V | + |E|) where |V | is the num-
ber of vertices and |E| the number of edges in the dependency graph. As a result,
get_residual_sccs/3 provides an efficient means to materialize the high-level to-
pography of the dependency graph 21.

explain_u_val(+Subgoal,+Answer,-Reason) module: tables
explain_u_val(+Subgoal,+Answer,-Sccs,-Deps,-Signs,-Reason) module: tables

The XSB predicate explain_u_val(+Subgoal,+Answer,?Reason) can be used to
query why Answer is undefined when derived in an evaluation of Subgoal. Reason

may be

• negative_loops(cycle) if the derivation of Answer involves a loop through
though negation that includes Answer itself.

• negative_loops(dependent) if the derivation of Answer depends on an atom
that is involved in a loop through though negation.

• unsafe_negation if the derivation of Answer depends on a negative subgoal that
is non-ground (XSB does not automatically perform subgoal reordering). The
action of making a non-ground subgoal undefined is performed by u_not/1.

• bounded_rationality if the derivation of answer depends on bounded rational-
ity based on radial restraint [32].

These reasons are not exclusive, and complex derivations may well involve several of
the above reasons.

explain_u_val/[3,6] is based on the structures returned by get_residual_sccs/[3,5].
While get_residual_sccs/[3,5] is reasonably fast, it can take a peceptable time
to analyze large residual programs containing many thousands of SCCs. Accordingly,
explain_u_val/6 can reuse dependency structures returned by get_residual_sccs/[3,5],
which can be useful for justification systems and other applciations.

Example 6.15.10 After executing the query p to the program

21Currently, the materialization of dependency information between SCCs is implemented in a naive
manner, so that get_residual_sccs/6 is O(|V |2).

CHAPTER 6. STANDARD AND GENERAL PREDICATES 265

:- table p/0, q/0, r/0, s/1.

p:- q,tnot p. p:- s(f(f(f(f(0))))).

q:- tnot r. r:- tnot q.

s(f(X)):- s(X). s(0).

where the bounded rationality depth has been set to 3. The query explain_u_value(p,P,Reason)

will bind Reason to negative_loops(cycle), to negative_loops(dependent), and
to bounded_rationality (this ordering is not guaranteed).

6.15.3 Deleting Tables and Table Components

The following predicates are used to semantically invalidate tables and/or reclaim
their space. The use of the word “tables” in this section is rather unspecific. For the
purpose of deletion a table can either refer to a single subgoal and its answers, or to
all subgoals and answers for a tabled predicate. Predicates are provided to invalidate
tables not only for particular predicates and subgoals, but for all tabled predicates,
all tabled predicates in a module, and in the multi-threaded engine all thread-private
tabled predicates or all thread-shared tabled predicates. Overall, these predicates
share similar characteristics.

First, an incomplete tabled subgoal S may not be abolished by the user except under
special circumstances described below. This restriction is made since if S is incomplete
there may be pointers to S from various elements of the current execution environ-
ment, and removing all of these pointers may be difficult to do. If one of the deletion
predicates is called when the current execution environment contains a reference to
a completed table that is being abolished, space for the abolished information is not
immediately reclaimed. More precisely, if the current global tabling envonment (in-
cluding suspended states) has either

• a choice point that points to an answer A;

• or a (heap) delay list that points to a subgoal S

we say that A or S is active. Also, since tables can be abolished and rederived during
the course of an evaluation, the table deletion system marks the tables with versions.
Accordingly, if a tabled predicate Pversion or subgoal Sversion to be abolished has an
answer that is active in the current environment, reclamation of space for that version
of P or S will be delayed until no answers for Pversion or Sversion are active. New calls
to P or S, however, will derive a new table versions, rather than using the abolished
information.

When conditional answers are present, abolishing a specific table or call may lead to se-
mantic or implementational complications. Consider the conditional answer r(a,b):-

CHAPTER 6. STANDARD AND GENERAL PREDICATES 266

undef| from Figure 6.1. If the predicate r/2 (or subgoal r(a,X)) is abolished and
later rederived, the rederivation of r(a,X) might have different semantics than the
original derivation (e.g. if undef depended on a dynamic predicate whose defini-
tion has changed). From an implementation perspective, if space for r(a,X)) is
reclaimed, then the call get_residual(p(a,X),Y) may core dump, even if there are
no choice points for completed tables anywhere in the choice point stack. To ad-
dress this problem, by default abolishing a subgoal S (predicate P) will abolish all
‘vsubgoals (predicates) that (transtively) depend on S (P) 22. In this case the goal
abolish_table_call(r(a,X)) would cause the deletion of p(a,X) while the goal
abolish_table_pred(r/2) would cause the deletion of p/2, since there are tabled
subgoals of p/2 that depend on r/2. Only dependencies from subgoals or answers to
the answers that are conditional on them are taken into account for table deletion:
thus the deletion r(a,X) deletes p(a,X), but not undef.

Users with programs that give rise to conditional answers in completed tables are
encouraged to maintain this default behavior. However the default behavior may be
changed either by setting a Prolog flag:

?- set_prolog_flag(table_gc_action,abolish_tables_singly).

or by calling a 2-ary abolish command with abolish_tables_singly in the options
list.

In the multi-threaded engine abolishing tables private to a thread behaves exactly as
in the sequential engine, regardless of whether the tables are complete or incomplete,
or contain conditional answers. In addition, when a thread T exits (by normal termi-
nation or via an exception), tables private to T are abolished automatically and their
space reclaimed, as are any incomplete shared tables owned by T in local evaluation.
Shared tables can be abolished by the user at any time, but their space will not be
reclaimed until there is a single active thread.

As mentioned above, during normal execution, an incomplete tabled subgoal may not
be abolished by the user, a restriction that is made to ensure correct evaluations.
Accordingly, calling an abolish_xxx predicate when tables are incomplete raises an
error. However, we note that any incomplete tables are abolished automatically by
the system on exceptions (by the default system error handler) when the interpreter
level is resumed.

Table Deletion Predicates

abolish_table_pred(+Pred) Tabling
Invalidates all tabled subgoals for the predicate denoted by the predicate or term
indicator Pred. If any subgoal for Pred contains an answer A that is active in

22Dao Tran Minh contributed to implementing this functionality.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 267

Program Table

:- table p/2, r/2.

p(X,Y):- r(X,Y).

r(a,b):- undef.

r(a,c):- undef.

r(a,d):- undef.

r(a,e):- undef.

:- table s/0, t/0.

s:- tnot(t).

t:- tnot(undef).

:- table undef/0.

undef :- tnot(undef).

Subgoal Answer Set Status

p(a,X) p(a,b):- r(a,b)| complete
p(a,c):- r(a,c)|

p(b,X) p(b,d):- r(b,d)| complete
p(b,d):- r(b,e)|

r(a,X) r(a,b):- undef| complete
r(a,c):- undef|

r(b,X) r(b,d):- undef| complete
r(b,d):- undef|

s s:- tnot(t)| complete

t t:- tnot(undef)| complete

undef undef:- tnot(undef)| complete

Figure 6.1: Example for Deleting Tables (Call-Variance)

the current enviornment, Pred space reclamation for the Pred tables will be
delayed until A is no longer active; otherwise the space for the Pred tables will
be reclaimed immediately.
If Pred has a subgoal that contains a conditional answer, the default behavior
will be to transitively abolish any tabled predicates with subgoals having answers
that depend on any conditional answers of S. This default may be changed either
by setting a Prolog flag:

?- set_xsb_flag(table_gc_action,abolish_tables_singly).

or by calling abolish_table_pred/2 with the appropriate option. If the transi-
tive abolishes are turned off, and Pred contains a conditional answer, the warning
abolish_table_pred/[1,2] is deleting a table with conditional answers:

delay dependencies may be corrupted.

will be issued.
In the multi-threaded engine, if Pred is shared, reclamation for Pred will be de-
layed until there is a single active thread and no answer in Pred is active in the
current execution environment. Otherwise, the behavior of abolish_table_pred/1

is the same as in the sequential engine.
Finally, abolish_table_pred/1 will throw an error if the predicate to be abol-
ished is incremental. This is because abolishing some incremental tables but not
others will leave dangling pointers in the data structures used for uncremental

CHAPTER 6. STANDARD AND GENERAL PREDICATES 268

updates. Until abolish_table_pred/[1,2] is extended to support incremental
tables, use abolish_table_call/[1,2] or abolish_all_tables/0.
Error Cases

• Pred is not instantiated
– instantiation_error

• PredSpec is not a predicate_indicator or a term_indicator
– domain_error(predicate_or_term_indicator,Pred)

• PredSpec does not indicate a tabled predicate or indicates an incrementally
tabled predicate.

– table_error

• There is currently an incomplete table for an atomic subgoal of Pred

– table_error

abolish_table_pred(+CallTerm,+Options) Tabling
Behaves as abolish_table_pred/1, but allows the default table_gc_action to
be over-ridden with a flag, which can be either abolish_tables_transitively

or abolish_tables_singly.
Error Cases Error cases are the same as abolish_table_pred/1 but with the
additions:

• Options is a variable, or contains a variable as an element
– instantiation_error

• Options is not a list
– type_error(list,Options)

• Options contains an option O that is not a table abolish option.
– domain_error([abolish_tables_transitively, abolish_tables_singly,O)

abolish_table_call(+CallTerm) Tabling
Invalidates all entries from the table for any subgoals that unify with CallTerm.
If a subgoal S unifying with CallTerm contains an answer A that is active in the
current enviornment, the table entry for S will not be reclaimed until A is no
longer active; otherwise the space for S will be reclaimed immediately.
If S contains a conditional answer, the default behavior will be to transitively
abolish any subgoals that depend on any conditional answers of S. This default
may be changed either by setting an XSB flag:

?- set_xsb_flag(table_gc_action,abolish_tables_singly).

or by calling abolish_table_call/2 with the appropriate option. If the transi-
tive abolishes are turned off, and S contains a conditional answer, the warning
abolish_table_call/1 is deleting a table with conditional answers:

delay dependencies may be corrupted.

will be issued.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 269

In the multi-threaded engine, if S is a subgoal for a predicate that is shared,
reclamation for S will be delayed until there is a single active thread and no
answer in S is active in the current execution environment. Otherwise, the
behavior of abolish_table_call/1 is the same as in the sequential engine on
tabled predicates that are thread-private.
abolish_table_call/[1,2] also cascades abolishes for incremental tables. If a
call G is abolished, all calls that G depends on will also be abolished, so that
the dependency structures that support incremental tabling will remain in a
consistent state.
Error Cases

• The term spec CallTerm does not correspond to a tabled predicate:
– table_error

• The term spec CallTerm unifies with a tabled subgoal that is incomplete:
– table_error

• The term spec CallTerm is a cyclic term::
– table_error

abolish_table_call(+CallTerm,+Options) Tabling
Behaves as abolish_table_call/1, but allows the default table_gc_action to be
over-ridden with a flag, which can be either abolish_tables_transitively or
abolish_tables_singly.
Error Cases Error cases are the same as abolish_table_call/1 but with the
additions:

• Options is a variable, or contains a variable as an element
– instantiation_error

• Options is not a list
– type_error(list,Options)

• Options contains an option O that is not a table abolish option.
– domain_error([abolish_tables_transitively, abolish_tables_singly,O)

abolish_all_tables Tabling
In the single-threaded engine, removes all tables presently in the system and frees
all the memory held by XSB for these structures. Predicates that have been de-
clared tabled remain so, but information in their table is deleted. abolish_all_tables/0

works directly on the memory structures allocated for table space. This makes
it very fast for abolishing a large amount of tables, and to maintain its speed
it throws an error if any completed answer A is active in the current execution
environment. abolish_all_tables/0 can be used regardless of whether there
are incremental tables, or tables that use call or answer subsumption.
In the multi-threaded engine abolish_all_tables/0 raises an error unless it
is called when there is a single active thread. In that case, all shared tables

CHAPTER 6. STANDARD AND GENERAL PREDICATES 270

are abolished as well as all private tables for the main thread. An error will be
thrown if any completed answer A is active in the current environment, regardless
of whether A is thread-private or thread-shared.
Error Cases

• There are incomplete tables at the time of the predicate’s call;
– table_error

• The current execution environment has an active answer A

– table_error

• (Multi-threaded engine only) More than one thread is active:
– table_error

abolish_all_private_tables Tabling
In the multi-threaded engine, removes all tables private to the thread and frees
all the memory held by XSB for these structures, including space for conditional
answers. Predicates that have been declared tabled remain so, but information
in their table is deleted. abolish_all_private_tables/0 works directly on
the memory structures allocated for table space. This makes it very fast for
abolishing a large amount of tables, and to maintain its speed it throws an error
if any completed answer A for a private table is active in the current execution
environment.
Error Cases

• There are incomplete tables at the time of the predicate’s call;
– table_error

• The current execution environment for the thread has an active answer A
for a private table.

– table_error

abolish_all_shared_tables Tabling
In the multi-threaded engine, removes all tables private to the thread and frees
all the memory held by XSB for these structures, including space for conditional
answers. Predicates that have been declared tabled remain so, but information
in their table is deleted. abolish_all_private_tables/0 works directly on
the memory structures allocated for table space. This makes it very fast for
abolishing a large amount of tables, and to maintain its speed it throws an error
if any completed answer A for a private table is active in the current execution
environment. abolish_all_shared_tables/0 raises an error unless it is called
when there is a single active thread. In that case, all shared tables are abolished,
but private tables for the main thread are unaffected.
Error Cases

• There are incomplete tables at the time of the predicate’s call;
– table_error

CHAPTER 6. STANDARD AND GENERAL PREDICATES 271

• The current execution environment has an active answer A

– table_error

• More than one thread is active:
– table_error

abolish_module_tables(+Module) Tabling
Given a module name (or the default module, usermod), this predicate abolishes
all tables for each tabled predicate in Module. It is implemented using a series of
calls to abolish_table_pred/1 and so inherits the behavior of that predicate.

gc_tables(-Number) Tabling
When a tabled subgoal or predicate is abolished, reclamation of its space may be
postponed if the subgoal or predicate has an answer that is active in the current
environment. A garbage collection routine is called at various points in execution
to check which answers are active in the current environment, and to reclaim the
space for subgoals and predicates with no active answers. In particular, space
for all abolished tables is reclaimed whenever the engine re-executes the main
command-line or C thread interpreter code. However for certain applications
this strategy may not be adequate. For this reason, the user can explicitly call
the table garbage collector to reclaim space for any deleted tabled predicates or
subgoals that no longer have active answers.
gc_tables/1 always succeeds, unifying Number to −1 if garbage collection was
not attempted (due to multiple active threads) and otherwise to the number of
tables still unreclaimed at the end of garbage collection.
Error Cases

• Number is not a variable
– type_error(variable)

delete_return(+TableEntryHandle,+ReturnHandle) Tabling
Removes the answer indicated by ReturnHandle from the table entry referenced
by TableEntryHandle. The value of each argument should be obtained from
some previous invocation of a table-inspection predicate.
This predicate is low-level so no error checking is done. In Version 3.3, this
predicate does not reclaim space for deleted returns, but simply marks the returns
as invalid.
Warning: While useful for purposes such as tabled aggregation, delete_return/2

can be difficult to use, both from an implementation and semantic perspective.

invalidate_tables_for(+DynamicPredGoal,+Mode) Tabling
This predicate supports invalidation of tables. Tables may become invalid if
dynamic predicates on which they depend change, due to asserts or retracts.
By default XSB does not change or delete tables when they become invalid; it
is the user’s responsibility to know when a table is no longer valid and to use
the abolish_table_* primitives to delete any table when its contents become
invalid.

CHAPTER 6. STANDARD AND GENERAL PREDICATES 272

This predicate gives the XSB programmer some support in managing tables and
deleting them when they become invalid. To use this predicate, the user must
have previously added clauses to the dynamic predicate, invalidate_table_for/2.
That predicate should be defined to take a goal for a dynamic predicate and a
mode indicator and abolish (some) tables (or table calls) that might depend on
(any instance of) that fact.
invalidate_tables_for(+DynamicPredGoal),+Mode simply backtracks through
calls to all unifying clauses of
invalidate_table_for(+DynamicPredGoal,+Mode). The Mode indicator can
be any term as long as the two predicates agree on how they should be used.
The intention is that Mode will be either ’assert’ or ’retract’ indicating the kind
of database change being made.
Consider a simple example of the use of these predicates: Assume the definition
of tabled predicate ptab/3 depends on dynamic predicate qdyn/2. In this case,
the user could initially call:

:- assert((invalidate_table_for(qdyn(_,_),_) :-

abolish_table_pred(ptab(_,_,_)))).

to declare that when qdyn/2 changes (in any way), the table for ptab/3 should be
abolished. Then each time a fact such as qdyn(A,B) is asserted to, or retracted
from, qdyn/2, the user could call

:- invalidate_table_for(qdyn(A,B),_).

The user could use the hook mechanisms in XSB (Chapter 9) to automatically
invoke
invalidate_tables_for whenever assert and/or retract is called.

Chapter 7

Multi-Threaded Programming in
XSB

id with Version 3.0, XSB supports the use of POSIX threads to perform separable compu-
tations, and in certain cases to parallelize them. POSIX threads have a simple and clear
API, and are available on all Unixes and by using open-source libraries, on Windows as well
(see Section 7.8 to configure under Windows). This chapter introduces how to program
with threads in XSB through a series of examplesi sections discuss performance aspects
of our implementation as well as describing relevant predicates. A general knowledge of
multi-threaded programming is assumed, such as can be found in [45, 8].

7.1 Getting Started with Multi-Threading

In Version 3.3 the default configuration of XSB does not include multi-threading. This is
partly because multi-threading is new, and despite our efforts, the multi-threaded engine
may contain bugs not present in the single-threaded engine. However the main reason is
because in Version 3.3, not all libraries and packages have yet been made thread-safe so
that not all configurations are supported with multi-threading. Both the XSB-calling-C
and the C-calling-XSB interfaces are supported in the multi-threaded engine. All XSB
libraries have been ported to the multi-threaded engine except the profiling library and the
string library (which is not yet thread-safe). The packages ODBC and CHR, FLORA-2, and
regmatch are supported by the multi-threaded engine, but the packages dbdrivers, xpath,
interprolog, smodels, perlmatch, libwww and posix are not yet fully supported. We
note, however that all basic/ISO Prolog functionality is thread-safe (at least, as far as we
know :-).

With this in mind, making the multi-threaded engine is simple: configure and make XSB
as in Chapter 3, but include the command –enable-mt. When you invoke the newly made

273

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 274

configuration of XSB you should see engine: multi-threading in the configuration list
below the banner rather than engine: slg-wam as in the sequential engine.

Hello World for Beginners We naturally start with a program to print “hello world”.
Within the multi-threaded engine, import thread_create/2 from the module thread, and
type the command

?- thread_create(writeln(’hello world’),Id)

you should see something like

Id = 1hello world

while the output is a little ugly, the “hello world” program does illustrate simple multi-
threading at work. The calling thread (i.e. the thread controlling the command-line in-
terpreter which we call Tprompt) executes the predicate thread_create/2 which creates
a thread Tchild and immediately returns with the XSB thread id of the created thread.
Meanwhile, Tchild initializes its stacks and other memory areas and executes the goal
writeln(’hello world’). Tchild and Tprompt share most of their process-level information:
in particular they share a common I/O stream for standard output, leading to the output
above. What is happening may be seen a little more easily by executing the command

?- thread_create((sleep(1),writeln(’hello world’)),Id)

In this case the interpreter reports that F is bound to a thread id, then about a second later
writeln/1 is executed.

The simple “hello world” program illustrates a couple of points. First, it is easy to create
a thread in XSB and have that thread do work. Second, it can be tricky to coordinate actions
among threads. We’ll explore these two themes in more detail, but first suppose we are
determined to extend out multi-threaded program so that it produces good output. One
way to do this is to join Tprompt and Tchild as follows

?- thread_create(writeln(’hello world’),Id),

thread_join(Id,ExitCode).

hello world

Id = 1

ExitCode = true

In this case, as soon as Tprompt has issued a command to create Tchild, it executes thread_join/2.
This latter predicate makes a system call to the underlying operating system to suspend

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 275

Tprompt until Tchild has exited. thread_join/2 returns a status term indicating whether
the goal to thread Id succeeded, failed, exited with an error term, or was cancelled (in this
case Id succeeded).

So far, we’ve introduced a few concepts that have not been fully discussed. First is
the concept of an XSB thread id: XSB manages up to M active threads using XSB thread
ids. The default for M in Version 3.3 is 1024, but M can be reset via the max_threads

command line option to XSB (cf. Section 3.7). Once XSB is initialized, the maximum
number of threads for an XSB session can be obtained at run time via the Prolog flag
max_threads (cf. Section 6.12). It should be noted that the XSB thread id of a thread
is different from the identifier of the underlying Pthread. An XSB thread id is a Prolog
term, and unlike POSIX thread ids, XSB thread ids can be compared for equality using
unification. The actual form of an XSB thread id, however, is subject to change between
versions, so programs should not make use of the exact form of an XSB thread id. In the
multi-threaded engine, the XSB thread id of any thread can be queried using the predicate
thread_self/1.

7.2 Communication among Threads

Example 7.2.1 Consider the program fragment

:- dynamic p/1.

test:- thread_create(assert(p(1)),_X).

If you type the goal ?- test and then the goal ?- p(X), the call p(X) will fail.

This illustrates an important point about dynamic and tabled predicates in the multi-
threaded engine: by default clauses for a dynamic predicate p/n are private to the thread
that asserts them; and by default tables created in an evaluation of a goal for p/n are
private to the thread that evaluates the goal. This behavior contrasts to that of static code
which is always shared between threads. In the example above, to allow p(1) to be visible
to various threads, p/1 must be declared to be shared with the following declaration.

:- table p/1 as shared.

or

:- dynamic p/1 as shared.

Alternately, dynamic and tabled predicates can be made thread-shared by default by
invoking XSB with the command-line argument –shared_predicates, in which case a
predicate may be declared thread-private through the declaration

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 276

:- table p/1 as private.

or

:- dynamic p/1 as private.

The ability to share dynamic code between predicates provides an extremely powerful
mechanism for threads to communicate. So why does XSB make dynamic predicates thread-
private by default? The main reason for this is that if dozens or hundreds of threads are
running concurrently, shared dynamic code becomes an expensive synchronization point.
Code for shared predicates must be more heavily mutexed than code for private predicates.
In the case of dynamic code, XSB does not always immediately reclaim the space of retracted
clause, to avoid the possibility of some computation backtracking into a clause that has
been reclaimed. Rather, (like most Prologs), XSB may decide to garbage collect the space
of the retracted clauses at a later time. While clause garbage collection is simple enough
to implement for a single thread, garbage collecting clauses for shared dynamic predicates
is difficult to do when multiple threads are active. Accordingly, in Version 3.3, space for
shared dynamic clauses is not reclaimed until there is a single active thread. However for
thread-private dynamic predicates, there is no problem in reclaiming space when multiple
threads are active: from the engine’s perspective garbage collection is no different than
in the sequential case. Thus one set of reasons for making dynamic predicates private by
default are based on efficiency 1.

The second reason for making dynamic predicates thread-private by default is seman-
tic. Suppose thread T1 starts a tabled computation that depends on the dynamic shared
predicate p/1. While T1 is computing the table, thread T2 asserts a clause to p/1. T1’s
table is likely to be inconsistent, leading to the problem of read consistency of any table
that depends on thread-shared dynamic predicates. In Version 3.3, users are responsible
for ensuring read consistency of any tables that depend on shared dynamic data. Future
versions of XSB are intended to allow more sophisticated mechanisms for read consistency.

Not only can tables depend on thread-shared or thread-private dynamic data, but the
tables themselves may be thread-shared or thread-private. Like dynamic code, the decla-
ration table Predspec as shared allows sharing of tables for a predicate evaluated with
call-variance to be shared among threads 2. To some extent, tabling considerations for
making a predicate thread-shared or thread-private are like those of dynamic code. Thread-
private tables require fewer synchronization points overall. The situation for reclaiming
space for abolished tables is analogous to reclaiming space for retracted dynamic clauses:
the garbage collector treats abolished tables for thread-private predicates as in the sequen-
tial case, while space for shared tables is not reclaimed until there is a single active thread.
However the precise semantics of how tabling information is shared depends on whether

1Future versions may offer more powerful garbage collectors for shared predicates.
2In Version 3.3, tabled predicates using call-subsumption are always private; an attempt to make such a

predicate thread-shared throws an exception.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 277

the multi-threaded engine is configured with the default local evaluation or with batched
evaluation. As discussed in Chapter 5, local evaluation is so-named because computation
always takes place in the SCC most recently created, and no answer is returned outside of
an SCC until the SCC has been completely evaluated. Within this scheduling strategy it is
not often useful to share answers between tables that have not been completed – as local
evaluation would allow these answers to be returned only if the tables were in the same
SCC. This leads to a concurrency semantics called Shared Completed Tables [49, 50, 52].
Shared Completed Tables can in fact be supported by a relatively simple algorithm for op-
timistic concurrency control. If goals to two mutually dependent tables Tablea and Tableb

are called concurrently by two different threads, Threada and Threadb, nothing is done
until it is detected that Tablea and Tableb are both incomplete and are contained in the
same SCC of the table dependency graph. At that time, one of the threads (e.g. Threada)
takes over recomputation of all tables in the SCC, and when the SCC is completed, any
remaining answers are returned to other threads that had invoked goals in the SCC. While
Threada is completing this computation, Threadb suspends until the SCC is complete.
Thus the semantics of Shared Completed Tables supports concurrency for the well-founded
semantics, but only supports the most coarse-grained parallelism.

Batched evaluation, on the other hand, allows answers to be returned outside of an
SCC before that SCC has been completed. Concurrency control for batched evaluation is
similar to that for local evaluation, except in the following case. Assume as before that
Tablea, first called by Threada, and Tableb first called by Threadb are determined to be
in the same SCC, and that Threada takes over computation of subgoals in the SCC. Now,
Threadb, rather than suspending, may continue work. In particular, Threadb can return any
answers in Tableb that it finds whenever it finds them, regardless of whether they have been
produced by Threadb (before Threada took over the SCC) or by Threada (afterwards). We
call this type of concurrency semantics, Table Parallelism. Table Parallelism can be used to
program producer-consumer examples, as well as to implement Or- and And- parallelism.
Table Parallelism was first introduced in [26], but the mechanism now used for implementing
Table Parallelism differs significantly from what was described there. In Version 3.3 of
XSB, the implementation of Table Parallelism is experimental: in particular, it does not
yet support tabled negation.

As mentioned, for either semantics of shared tables, in Version 3.3, users of thread-
shared tables are responsible for ensuring read consistency. Note that, in principle, thread-
shared tables may depend on thread-private tables and vice-versa. Either type of table
may depend on thread-private or thread-shared dynamic code. In addition, a predicate
may be both dynamic and tabled, and its clauses and tables may be either thread-private
or thread-shared.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 278

7.3 Thread Statuses: Joinable and Detached Threads

So far we have assumed that the goal called in thread_create/2 terminates normally —
by success or failure. But what if a thread throws an error while executing a goal? How
long should error information for a thread persist, and how can it be checked?

Our approach relies on the semantics of Pthreads, which can be either joinable or de-
tached. Within this framework, we consider a thread to be valid if it has not yet terminated,
or if it is joinable and has not yet been joined. After a joinable Pthread Tdead has termi-
nated, status information about Tdead persists until some other thread joins it — at which
time the information is removed. On the other hand, if Tdead is detached, status infor-
mation is removed as soon as Tdead terminates. Reclamation of thread status information
may be contrasted to that of thread-specific data structures such as stacks. Upon normal
or exceptional termination of Tdead, any memory automatically allocated in the process of
initializing Tdead’s, or executing its goal – including stacks, private dynamic code, private
tables is reclaimed. In addition, any mutexes held by Tdead, are released. On the other hand,
XSB-specific status information about threads follows the Pthread model: by default, error
information is available when joining a joinable thread, but not otherwise 3.

Example 7.3.1 Suppose the goal

?- thread_create(functor(X,Y,Z),F).

is executed. By default, this will produce the result

X = _h113

Y = _h127

Z = _h141

F = 1++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate functor/3

In fact, the variable bindings are output to STDOUT, while the error message

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate functor/3

is output to STDERR, and may be redirected. The call

?- thread_join(2,Error).

returns

3This behavior can, of course, be overridden by embedding goals within catch/3 and handling errors
separately, or simply by adding a default user error handler: see Chapter 12 for details.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 279

Error = exception(error(instantiation_error, in arg 2 of predicate functor/3,

[[Forward Continuation...,... standard:call/1,... standard:catch/3],

Backward Continuation...]))

In other words, Error is instantiated to a exception/1 structure, containing a standard
XSB error term (including backtrace).

The error term in the above example is one example of a thread status term. In XSB, these
thread statuses are as follows.

• running The thread is still executing

• true The thread has exited and successfully evaluated its goal.

• false The thread has exited and failed its goal.

• exception(Exception) The thread has been terminated due to an uncaught excep-
tion, represented by the term Exception which is a standard XSB error term.

• cancelled(Exception) The thread has been terminated due to a thread cancellation,
represented by the term Exception which is a standard XSB error term.

• exited(ExitTerm) The thread has been terminated using the predicate thread exit/1

with ExitTerm as its argument.

Any of these statuses except running may be returned by thread_join/2. In Prolog, the
statuses of exited threads provide much more information than C exit codes.

As with pthreads, XSB threads are created as joinable by default, but can be created as
detached using an option in thread_create/3. Alternatively, a thread created as joinable
can be made detached by thread_detach/1. All of the predicates mentioned in this section
are fully described in Section 7.9.

7.4 Prolog Message Queues

While Prolog predicates can communicate through shared dynamic code and tables, message
queues provide a useful mechanism for one thread to pass a command to another or to
synchronize on the return of data. A Prolog message queue contains an arbitrary Prolog
Term, and unification may be used to obtain a term from a queue. More specifically, when
a producer writes Term into a queue, the term is copied into the queue so that no binding
are shared between Term and the producer’s stacks. Term may include structures or lists
and need not be bound, and any variable bindings within Term are preserved. When a

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 280

consumer Tcons accesses the queue it provides a goal G and traverses the queue until it finds
a term in the queue that unifies with G. If Tcons finds a term in the queue that unifies
with G, it removes it from the queue and continues in its computation. If there is no term
in the queue that unifies with G, Tcons will suspend until at least one other term is added
to the queue. When it awakens it will retraverse the queue from the beginning to find a
term that unifies with G 4. Because of the behavior of message queues, it is usually good
programming practice to ensure that terms written into the queue will unify with the goals
of consumers. This can usually be done by abstracting a consumers goal (say to a variable,
X) or by splitting one “multiplexed” queue into two separate queues.

A Prolog message queue can be public or private: a public message queue can have
any number of readers and writers. In addition, each thread T also has a private message
queue QT : any thread can write to QT but only T can read from it. The following example
illustrates how to use private message queues:

test_private:-

thread_id(Tid),

thread_create(child(Tid),Id),

thread_get_message(’Mom Im home’(ChildId)),

thread_send_message(ChildId,’Im in the kitchen’),

thread_join(Id,_).

child(Parent):-

thread_self(Id),

thread_send_message(Parent,’Mom, Im home’(Id)),

thread_get_message(’Im in the kitchen’).

If ?- test is called by Tparent, it will obtain its own thread id, create a new thread Tchild to
execute child/1, wait for a message that Tchild is operational using thread_get_message/1,
send a message to Tchild using thread_send_message/2 and then wait for Tchild to termi-
nate. When it is created, Tchild immediately sends a message to its parent, waits for a
message back from its parent, and terminates.

It is illustrative to compare

test_public:-

message_queue_create(Qid)

thread_create(child(Qid),Id),

thread_get_message(Qid,’Mom Im home’(ChildQ)),

thread_send_message(ChildQ,’Im in the kitchen’),

thread_join(Id,_),

4Note that this traversal is necessary since the position of Tcons may in the queue may not be valid due
to the addition and deletion of terms by other threads.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 281

message_queue_destroy(Qid).

child(ParentQ):-

message_queue_create(Qid),

thread_send_message(ParentQ,’Mom, Im home’(Qid)),

thread_get_message(Qid,’Im in the kitchen’),

message_queue_destroy(Qid).

test_public is essentially the same program as test_private, but uses public message
queues, rather than private queues. The public queues must be explicitly created and
destroyed, and they are referred to via a queue id (or alias) rather than via a thread id (or
alias). Like thread ids, queue ids in XSB are integers, but a user should not depend on their
precise form: aliases should be used if a user wants control of queue or thread identifiers.

Thus, apart from who can read from them, private and public message queues have
essentially the same behavior. In addition, any queue can be created with a bound, size on
the number of messages (terms) it contains. If size is 0, the queue is taken to be unbounded.
If a bounded queue already contains size elements, the producer will suspend until one or
more elements are removed from the queue. For public queues, a size argument can be
passed using the predicate message_queue_create/2 (See Section 7.9). For private queues,
and for public queues created with message_queue_create/1, the value for size is taken
from the settable Prolog flag max_queue_terms. The default value for max_queue_terms is
currently 100.

7.5 Thread Cancellation and Signalling

There may be a number of situations in which it is useful to give one thread the ability
to cancel the execution of another thread. Within the semantics of pthreads, this is called
thread cancellation. At the C level, thread cancellation can be tricky, as mutexes must be
released, allocated memory freed, and so on. Accordingly, the predicate thread_cancel/1

cancels XSB threads by acting purely within the SLG-WAM engine. When thread T1

interrupts thread T2, T1 writes to the thread-specific XSB interrupt vector in T2. Later,
when T2 checks its interrupt vector, it throws a cancellation error, which causes it to clean
up its mutexes, memory, private tables and dynamic code, and then exit.

Thread cancellation is just a special case of Prolog thread signalling, in which one thread
can signl another thread to interrupt what it is doing and execute a goal 5. The following
code provides an example of thread signalling.

test_signal:-

5Prolog thread signalling should be distinguished from signalling at the OS level where functions such as
pthread_kill() or kill() are used.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 282

thread_self(Tid),

thread_create(child(Tid),T1,[]),

thread_get_message(’Im alive’),

thread_signal(T1,writeln(’Excuse me, but did you just kick me?’)),

thread_join(T1,_Ball),

writeln(test5_ok).

child(Tid):-

thread_send_message(Tid,’Im alive’),

loop.

loop:- loop.

test_signal begins like test_private, but rather than waiting for a signal from its parent,
the child goes into an infinite loop. The signal interrupts the child, which writes out a
message and returns to the infinite loop.

Thread signals may be any callable Prolog term. As with private message queues, each
thread is created with its own private signal queue (there are no public signal queues). In
XSB, threads handle Prolog signal interrupts (including cancellation messages) at the same
time as attributed variable interruptions. This means that Prolog signal interrupts will be
handled very quickly if SLG-WAM code is being executed. On the other hand, if a thread
executing a builtin to, e.g. waiting on a mutex, the thread may be immediately awakened
to process the signal, but not always: if a thread is waiting for input on a stream or socket,
the thread may not handle the signal interrupt until the input is received. Furthermore,
in a very few critical sections of code, thread signal handling may be distabled. However,
the thread is guarenteed to handle the signal interrupt or cancellation message very shortly
after it finishes the builtin.

So, while thread cancellation and signalling is useful, it must be used with a certain
amount of care. Any thread can signal any other thread, and any thread can cancel any
other thread, with the exception that the main thread, which controls the console (or
interface to C or interprolog) cannot be cancelled. The main thread always has XSB thread
id 0 in both the single-threaded and multi-threaded systems, and has the thread alias main.

7.6 Performance and other Considerations

For running programs that do not use multiple threads, the multi-threaded engine has
a minimal overhead compared to the single-threaded engine. Times for single-threaded
execution of Prolog or tabled programs range from about 10–20% slower to 10–20% faster
for the multi-threaded engine compared to the single-threaded engine. Speedups for running
multiple threads on multiple processors depends heavily on the applications run and on the
underlying operating system.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 283

The size of a given thread may be a consideration for multi-threaded applications, espe-
cially on a 32-bit platform (the multi-threaded engine has been tested on both 32-bit and
64-bit platforms). Each thread has an area of thread-private variables that are “global” to
its own virtual machine. This area, called the thread context, which accounts for about 4
Kbytes of space. Much larger are the various stacks used by the threads for tabled and
Prolog execution. Almost all of XSB’s memory areas are fully expandable, and the initial
size of the execution stacks may be set explicitly as options in thread_create/3. Explicitly
setting a default thread stack size for an XSB thread to be smaller than the default process
stack size may be useful for applications that have a large number of concurrently running
threads.

Other performance considerations involve the contention by threads for shared resources.
As discussed above, contention may arise when creating or abolishing tables, or when as-
serting or retracting dynamic code — however in either case thread-private predicates give
rise to less contention than thread-shared predicates. In terms of I/O, each XSB stream up
to the maximum number of file descriptors has its own mutex; as a result threads writing to
different streams will not contend for I/O. Thus, in multi-threaded applications, it may be
more efficient to open and close streams and access these streams explicitly, than to redirect
standard input or standard output through see/1 and tell/1.

7.7 Examples of Multi-Threaded Programs in XSB

Figure 7.1 shows an example of a multi-threaded goal server in XSB, which makes use of
XSB’s socket library (see Volume 2 of this manual) 6. The server listens for requests from
clients using socket_accept/2 and spawns a thread to handle each request via the goal
accept_client/2 which actually calls the goals. The goals executed by the server could
be tabled and take advantage of the shared table implementation, shared dynamic code,
or any other mechanism in XSB. Halting of the server is done by the thread cancellation
mechanism, and a shared dynamic predicate is used to make the server’s thread identifier
known to the other threads. Note that this is the reason a specific thread was created to
execute server_loop, as the main thread cannot be canceled.

Figure 7.2!la uses a multi-threaded execution model to compute a series of prime num-
bers in parallel 7, The master thread partitions the work and creates two worker threads.
The worker threads each compute its portion of the interval and return their results to the
master through a message queue.

Notice how the primes/2 predicate uses difference lists to avoid the use of the append
predicate8, and while threads don’t share variables, the bindings of the terms in the messages

6Material in this section is based on [49].
7This example was inspired by a similar example for multi-threaded computation of primes in from

Logtalk [53]
8For a description on how to program with difference lists see a Prolog programming text, such as[70]).

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 284

:- dynamic server_id/1 as shared.

server :-

socket(SockFD),

socket_set_option(SockFD, linger, SOCK_NOLINGER),

xsb_port(XSBport),

socket_bind(SockFD, XSBport),

socket_listen(SockFD,Q_LENGTH),

thread_create(server_loop(SockFD), Id, []),

assert(server_id(Iden)),

thread_join(Iden).

server_loop(SockFD) :-

socket_accept(SockFD, SockClient),

thread_create(attend_client(SockClient)),

server_loop(SockFD).

attend_client(SockClient) :-

socket_recv_term(SockClient, Goal),

(Goal == stop ->

retract(server_id(Server)),

thread_cancel(Server),

socket_close(SockClient),

thread_exit

; true

),

(is_valid(Goal) ->

call(Goal),

socket_send_term(SockClient, Goal),

fail,

; socket_send_term(SockClient, invalid_goal(Goal))

),

socket_send_term(SockClient, end),

socket_close(SockClient).

Figure 7.1: A multi-threaded goal server in XSB

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 285

are correctly handled, allowing Prolog’s unification to assume its full power. Although only
two threads are used, the program could easily be extended to use an arbitrary number of
threads

7.8 Configuring the Multi-threaded Engine under Windows

Libraries for pthreads are included on most versions of Unix and Linux. Windows also
supports multi-threading, but with a somewhat different semantics and API than that
of pthreads. To run multi-threaded XSB under Windows, a library must be included to
translate the Pthread library, used by XSB, to the native thread API of Windows.

Different libraries are available for this purpose. Internally, the multi-threaded engine
has been tested using the Win32 pthreads interface, available via http://sourceware.org/pthreads-win32,
but other libraries may also work, including Pthread library included with Cygwin. To
install the sourceware library, let $XSBENV be the parent directory of $XSBDIR the root
directory of XSB – i.e. $XSBENV is the directory into which XSB is installed.

• Download a version such as pthreads-2005-01-25.exe or later, and extract it into
$XSBENV

pthreads. Add $XSBENV\pthreads\Pre-built\lib to your system path

• To configure with windows enter the commands:

sh configure --enable-mt --with-wind \

--with-includes=’c:\XSBSYS\XSBENV\pthreads\Pre-built\include \

--with-static-libraries=’c:\XSBSYS\XSBENV\pthreads\Pre-built\lib

makexsb_wind

Note that the Unix sh shell must be available in order to reconfigure.

• To configure with cygwin enter the commands:

sh configure --enable-mt \

--with-includes=’/cygdrive/c/XSBSYS/XSBENV/pthreads/Pre-built/include’ \

--with-static-libraries=’/cygdrive/c/XSBSYS/XSBENV/pthreads/Pre-built/lib’

sh makexsb --config-tag=mt

7.9 Predicates for Multi-Threading

The predicates described in this section do not address tabling or dynamic code. With only
a few minor deviations the provisional working standard described in [36] is supported.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 286

prime(P, I) :- I < sqrt(P),!.

prime(P, I) :- Rem is P mod I, Rem = 0, !, fail.

prime(P, I) :- I1 is I − 1, prime(P, I1).

prime(P) :- I is P − 1, prime(P, I).

list_of_primes(I, F, Tail, Tail) :- I > F, !.

list_of_primes(I, F, [I|List], Tail) :-

prime(I), !,

I1 is I + 1, list_of_primes(I1, F, List, Tail).

list_of_primes(I, F, List, Tail) :-

I1 is I + 1, list_of_primes(I1, F, List, Tail).

partition_space(N, H, H1) :-

H is N//2, H1 is H + 1.

worker(Q, Iden, I, F, List, Tail) :-

list_of_primes(I, F, List, Tail),

thread_send_message(Q, primes(Iden,List,Tail)).

master(N, L) :-

partition_space(N, H, H1),

message_queue_create(Q),

thread_create(worker(Q, p1, 1, H, L, L1)),

thread_create(worker(Q, p2, H1, N, L1, [])),

thread_get_message(Q, primes(p1,L,L1)),

thread_get_message(Q, primes(p2,L1,[])).

Figure 7.2: A multi-threaded program to calculate prime numbers in XSB

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 287

As a result, these predicates are substantially the same as those in SWI, YAP, and other
Prologs. In the single-threaded engine, semantically correct calls to these predicates will
give a miscellaneous error.

thread_create(+Goal,ThreadId,+OptionsList)

When called from thread T , this predicate creates a new XSB thread Tnew to execute
Goal. When goal either succeeds, throws an unhandled error, exits, or fails, Tnew

exits, but thread_create/2 will succeed immediately, binding ThreadId to the XSB
thread id of Tnew. Goal must be callable, but need not be fully instantiated. No
bindings from Goal are passed back from T to Tnew, so communication between Tnew

and T must be through tables, asserted code, message queues or other side effects.

OptionList allows optional parameters in the configuration for the initial size of XSB
stacks, for aliases, and to indicate whether Tnew is to be created as detached. Note
that XSB threads allow automatic stack allocation, so that the size options may be
most useful for (32-bit) applications with very large numbers of threads. In this case,
setting initial stack sizes to be small may allow more threads to be created on a given
hardware platform. Also note that only XSB stacks are affected, the stack size of the
underlying Pthread remains unaltered.

• glsize(N): create thread with global (heap) plus local stack size initially set to
N kbytes. If not specified, the default size is used. The default size can be set at
the command line (cf. Section 3.7), and altered at run time by the Prolog flag
thread_glsize (cf. Section 6.12).

• tcpsize(N): create thread with trail plus choice point stack size initially set to
N kbytes. If not specified, the default size is used (cf. Section 3.7). The default
size can be set at the command line (cf. Section 3.7), and altered at run time by
the Prolog flag thread_tcpsize (cf. Section 6.12).

• complsize(N): create thread with completion stack size initially set to N kbytes.
If not specified, the default size is used (cf. Section 3.7). The default size can be
set at the command line (cf. Section 3.7), and altered at run time by the Prolog
flag thread_complsize (cf. Section 6.12).

• pdlsize(N): create thread with N kbytes of unification stack. If not specified, the
default size is used (cf. Section 3.7). The default size can be set at the command
line (cf. Section 3.7), and altered at run time by the Prolog flag thread_pdlsize

(cf. Section 6.12).

• detached(Boolean): if Boolean is true, creates detached thread. If Boolean is
false, the thread created will be joinable, while if no option is given the default will
be used. In Version 3.3 threads are created joinable by default, but this default
can be altered at run time by the Prolog flag thread_default (cf. Section 6.12).

• on_exit(Handler): Ensures that Handler is called whenever the thread exits:
whether that exit arises from success of Goal, failure, throwing an error that is
unhandled in the user’s program, or an explicit call to thread_exit/1.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 288

• alias(Alias): Allow thread ThreadId to be referred to via Alias in all standard
thread predicates. Alias remains active for ThreadId until it is joined. Note
that the main XSB thread has alias main.

Finally, each thread is created with a signal queue and a private message queue, so
these queues do not need to be explicitly created. Their size is obtained through the
settable Prolog flag max_queue_terms.

Error Cases

• Goal is a variable

– instantiation_error.

• Goal is not callable

– type_error(callable,Goal).

• ThreadId is not a variable

– type_error(variable,ThreadId)

• OptionList is a partial list or contains an option that is a variable

– instantiation_error

• OptionList is neither a list nor a partial list

– type_error(list,OptionsList)

• OptionList contains an option, Option not described above

– domain_error(thread_option,Option)

• An element of OptionsList is alias(A) and A is already associated with an
existing thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of OptionsList is alias(A) and A is not an atom

– type_error(atom,A)

• An element of OptionsList is on_exit(Handler) and Handler is not callable

– type_error(callable,Handler).

• No more system threads are available (EAGAIN)

– resource_error(system threads)

thread_create(+Goal,-ThreadId)

Acts as thread_create(Goal,ThreadId,[]).

thread_create(+Goal)

Acts as thread_create(Goal,_,[detached(true)]).

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 289

thread_join(+Threads_or_aliases,-ExitDesignators)

When thread_join/2 is called by thread T , Threads_or_aliases must be instanti-
ated to either 1) an XSB thread id or alias; or 2) a list where each element is an XSB
thread id or an alias; ExitDesignators must be uninstantiated. The action of the
predicate is to suspend T until all of the threads denoted by Threads_or_aliases

have exited. At this time, any remaining resources for the threads in ThreadIds will
have been reclaimed. Upon success ExitDesignators is either a the thread status of
the associated thread (see page 279) or a list of such elements.

Error Cases

• Thread_or_Aliases is not instantiated

– instantiation_error

• Threads_or_aliases is not a list of XSB thread ids or aliases

– domain_error(listof(thread_or_alias),ThreadIds)

• ExitDesignators is not a variable

– type_error(variable,ExitDesignatorst)

• ThreadId does not correspond to a valid thread

– existence_error(valid_thread,ThreadId)

• ThreadId does not correspond to a joinable thread (i.e. ThreadId is detached).

– permission_error(join,non_joinable_thread,ThreadId)

thread_exit(+ExitTerm)

Exits a thread T with ExitTerm after releasing any mutexes held by T , freeing any
thread-specific memory allocated for T (we hope), as well as calling any exit handlers
for T . ExitTerm will be used if the caller of T joins to T , but will be ignored in other
cases. There is no need to call this routine on normal termination of a thread as it is
called implicitly on success or (final) failure of a thread’s goal.

Error Cases

• ExitCode is a variable

– instantiation_error

thread_self(?ThreadId_or_Alias)

If ThreadId is an atom, unifies ThreadId_or_Alias with an alias of the calling thread.
Otherwise, unifies ThreadId_or_Alias with the XSB thread id of the calling thread.
There are no error conditions.

thread_detach(+Thread_or_Alias)

Detaches a joinable thread denoted by Thread_or_Alias so that all resources will be
reclaimed upon its exit. The thread denoted by ThreadId will no longer be joinable,

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 290

once it is detached. If Thread_or_Alias has already exited, all resources used by
Thread_or_Alias are removed from the system.

Error Cases

• Thread_or_Alias is a variable

– instantiation_error

• Thread_or_Alias is not a thread id or alias

– domain_error(thread_or_alias,Thread_or_Alias)

• Thread_or_Alias does not correspond to a valid thread

– existence_error(valid_thread,Thread_or_alias)

• Thread_or_Alias is active but not joinable

– permission_error(thread_detach,thread,Thread_or_Alias)

thread_cancel(+Thread_or_Alias)

Cancels the XSB thread denoted by Thread_or_Alias. The cancellation does not
use Pthread cancellation mechanisms, rather it uses XSB’s interrupt mechanism to
set Thread_or_Alias’s interrupt vector 9. When this interrupt vector is checked,
Thread_or_Alias will throw a thread cancellation error, which can be caught within
Thread_or_Alias like any other error. However, the default behavior is for Thread_or_Alias

to exit with an exit ball indicating that it has been cancelled.

As noted above, an executing thread that is cancelled will exit very shortly after
the thread_cancel/1 predicate is called. Blocked threads, however, are not always
guarenteed to exit when cancelled. Currently a blocked thread may be cancelled

• when it is waiting to read or write a message on a queue

• when it is executing thread_sleep/1

On the other hand, a blocked thread may not be cancelled while it is waiting to read
from a stream or waiting for a mutex.

During critical operations a thread may want to prevent itself from being cancelled.
This can be done by If ?- thread_cancel(T) is called for a thread T for which
cancelling has been disabled, T will be cancelled immediately after T re-enables can-
cellation through calling the predicate thread_enable_cancel/0.

The main XSB thread cannot be cancelled; apart from that any thread can cancel
any other thread.

Error Cases

• Thread_or_Alias is not instantiated

– instantiation_error

9This interrupt vector is checked upon every it is checked on every SLG-WAM call and execute instruction.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 291

• Thread_or_Alias is not a thread id or alias

– domain_error(thread_or_alias,Thread_or_Alias)

• Thread_or_Alias does not correspond to valid thread

– existence_error(valid_thread,Thread_or_Alias)

• Thread_or_Alias denotes the main thread.

– permission_error(cancel,main_thread,Thread_or_Alias)

thread_signal(Thread_or_Alias,Goal)

thread_signal(ThreadOrAlias, Goal) interrupts thread ThreadOrAlias so that it
executes Goal at the first opportunity. Specifically, once Goal is placed onto the sig-
nal queue of ThreadOrAlias and the interrupt vector of ThreadOrAlias is adjusted,
thread_signal/2 succeeds. ThreadOrAlias handles the interrupt asynchronously,
and if the interrupt is handled while ThreadOrAlias is executing a goal with contin-
uation C, all solutions for Goal will be obtained, and the failure continuation of Goal

will be C. If Goal throws an exception E, the continuation will be the handler for E.

For blocked threads, signalling works much like cancellation (described above), and a
blocked thread will handle a signal whenever it can be cancelled. However, the thread
does not return to the blocking operation after the signal – rather it will execute the
signal and then execute the continuation to be taken after the blocking operation.

Error Cases

• Thread_or_Alias is not instantiated

– instantiation_error

• Thread_or_Alias is not a thread id or alias

– domain_error(thread_or_alias,Thread_or_Alias)

• Thread_or_Alias does not correspond to valid thread

– existence_error(valid_thread,Thread_or_Alias)

• Goal is not instantiated

– instantiation_error

• Goal is not callable

– type_error(callable,Goal)

thread_disable_cancel module: thread

Disables the calling thread from being cancelled, so that it can be ensured that critical
operations can run to completion. This predicate always succeeds.

thread_enable_cancel module: thread

Enables the calling thread to be cancelled. By default, threads may be cancelled, so
this predicate needs to be called if thread_disable_cancel/0 has been previously
called. This predicate always succeeds.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 292

thread_yield

Make the calling thread ready to be run after other threads of the same priority. This
predicate relies on the real-time extensions to pthreads specified in POSIX 1b, and
may not be available on all platforms.

Error Cases

• The current platform does not support POSIX real-time extensions

– misc_error

thread_property(?ThreadOrAlias,?Property)

If ThreadOrAlias is instantiated, unifies Property with current properties of the
thread that unify with Property; if ThreadOrAlias is a variable, backtracks through
all the current threads whose properties unify with Property. Note that there is no
guarantee that that the information returned will be valid, due to concurrency issues.

Currently Property can have the form

• detached(Bool): if Bool is true the thread is detached, otherwise it is joinable.

• alias(Alias): if the thread has an alias Alias

• status(Status): see Section 7.3 for thread statuses that are currently sup-
ported.

Example: The following predicate may be used to clear resources from the thread
table, although due to concurreny reasons, non-running threads may remain in the
thread table after this predicate terminates.

clear_thread_table:-

thread_property(Tid,status(S)),

\+ (S = running),

thread_join(Tid),

fail.

clear_thread_table.

Error Cases

• ThreadOrAlias is neither a variable nor an XSB thread id nor an alias

– domain_error(thread_or_alias, ThreadOrAlias)

• ThreadOrAlias is not associated with a valid thread

– existence_error(thread, ThreadOrAlias)

thread_sleep(+MilliSeconds)

Causes the calling thread to sleep approximately MilliSeconds before resuming. A
thread may be cancelled while sleeping. However, a sleeping thread that is signalled
will execute the signalled goal and resume execution without returning to sleep.

Error Cases

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 293

• Seconds is a variable

– instantiation_error.

• Seconds is not an integer

– type_error(integer, Seconds).

7.9.1 Predicates for Thread Synchronization and Communication

Threads can communicate to some extent through shared tables and dynamic code. How-
ever, it is often useful to use message queues as a synchronizable form of communication.
Similarly, while the XSB engine itself is thread-safe, thread synchronization may be needed
when calling a package that is not itself thread safe (see the beginning of this chapter for
a list of which packages are and are not thread-safe). Synchronization may also be needed
to protect data accessed by foreign function calls, or to coordinate responses to external
events.

Prolog Message Queues

As described previously, each thread is created with a private message queue that is readable
only by itself. The following predicates are used to communicate using private and public
message queues.

message_queue_create(-Queue,+Options)

Creates a new public message queue with identifier Queue. Options allows optional
parameters to be passed for the maximum number of terms in the queue, and for
aliases of the queue.

• max_terms(N): create queue so that it can contain at most N terms before writes
to the queue block. If not specified, the default size is used. This default can
be queried and altered at run time via the Prolog flag queue_max_terms. (cf.
Section 6.12). If the flag queue_max_terms is set to 0, the queue size will be
bounded only by available memory.

• alias(Alias): Allow queue Queue to be referred to via Alias in all standard
queue predicates. Alias remains active for Queue until it is destroyed.

Error Cases

• Queue is not a variable

– type_error(variable,Queue)

• Options is a partial list or a list with an element that is a variable

– instantiation error

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 294

• Options is neither a partial list or a list

– type error(list, Options)

• Options contains an option, Option not described above

– domain_error(queue_option,Option)

• An element of Options is alias(A) and A is already associated with an existing
thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of Options is alias(A) and A is not an atom

– type_error(atom,A)

message_queue_detroy(+Queue_or_Alias)

Destroys a public message queue with alias or id Queue_or_alias, as created by
message_queue_create/[1,2]. If any threads are currently waiting on Queue_or_Alias

to read or write a term, they will be awakened and will throw an existence error.

Error Cases

• Queue_or_Alias is a variable

– instantiation_error

• Queue_or_Alias is not a queue id or alias

– domain_error(queue_or_alias,Queue_or_Alias)

• Queue_or_Alias denotes a private message queue or signal queue rather than a
public message queue

– permission_error(destroy,private_signal_or_message_queue,Queue_or_Alias)

• Queue_or_alias is not the queue name or alias of a public message queue.

– existence_error(message_queue, Queue_or_Alias)

thread_send_message(+Queue_or_Alias,#Message)

Queue_or_alias may either be a queue id or alias, or a thread id or alias in which
latter case the private queue for a thread is used. If there are fewer terms on
Queue_or_Alias than the queue’s maximum allowed number thread_send_message/2

puts Message onto Queue_or_Alias, and returns immediately. Otherwise, the calling
thread suspends until there are fewer elements on Queue_or_Alias than the queue’s
maximum allowed number, when the thread will be awakened to put Message onto
the queue.

Error Cases

• Queue_or_Alias is a variable

– instantiation_error

• Queue_or_Alias is not a queue id, queue alias, thread id, or thread alias.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 295

– domain_error(queue_or_alias,Queue_or_Alias)

thread_get_message(+Queue_or_Alias,?Message)

If there are terms on Queue_or_Alias thread_get_message/2 traverses Queue_or_Alias

to obtain the first term T that unifies with Message. If T exists, the predicate returns
with Message bound to the most general unifier of Message and T . If there are no
terms on Queue_or_Alias or if no terms unify with Message, the calling thread sus-
pends until at least one term is added to Queue_or_Alias. When the thread awakes,
it will recheck Queue from its beginning for a term that unifies with Message.

Error Cases

• Queue_or_Alias is a variable

– instantiation_error

• Queue_or_Alias is not a queue id or alias

– domain_error(queue_or_alias,Queue_or_Alias)

– existence error(queue, Queue_or_Alias)

thread_get_message(?Message)

Acts as thread_get_message/2, but on a thread’s private queue.

thread_peek_message(+Queue_or_Alias,?Message)

If there are terms on Queue_or_Alias thread_peek_message/2 traverses Queue_or_Alias

to obtain the first term T that unifies with Message. If T exists, the predicate returns
with Message bound to the most general unifier of Message and T . If there are no
terms on Queue_or_Alias or if no terms unify with Message, the predicate fails.

Error Cases

• Queue_or_Alias is a variable

– instantiation_error

• Queue_or_Alias is not a queue id or alias

– domain_error(queue_or_alias,Queue_or_Alias)

• Queue_or_Alias is not associated with a current queue

– existence error(queue, Queue_or_Alias)

thread_peek_message(?Message)

Acts as thread_peek_message/2, but on a thread’s private queue.

User-defined Mutexes

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 296

Usually, running multi-threaded evaluations does not requre a user to set any mutexes –
necessary mutexes are handled by XSB itself (we hope), and programs can often be written
so that user-level locking is unnecessary. However, under certain conditions, locking is
useful or even necessary: for instance, a user may need to set a lock so that a set of shared
dynamic facts cannot be accessed when it is updated.

One of the simplest and most powerful primitives for locking are mutexes. The mutexes
provided by the following predicates are recursive: if a thread T locks a recursive mutex M ,
any calls to mutex_lock(M) made by T will immediately succeed without suspending while
M is locked. Other threads that attempt to lock M will suspend until M is unlocked. To
unlock M after n calls to mutex_lock(M), T must make n calls to mutex_unlock(M).

When using mutexes in XSB, programmers must not only avoid explicitly creating
deadlocks, but must also ensure that a mutex is unlocked when leaving a critical area,
and destroyed when it is no longer needed. Making sure that this happens for successful
goals, for failed goals and for goals that raise exceptions can sometimes be complicated. The
predicate with_mutex/2 handles all of these cases. We recommend using it if possible, and
making use of lower-level calls to mutex_lock/1, mutex_unlock/1 and mutex_trylock/1

only in rare cases when with_mutex/2 is not applicable.

with_mutex(+Mutex,?Goal)

Locks a current mutex or aliasMutex, executes Goal deterministically, then unlocks
Mutex. If Goal leaves choice-points, these are destroyed. Mutex is unlocked regardless
of whether Goal succeeds, fails or raises an exception. Any exception thrown by Goal

is re-thrown after the mutex has been successfully unlocked.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Locking Mutex would give rise to a deadlock 10

– permission_error(mutex,lock,Mutex)

• Goal is a variable

– instantiation error

• Goal is neither a variable nor a callable term

– type error(callable, Goal)

10This error case handles the EDEADLK return code on MacOS X, and other platforms.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 297

mutex_create(?Mutex)

Creates a new recursive user mutex with identifier Mutex. Options allows optional
parameters to be passed, currently only for aliases of the mutex.

• alias(Mutex): Allow queue Mutex to be referred to via Mutex in all standard
queue predicates. Mutex remains active for Mutex until it is destroyed.

Error Cases

• Mutex is not a variable

– type_error(variable,Mutex)

• Options is a partial list or a list with an element that is a variable

– instantiation error

• Options is neither a partial list or a list

– type error(list, Options)

• Options contains an option, Option not described above

– domain_error(mutex_option,Option)

• An element of Options is alias(A) and A is already associated with an existing
thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of Options is alias(A) and A is not an atom

– type_error(atom,A)

mutex_destroy(+Mutex)

Destroys a current unlocked mutex with alias or id Mutex along with any memory it
uses.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Mutex is locked

– permission_error(mutex,destroy,Mutex)

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 298

mutex_lock(+Mutex)

mutex_lock(Mutex) locks a (recursive) mutex with alias or id Mutex. Locking and
unlocking mutexes should be paired carefully in order to avoid deadlocks. In partic-
ular, a programmer needs to ensure that mutexes are properly unlocked even if the
protected code fails or raises an exception.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Locking Mutex would give rise to a deadlock 11

– permission_error(mutex,lock,Mutex)

mutex_trylock(+Mutex)

Works as mutex_lock/1 but fails immediately if Mutex is held by another thread,
rather than suspending the calling thread.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

mutex_unlock(+Mutex)

Unlocks the mutex with alias or id Mutex when called by the same thread that locked
Mutex.

Error Cases

• Mutex is a variable

– instantiation_error

• Mutex is not a mutex id or alias

– domain_error(mutex_or_alias,Mutex_or_Alias)

11This error case handles the EDEADLK return code on MacOS X, and other platforms.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 299

• Mutex is not associated with a current mutex.

– existence_error(mutex,Mutex)

• Mutex is not held by the calling thread

– permission_error(unlock,mutex,Mutex)

mutex_unlock_all

mutex_unlock_all/0 unlocks all user mutexes owned by the current thread. It has
no error cases.

mutex_property(?MutexOrAlias,?Property)

If MutexOrAlias is instantiated, unifies Property with current properties of the mu-
tex; if MutexOrAlias is a variable, backtracks through all the current mutexes whose
properties unify with Property. Note that there is no guarantee that that the infor-
mation returned will be valid, due to concurrency issues.

Currently Property can have the form

• alias(Alias): if the mutex has an alias Alias

• status(Status). If the mutex is locked, Status will be a term of the form
locked(ThreadId,NumLocks) where ThreadId is the thread id of the owner of
the lock, and NumLocks is the number of times the mutex has been locked by
the current owner (recall that user-defined mutexes are recursive and must be
unlocked as many times as they have been locked in order to be freed). If the
mutex is unlocked, Status will be a term of the form unlocked.

Example: The query

?- mutex_property(M,status(_)).

can be used to enumerate all active user-defined mutexes.

Error Cases

• MutexOrAlias is neither a variable nor an XSB mutex id nor an alias

– domain_error(mutex_or_alias, MutexOrAlias)

• MutexOrAlias is not associated with an active mutex

– existence_error(mutex, MutexOrAlias)

• Property is neither a variable nor a valid mutex property

– domain_error(mutex_property, Property)

Chapter 8

Storing Facts in Tries

XSB offers a mechanism by which large numbers of facts can be directly stored and ma-
nipulated in tries, which can either be private to a thread or shared among threads. The
mechanism described in this chapter is in some ways similar to trie-indexed asserted code
as described in Section 6.14, but allows creation of tries that are shared between threads,
and of associative tries that support efficient memory management 1.

When stored in a trie, facts are compiled into trie-instructions similar to those used for
XSB’s tables. For instance set of facts

{ rt(a,f(a,b),a), rt(a,f(a,X),Y), rt(b,V,d) }

would be stored in a trie as shown in Figure 8, where each node corresponds to an instruction
in XSB’s virtual machine. Using a trie for storage has the advantage that discrimination
can be made on a position anywhere in a fact, and directly inserting into or deleting from
a trie is 4-5x faster than with standard dynamic code. In addition, in trie-dynamic code,
there is no distinction between the index and the code itself, so for many sets of facts trie
storage can use much less space than standard dynamic code. For instance, Figure 8 shows
how the prefix rt(a,f(a,... is shared for the first two facts. However, trie storage comes
with tradeoffs: first, only facts can be stored in a trie; second, unlike standard dynamic
code, no ordering is preserved among the facts; and third, duplicate facts are not supported.

In Version 3.3 of XSB, tries that store facts may have the following forms:

• Private, general tries allow arbitrary terms to be inserted in a trie. These tries are
thread-private so that inserting a term in a trie Tr in one thread will not be visible
to another thread. Although such tries are general, they have limitations in memory

1For nearly all purposes, the predicates in this chapter replace the low-level API for interned tries in
previous versions, which included trie_intern, trie_unintern, trie_interned etc. However that API
continues to be supported for low-level systems programming.

300

CHAPTER 8. STORING FACTS IN TRIES 301

a

s

0s

rt

0

ν1

ν1

ν1

s 11

f/2

7

8

5

4

3

s

s

s

s

s

a

2.1

2.2

33

a

b

10

92

s

s

s 1

s

3

22

1

d

b

6

Figure 8.1: Terms Stored as a Trie

reclamation in Version 3.3 of XSB. If a term is deleted from Tr, memory will be
reclaimed if it is safe to do so at the time of deletion 2; otherwise the space will not
be reclaimed until all terms in Tr are removed by truncating Tr or until the thread
exits.

• Private, associative Associative tries are more restricted than general tries: an associa-
tive trie combines a key which can be any ground term, with a value which can be any
term. Memory for deleted key-value pairs in an associative trie is always immediately
reclaimed, and insert or delete operations can be faster for an associative trie than
for a general trie. These tries are private to a thread, and in addition to reclaiming
memory when a term is deleted, memory is reclaimed when the trie is truncated or
dropped, and when the thread exits.

• Shared, associative tries are associative tries that are shared among threads. Memory
for deleted key-value pairs is always immediately reclaimed, and when the trie is
truncated or dropped.

2That is, if no choice points are around that may cause backtracking into T r.

CHAPTER 8. STORING FACTS IN TRIES 302

8.1 Examples of Using Tries

A handle for a trie can be obtained using the trie_create/2 predicate. Terms can then
be inserted into or deleted from that trie, and terms can be unified with information in the
trie, as shown in the following example:

Example 8.1.1 First, we create a private general trie:

| ?- trie_create(X,[type(prge)]).

X = 1

yes

Next, we insert some terms into the trie

| ?- trie_insert(1,f(a,b)), trie_insert(1,[a,dog,walks]).

yes

Now we can make arbitrary queries against the trie

| ?- trie_unify(1,X).

X = [a,dog,walks];

X = f(a,b);

no

Above, a general query was made, but the query could have been any Prolog term. Now
we delete a term, and see what’s left.

| ?- trie_delete(1,f(X,B)).

X = a

B = b

yes

| ?- trie_unify(1,X).

X = [a,dog,walks];

no

The behavior of general tries can be constrasted with that of associative tries as seen in
the next example.

CHAPTER 8. STORING FACTS IN TRIES 303

Example 8.1.2 Now we start by creating a shared associative trie, with abbreviation shas
using the multi-threaded engine

| ?- trie_create(X,[type(shas),alias(foo)]).

X = 1048577

yes

This time we used an alias so now we can use foo to refer to insert a couple of key-value
pairs into the trie (we could also use the trie handle itself)

| ?- trie_insert(foo,pair(sentence(1),[a,dog,walks])),

trie_insert(foo,pair(sentence(2),[a,man,snores])).

yes

However, inserting a general term into an associative trie throws an error

| ?- trie_insert(foo,f(a,b)).

++Error[XSB/Runtime/P]: [Domain (f(a,b) not in domain pair/2)]

in arg 2 of predicate trie_insert/2

(Inserted term must be key-value pair in trie 1048577)

Finally, in an associative trie, if we insert a value for a key that is already in the trie, it will
update the value for that key.

| ?- trie_insert(foo,pair(sentence(1),[a,dog,snoress])).

yes

| ?- trie_unify(foo,pair(sentence(1),X)).

X = [a,dog,snores]

yes

8.2 Space Management for Tries

When creating or adding terms to an interned trie, XSB manages all space necessary for
the terms and their indexes. However, when removing a term from a trie an issue may arise
if there is a possibility of backtracking into the term to be removed; this issue also arises for
retracting dynamic code. In the sequential engine and in private tries XSB’s dynamic clause
garbage collector handles space reclamation when terms are removed from a trie through
trie_delete/2 or similar low-level predicates. However, in the case of trie_truncate/1

or trie_drop/1, an exception is thrown if there are active choice points to terms in a trie
that is to be truncated or dropped.

CHAPTER 8. STORING FACTS IN TRIES 304

In the multi-threaded engine the space reclamation problem becomes even more difficult
for tries that can be shared among threads. In this case, no garbage collection is performed
until there is a single active thread.

These space reclamation issues arise for non-associative tries only. Associative triesessen-
tially contain key-value pairs, and so may have their space reclaimed upon deletion of a term,
or upon truncation or dropping their trie, regardless of the number of active threads 3.

8.3 Predicates for Tries

The following subsections describe predicates for inserting terms into a trie, deleting terms
from a trie, and unifying a term with terms in a trie, predicates for creating, dropping,
and truncating tries, as well as predicates for bulk insertes into and deletes from a trie.
These predicates can apply to any type of trie, and perform full error checking on their call
arguments. As such, they are safer and more general than the lower-level trie predicates
described in Chapter 1 of Volume 2 of this manual. Use of the predicates described here is
recommended for applications unless the need for speed is paramount.

trie_create(-TrieId,+OptionList) module: intern

OptionList allows optional parameters in the configuration of a trie to indicate its
type and whether an alias should be used. In the present version, OptionList may
contain the following terms

• type(Type) where Type can be one of

– prge (private, general) maintains information that is accessable only to the
calling thread. No other restrictions are made for accessing information in a
private trie. In the single-threaded engine, tries are private by default.

– pras (private, associative) creates a private trie that maintains key-value
pairs in a manner similar to an associative array, using the term pair(Key,Value).
Each key must be ground, and there may be only one value per key.

– shas (shared associative) creates a shared trie that maintains key-value pairs
in a manner similar to an associative array, using the term pair(Key,Value).
Each key must be ground, and there may be only one value per key. This
option is available only in the multi-threaded engine

• alias(Alias): Allow trie TrieId to be referred to via Alias in all standard trie
predicates. Alias remains active for TrieId until it is dropped.

• incremental: Allows tables that depend on trie TrieId to be automatically
updated as information in TrieId changes (cf. Section 5.6.2).

3Future versions of XSB may extend garbage collection to handle trie truncation, trie dropping and better
space reclamation in the multi-threaded engine.

CHAPTER 8. STORING FACTS IN TRIES 305

• nonincremental: Specifies that tables that depend on trie TrieId should not
be automatically updated as information in TrieId changes (cf. Section 5.6.2).

Error Cases

• TrieId is not a variable

– type_error(variable,TrieId)

• OptionList is a partial list or contains an option that is a variable

– instantiation_error

• OptionList is neither a list nor a partial list

– type_error(list,OptionsList)

• OptionList contains an option, Option not described above

– domain_error(trie_option,Option)

• An element of OptionsList is alias(A) and A is already associated with an
existing thread, queue, mutex or stream

– permission_error(create,alias, A)

• An element of OptionsList is alias(A) and A its not an atom

– type_error(atom,A)

trie_insert(+TrieIdOrAlias,Term) module: intern

Inserts Term into the trie denoted by TrieIdOrAlias. If TrieIdOrAlias denotes an
associative trie, Term must be of the form pair(Key,Value) where Key is ground.
If TrieIdOrAlias is a general trie and already contains Term, the predicate fails
(as the same term cannot be inserted multiple times in the same trie). Similarly, if
TrieIdOrAlias is an associative trie and already contains a value for Key the predicate
fails.

Insertion of tries can be controlled by the flags max_answer_term_depth, max_answer_list_depth,
max_answer_term_action, and max_answer_list_action, which are also used to
control additions of answers to tables. Using these flags, if a term to be inserted is
cyclic and exceeds a stated depth, trie insertion may either fail or throw an error
depending on the associated action: see pg. 209.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with
pair(_,_)

CHAPTER 8. STORING FACTS IN TRIES 306

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value) but Key

is not ground

– misc_error

• Key or Value is a cyclic term, or exceeds the depth

– misc_error

trie_unify(+TrieIdOrAlias,Term) module: intern

Unifies Term with a term in the trie denoted by TrieIdOrAlias. If TrieIdOrAlias

denotes a general trie, successive unifications will succeed upon backtracking. If
TrieIdOrAlias denotes an associative trie, Term must be of the form pair(Key,Value)

where Key is ground.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with
pair(_,_)

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value) but Key

is not ground

– misc_error

trie_delete(+TrieIdOrAlias,Term) module: intern

Deletes a term unifying with Term from the trie denoted by TrieIdOrAlias. TrieIdOrAlias

denotes a general trie, all such terms can be deleted upon backtracking. If TrieIdOrAlias

denotes an associative trie, Term must be of the form pair(Key,Value) where Key is
ground. In either case, if TrieIdOrAlias does not contain a term unifying with Term

the preicate fails.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with
pair(_,_)

CHAPTER 8. STORING FACTS IN TRIES 307

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value) but Key

is not ground

– misc_error

trie_truncate(+TrieIdOrAlias) module: intern

Removes all terms from TrieIdOrAlias, but does not change any of its properties
(e.g. the type of the trie or its aliases).

@@

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• There are active failure continuations to terms in TrieIdOrAlias

– miscellaneous_error

trie_drop(+TrieIdOrAlias) module: intern

Drops TrieIdOrAlias. trie_drop/1 not only removes all terms from TrieIdOrAlias,
but also removes information about its type and any aliases the trie may have.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• There are active failure continuations to terms in TrieIdOrAlias

– miscellaneous_error

trie_bulk_insert(+TrieIdOrAlias,+Generator) module: intern

Used to insert multiple terms into the trie denoted by TrieIdOrAlias. Generator

must be a callable term. Upon backtracking through Generator its first argument
should successively be instantiated to the terms to be interned in TrieIdOrAlias.
When inserting many terms into a general trie, trie_bulk_insert/2 is faster than
repeated calls to trie_insert/2 as it does not need to make multiple checks that the
choice point stack is free of failure continuations that point into the TrieIdOrAlias

trie. For associative tries, trie_bulk_insert/2 can also be faster as it needs to
perform fewer error checks on the arguments of the insert.

CHAPTER 8. STORING FACTS IN TRIES 308

Example 8.3.1 Given the predicate

bulk_create(p(One,Two,Three),N):-

for(One,1,N),

for(Two,1,N),

for(Three,1,N).

and a general trie Trie, the goal

?- trie_bulk_insert(Trie,bulk_create(_Term,N))

will add N3 terms to Trie.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• Generator is not a compound term

– type_error(compound,Generator)

• TrieIdOrAlias denotes an associative array, and Generator does not unify with
pair(_,_)

– domain_error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, and Generator succeeds with a
term that unifies with pair(Key,Value) and Key is not ground

– misc_error

• Key or Value is a cyclic term

– misc_error

trie_bulk_delete(+TrieIdOrAlias,Term) module: intern

Deletes all terms that unify with Term from TrieIdOrAlias. If TrieIdOrAlias de-
notes an associative trie, the key of the key value pair need not be ground.

Example 8.3.2 For the trie in the previous example, the goal

?- trie_bulk_delete(Trie,p(1,_,_))

will delete the N2 terms that unify with p(1,_,_) from TrieIdOrAlias.

CHAPTER 8. STORING FACTS IN TRIES 309

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

trie_bulk_unify(+TrieIdOrAlias,#Term,-List) module: intern

Returns in List all terms in TrieIdOrAlias that unify with Term. If TrieIdOrAlias

denotes an associative trie, the key of the key value pair need not be ground.

This predicate is useful for two reasons. First, it provides a safe way to back-
track through an associative trie while maintaining the memory management and
concurrency properties of associative tries. Second, it enforces read consistency for
TrieIdOrAlias, regardless of whether the trie is private or shared, general or asso-
ciative.

Example 8.3.3 Continuing from Example 8.3.2 the goal

?- trie_bulk_unify(Trie,X),List

will return the the N3 − N2 terms still in TrieIdOrAlias.

Error Cases

• TrieIdOrAlias is a variable

– instantiation_error.

• TrieIdOrAlias is not a trie id or alias

– domain_error(trie_id_or_alias,TrieIdOrAlias)

• List is not a variable

– type_error(variable,List).

trie_property(?TrieOrAlias,?Property) module: intern

If TrieOrAlias is instantiated, unifies Property with current properties of the trie; if
TrieOrAlias is a variable, backtracks through all the current tries whose properties
unify with Property. In the MT engine, thread_property/2 accesses only tries
private to the calling thread and shared tries; however note that there is no guarantee
that that the information returned about shared tries will be valid, due to concurrency
issues 4.

Currently Property can have the form

4trie_property/2 is not yet implemented for shared tries.

CHAPTER 8. STORING FACTS IN TRIES 310

• type(Type): where Type is the type of the trie.

• alias(Alias): if the trie has an alias Alias

Error Cases

• TrieOrAlias is neither a variable nor an XSB trie id nor an alias

– domain_error(trie, TrieOrAlias)

• TrieOrAlias is not associated with a valid trie

– existence_error(trie, TrieOrAlias)

8.4 Low-level Trie Manipulation Utilities

The previous sections indicate how tries can be used as an efficient mechanism to store
thread-private and thread-shared terms. In this section we describe lower-level trie manip-
ulation predicates that are suitable for implemeting XSB libraries 5. As with other tries,
these utilities are suitable for storing terms rather than exectuable clauses, use a set based
semantics, and do not maintain an ordering among these terms. In addition

• These predicates create and maintain thread-private, general tries.

• These predicates do not always perform error checking. If not explicitly specified in
the description of the predicate, errors returned may be confusing, and calling with
improper arguments may even cause memory violations.

• For historical reasons, the ordering of arguments in these predicates is not consistent.

Despite (and sometimes because of) these limitations, the trie manipulation facilities can
be extremely fast, so that interning and uninterning terms in a trie may be much faster
than assert and retract in XSB or in any other Prolog.

8.4.1 A Low-Level API for Interned Tries

new_trie(-Root) module: intern

Root is instantiated to a handle for a new private, general trie.

trie_intern(+Term,+Root) module: intern
trie_intern(+Term,+Root,-Leaf,-Flag,-Skel) module: intern

trie_intern/2 effectively asserts Term by interning into the trie designated by Root.
If a variant of Term is already in Root the predicate succeeds, but a new copy of Term

is not added to the trie.
5Flora-2, XASP, XSB’s storage library and others use these predicates.

CHAPTER 8. STORING FACTS IN TRIES 311

trie_intern/5 acts as trie_intern/2 but returns additional information: Leaf is
the handle for the interned Term in the trie. Flag is 1 if the term is “old” (already
exists in the trie); it is 0, if the term is newly inserted. Skel represents the collection of
all the variables in Term. It has the form ret(V1,V2,...,VN), exactly as in get_calls

(see Vol. 1 of the XSB manual).

Error Cases

• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

trie_interned(?Term,+Root) module: intern
trie_interned(?Term,+Root,?Leaf,-Skel) module: intern

trie_interned/2 backtracks through the terms that unify with Term and that are
interned into the trie represented by the handle Root. Term may be free, or partially
bound.

If Leaf is a free variable, trie_interned/5 works as trie_interned/2: it backtracks
through the terms that unify with Term interned into the trie represented by the
handle Root. In addition it returns Leaf as the handle for each such term and returns
in Skel the collection of all the variables in Term using the form ret(V1,...,Vn).
Otherwise, if Leaf is bound, trie_interned/5 will unify Term with the term in the
trie designated by Leaf, returning a vector of variables in Skel.

Error Cases

• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

trie_unintern(+Root,+Leaf) module: intern
trie_unintern_nr(+Root,+Leaf) module: intern

trie_unintern(+Root,+Leaf) deletes a term from a trie using the handle Leaf, as
obtained from trie_intern/[2,4] or trie_interned/[2,4]. Space is reclaimed for
the term only if it is safe to do so – if there are no failure continuations that may
consume the term (cf. Section 8.2).

trie_unintern_nr/2 does not perform space reclamation and as a result requires no
garbage collection – it simply marks a term as “deleted”. This makes trie_unintern_nr/2

suitable if trie garbage collection may be an issue, and also allows it to be used in
libraries that support backtrackable updates, such as XSB’s storage library.

Error Cases

CHAPTER 8. STORING FACTS IN TRIES 312

• Root or Leaf is uninstantiated

– instantiation_error

• Root or Leaf is instantiated, but not an integer (trie handle or trie leaf)

– type_error(integer,Root) or type_error(integer,Leaf)

reclaim_uninterned_nr(+Root) module: intern

Runs through the chain of leaves of the trie Root and deletes the terms that have been
marked for deletion by trie_unintern_nr/2. This can be viewed either as a garbage
collection step or as a commit.

Error Cases

• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

unmark_uninterned_nr(+Root,+Leaf) module: intern

The term pointed to by Leaf should have been previously marked for deletion using
trie_unintern_nr/2. This term is then “unmarked” (or undeleted) and becomes
again a normal interned term.

Error Cases

• Root or Leaf is uninstantiated

– instantiation_error

• Root or Leaf is instantiated, but not an integer (trie handle or trie leaf)

– type_error(integer,Root) or type_error(integer,Leaf)

delete_trie(+Root) module: intern

Deletes all the terms in the trie pointed to by Root. Garbage collection ensures that
space reclamation is performed only if it is safe to do so.

Error Cases

• Root is uninstantiated

– instantiation_error

• Root is instantiated, but not an integer (trie handle)

– type_error(integer,Root)

• Failure continuations point to one or more nodes in the trie with root Root

– misc_error

Chapter 9

Hooks

Sometimes it is useful to let the user application catch certain events that occur during XSB
execution. For instance, when the user asserts or retracts a clause, etc. XSB has a general
mechanism by which the user program can register hooks to handle certain supported events.
All the predicates described below must be imported from xsb_hook.

9.1 Adding and Removing Hooks

A hook in XSB can be either a 0-ary predicate or a unary predicate. A 0-ary hook is called
without parameters and unary hooks are called with one parameter. The nature of the
parameter depends on the type of the hook, as described in the next subsection.

add_xsb_hook(+HookSpec) module: xsb_hook

This predicate registers a hook; it must be imported from xsb_hook. HookSpec has
the following format:

hook-type(your-hook-predicate(_))

or, if it is a 0-ary hook:

hook-type(your-hook-predicate)

For instance,

:- add_xsb_hook(xsb_assert_hook(foobar(_))).

registers the hook foobar/1 as a hook to be called when XSB asserts a clause. Your
program must include clauses that define foobar/1, or else an error will result.

The predicate that defines the hook type must be imported from xsb_hook:

313

CHAPTER 9. HOOKS 314

:- import xsb_assert_hook/1 from xsb_hook.

or add_xsb_hook/1 will issue an error.

remove_xsb_hook(+HookSpec) module: xsb_hook

Unregisters the specified XSB hook; imported from xsb_hook. For instance,

:- remove_xsb_hook(xsb_assert_hook(foobar(_))).

As before, the predicate that defines the hook type must be imported from xsb_hook.

9.2 Hooks Supported by XSB

The following predicates define the hook types supported by XSB. They must be imported
from xsb_hook.

xsb_exit_hook(_) module: xsb_hook

These hooks are called just before XSB exits. You can register as many hooks as
you want and all of them will be called on exit (but the order of the calls is not
guaranteed). Exit hooks are all 0-ary and must be registered as such:

:- add_xsb_hook(xsb_exit_hook(my_own_exit_hook)).

xsb_assert_hook(_) module: xsb_hook

These hooks are called whenever the program asserts a clause. An assert hook must
be a unary predicate, which expects the clause being asserted as a parameter. For
instance,

:- add_xsb_hook(xsb_assert_hook(my_assert_hook(_))).

registers my_assert_hook/1 as an assert hook. One can register several assert hooks
and all of them will be called (but the order is not guaranteed).

xsb_retract_hook(_) module: xsb_hook

These hooks are called whenever the program retracts a clause. A retract hook must
be a unary predicate, which expects as a parameter a list of the form [Head,Body],
which represent the head and the body parts of the clause being retracted. As with
assert hooks, any number of retract hooks can be registered and all of them will be
called in some order.

Chapter 10

Debugging and Profiling

10.1 Prolog-style Tracing and Debugging

XSB supports a version of the Byrd four-port debugger for interactive debugging and tracing
of Prolog code. In this release (Version 3.3), it does not work very well when debugging
code involving tabled predicates 1. If one only creeps (see below), the tracing can provide
some useful information. For programs that involve large amounts of tabling forest-view
tracing can be used (Section 10.3). To turn on tracing, use trace/0, trace/1, or trace/2.
To turn tracing off, use notrace/0.

trace

notrace

When tracing is on, the system will print a message each time a predicate is:

1. initially entered (Call),

2. successfully returned from (Exit),

3. failed back into (Redo), and

4. completely failed out of (Fail).

When debugging interactively, a message may be printed and tracer stopped and
prompts for input. (See the predicates show/1 and leash/1 described below to modify
what is traced and when the user is prompted.)

In addition to single-step tracing, the user can set spy points to influence how the
tracing/debugging works. A spy point is set using spy/1. Spy points can be used
to cause the system to enter the tracer when a particular predicate is entered. Also

1The current version of XSB’s Prolog debugger does not include exceptions as a debugging port.

315

CHAPTER 10. DEBUGGING AND PROFILING 316

the tracer allows “leaping” from spy point to spy point during the debugging process.
The debugger also has profiling capabilities, which can measure the cpu time spent in
each call. The cpu time is measured only down to 0.0001-th of a second. g When the
tracer prompts for input, the user may enter a return, or a single character followed
by a return, with the following meanings:

• c, <CR>: Creep Causes the system to single-step to the next port (i.e. either
the entry to a traced predicate called by the executed clause, or the success or
failure exit from that clause).

• a: Abort Causes execution to abort and control to return to the top level inter-
preter.

• b: Break Calls the evaluable predicate break, thus invoking recursively a new
incarnation of the system interpreter. The command prompt at break level n is

n: ?-

The user may return to the previous break level by entering the system end-of-file
character (e.g. ctrl-D), or typing in the atom end_of_file; or to the top level
interpreter by typing in abort.

• f: Fail Causes execution to fail, thus transferring control to the Fail port of the
current execution.

• h: Help Displays the table of debugging options.

• l: Leap Causes the system to resume running the program, only stopping when
a spy-point is reached or the program terminates. This allows the user to follow
the execution at a higher level than exhaustive tracing.

• n: Nodebug Turns off debug mode.

• r: Retry (fail) Transfers to the Call port of the current goal. Note, however,
that side effects, such as database modifications etc., are not undone.

• s: Skip Causes tracing to be turned off for the entire execution of the procedure.
Thus, nothing is seen until control comes back to that procedure, either at the
Success or the Failure port.

• q: Quasi-skip This is like Skip except that it does not mask out spy points.

• S: Verbose skip Similar to Skip mode, but trace continues to be printed. The
user is prompted again when the current call terminates with success or failure.
This can be used to obtain a full trace to the point where an error occurred or
for code profiling. (See more about profiling below.)

• e: Exit Causes immediate exit from XSB back to the operating system.

trace(+Filename,+option)

trace/2 is like trace/0 except that it is non-interactive and dumps trace information
into a log file, Filename. Currently the only supported option is log. However, the

CHAPTER 10. DEBUGGING AND PROFILING 317

log is written in the form of Prolog facts, which can be loaded queried. The format
of the facts is:

xsb_tracelog(CallId,CallNum,PortType,ParentCallNum,DepthOfCall,CurrentCall,Time)

where CallId is an identifier generated when XSB encounters a new top-level call.
This identifier remains the same for all subgoals called while tracing that top-level
call.

• CallNum is a generated number to show the nesting of the calls being traced. It
is the same number that the user sees when tracing interactively.

• PortType is ’Call’, ’Redo’, ’Exit’, or ’Fail’.

• ParentCallNum is the call number of the parent call.

• DepthOfCall is the nesting depth of the current call with respect to its ancestor
calls.

• CurrentCall is the call being traced

• Time is the CPU time it took to execute CurrentCall. On ’Call’ and ’Redo’,
Time is always 0 — it has a meaningful value only for the ’Exit’ and ’Fail’

log entries.

It should be noted that when calls are delayed due to the well-founded negation
computation of because of the when/2 primitive, the parent call might be off in some
cases. However, the parent property repairs itself for subsequent calls.

‘The name of the predicate (xsb_tracelog) used for logging can be changed by assert-
ing it into the predicate debug_tracelog_predicate/1, which should be imported
from usermod. For instance,

:- import debug_tracelog_predicate/1 from usermod.

?- assert(debug_tracelog_predicate(foobar)).

spy(Preds)

where Preds is a spy specification or a list of such specifications, and must be instan-
tiated. This predicate sets spy points (conditional or unconditional) on predicates. A
spy specification can be of several forms. Most simply, it is a term of the form P/N ,
where P is a predicate name and N its arity. Optionally, only a predicate name can
be provided, in which case it refers to all predicates of any arity currently defined in
usermod. It may optionally be prefixed by a module name, e.g. ModName:P/N .
(Again, if the arity is omitted, the specification refers to all predicates of any arity
with the given name currently defined in the given module.) A spy specification may
also indicate a conditional spy point. A conditional spy specification is a Prolog rule,
the head indicating the predicate to spy, and the body indicating conditions under
which to spy. For example, to spy the predicate p/2 when the first argument is not a

CHAPTER 10. DEBUGGING AND PROFILING 318

variable, one would write: spy(p(X, _) : −nonvar(X)). (Notice that the parentheses
around the rule are necessary). The body may be empty, i.e., the rule may just be
a fact. The head of a rule may also be prefixed (using :) with a module name. One
should not put both conditional and unconditional spy points on the same predicate.

nospy(Preds)

where Preds is a spy specification, or a list of such specifications, and must be in-
stantiated at the time of call. What constitutes a spy specification is described above
under spy. nospy removes spy points on the specified predicates. If a specification is
given in the form of a fact, all conditional spy points whose heads match that fact are
removed.

debug

Turns on debugging mode. This causes subsequent execution of predicates with trace
or spy points to be traced, and is a no-op if there are no such predicates. The
predicates trace/0, trace/1, trace/2, and spy/1 cause debugging mode to be turned
on automatically.

nodebug

Turns off debugging mode. This causes trace and spy points to be ignored.

debugging

Displays information about whether debug mode is on or not, and lists predicates
that have trace points or spy points set on them.

debug_ctl(option,value)

debug_ctl/2 performs debugger control functions as described below. These com-
mands can be entered before starting a trace or inside the trace. The latter can
be done by responding with “b” at the prompt, which recursively invokes an XSB
sub-session. At this point, you can enter the debugger control commands and type
end_of_file. This returns XSB back to the debugger prompt, but with new settings.

1. debug_ctl(prompt, off) Set non-interactive mode globally. This means that
trace will be printed from start to end, and the user will never be prompted
during the trace.

2. debug_ctl(prompt, on) Make tracing/spying interactive.

3. debug_ctl(profile, on) Turns profiling on. This means that each time a call
execution reaches the Fail or Exit port, CPU time spent in that call will be
printed. The actual call can be identified by locating a Call prompt that has
the same number as the “cpu time” message.

4. debug_ctl(profile, off) Turns profiling off.

5. debug_ctl(redirect, +File) Redirects debugging output to a file. This also
includes program output, errors and warnings. Note that usually you cannot see

CHAPTER 10. DEBUGGING AND PROFILING 319

the contents of +File until it is closed, i.e., until another redirect operation is
performed (usually debug_ctl(redirect, tty), see next).

6. debug_ctl(redirect, tty) Attaches the previously redirected debugging, er-
ror, program output, and warning streams back to the user terminal.

7. debug_ctl(show, +PortList) Allows the user to specify at which ports should
trace messages be printed. PortList must be a list of port names, i.e., a sublist
of [’Call’, ’Exit’, ’Redo’, ’Fail’].

8. debug_ctl(leash, +PortList) Allows the user to specify at which ports the
tracer should stop and prompt the user for direction. PortList must be a list
of port names, i.e., a sublist of [’Call’, ’Exit’, ’Redo’, ’Fail’]. Only ports that are
show-n can be leash-ed.

9. debug_ctl(hide, +PredArityPairList) The list must be of the form [P1/A1,

P2/A2, ...], i.e., each either must specify a predicate-arity pair. Each predicate
on the list will become non-traceable. That is, during the trace, each such
predicate will be treated as an black-box procedure, and trace will not go into it.

10. debug_ctl(unhide, ?PredArityPairList) If the list is a predicate-arity list,
every predicate on that list will become traceable again. Items in the list can
contain variables. For instance, debug_ctl(unhide, [_/2]) will make all 2-
ary that were previously made untraceable traceable again. As a special case,
if PredArityPairList is a variable, all predicates previously placed on the
“untraceable”-list will be taken off.

11. debug_ctl(hidden, -List) This returns the list of predicates that the user said
should not be traced.

10.2 Low-Level Tracing

XSB also provides a facility for low-level tracing of execution. This can be activated by in-
voking the emulator with the -T option (see Section 3.7), or through the predicate trace/0.
It causes trace information to be printed out at every call (including those to system trap

handlers). The volume of such trace information can very become large very quickly, so
this method of tracing is not recommended in general.

XSB debugger also provides means for the low-level control of what must be traced.
Normally, various standard predicates are masked out from the trace, since these predicates
do not make sense to the application programmer. However, if tracing below the application
level is needed, you can retract some of the facts specified in the file syslib/debugger_data.P

(and in some cases assert into them). All these predicates are documented in the header of
that file. Here we only mention the four predicates that an XSB developer is more likely to
need. To get more trace, you should retract from the first three predicates and assert into
the last one.

CHAPTER 10. DEBUGGING AND PROFILING 320

• hide_this_show(Pred,Arity): specifies calls (predicate name and arity) that the
debugger should not show at the prompt. However, the evaluation of this hidden call
is traced.

• hide_this_hide(Pred,Arity): specifies calls to hide. Trace remains off while evalu-
ating those predicates. Once trace is off, there is no way to resume it until the hidden
predicate exits or fails.

• show_this_hide(Pred,Arity): calls to show at the prompt. However, trace is
switched off right after that.

• trace_standard_predicate(Pred,Arity): Normally trace doesn’t go inside stan-
dard predicates (i.e., those specified in syslib/std_xsb.P. If you need to trace some
of those, you must assert into this predicate.

In principle, by retracting all facts from the first three predicates and asserting enough facts
into the last one, it is possible to achieve the behavior that approximates the -T option.
However, unlike -T, debugging can be done interactively. This does not obviate -T, however.
First, it is easier to use -T than to issue multiple asserts and retracts. Second, -T can be
used when the error occurs early on, before the moment when XSB shows its first prompt.

10.3 Analyzing the Execution of Tabled Programs

The tracing and debugging described in previous sections has proven useful for Prolog
programs for 30 or more years. However, when tabling is added to Prolog, things change.
First, as described in Chapter 5, tabling can be used to find the least fixed point of mutually
recursive predicates. Operationally, this requires the ability to suspend one computation
path and to resume another. Second, the addition of tabled negation for the well-founded
semantics requires the ability to delay negative goals whose only proof may be involved in a
loop through negation and to simplify these goals once their truth value has become known.
Furthermore, a tabled subgoal has different states: it may be new; it may be incomplete
so that new answers might be derived for it; or completed (completely evaluated) so that
the answers may simply be read from the table. In short, tabling, which can execute much
more general programs than Prolog and which can use the stronger well-founded semantics,
requires a more complex set of operations than Prolog’s SLDNF. Accordingsly, debugging
and tracing is correspondingly more complex. Thus, while Prolog’s 4-port debugger may
be useful for programs that involve just a few tabled predicates, it may not be useful for
programs that heavily use tabling for complex recursions, non-monotinic reasoning or other
purposes.

There is currently no standard approach to debugging tabled programs. One possible
approach would be to extend the 4-port debugger to include other ports for tabling oper-
ations. Such extensions have not yet been explored, and whether the paradigm of n-port

CHAPTER 10. DEBUGGING AND PROFILING 321

debugging can be extended to full tabling so that it can be useful to programmers is an open
question. Another approach would be use the declarative approach of justification [33, 55]
to explain why derivations were or were not made. XSB does in fact have a justification
package but it is not currently robust enough to be recommended for general use. Below
we present the logforest approach.

10.3.1 Tracing a tabled evaluation through forest logging

While the operations used for tabling are more complex than those of SLDNF, they have
a clear formal operational semantics through SLG and the forest-of-trees model. We recall
this model briefly below for a definite program but assume a background knowledge of
tabled logic programming (see, for instance [77]).

Example 10.3.1 Figure 10.1 shows a program fragment along with an SLG forest for the
query ?- reach(1,Y) to the the right-recursive tabled predicate reach/1. An SLG forest
consists of an SLG tree for each tabled subgoal S: this tree has root S :- S. In a definite
program an SLG tree represents resolution of program clauses and answers to prove S. In
Figure 10.1 each non-root node of the form K.N where N = (S :- Goals)θ is a clause in
which the bindings to a subgoal S are maintained in Sθ, the goals remaining to prove S
are in Goalsθ, and the order of creation of N within the tabled evaluation is represented
by a number, K (local scheduling is used in this example). Children of a root node are
obtained through resolution of a tabled subgoal against program clauses. Children of non-
root nodes are obtained through answer clause resolution, if the left most selected literal is
tabled (e.g. children of node 3 or 11 in the tree for reach(1,Y)), or through program clause
resolution if the leftmost selected literal is not tabled (e.g. children of nodes 2 and 18 in
the tree for reach(1,Y)). Nodes that have empty Goals are termed answers. Note that the
evaluation keeps track of each tabled subgoal S that it encounters. Later if S is selected
again, resolution will use answers rather than program clauses; if no answers are available,
the computation will suspend at that point and the evaluation will backtrack to try to
derive answers using some other computation path. Once more answers have been derived,
the evaluation resumes the suspended computation. Similarly, once the computation has
backtracked through all answers available for S in the current state, the computation path
will suspend, and resume after further answers are found. Thus a tabled evaluation is
a fixed point computation for a set of interdependent subgoals. When it is etermined
that a (perhaps singleton) set of subgoals can produce no more answers, the subgoals are
completed.

The forest logging approach (logforest) allows one to run a tabled query and produce
a log that can be interpreted as (a partial image of) an SLG forest. The log can then used
to analyze program correctness, to optimize performance and so on. Because logforest

produces a log, it superficially resembles the non-interactive trace described earlier in this
chapter. However,

CHAPTER 10. DEBUGGING AND PROFILING 322

16. reach(3,Y):− edge(3,Y)

7. reach(2,Y):− edge(2,Y)

complete (9a)

3. reach(1,Y) :− reach(2,Y)

5. reach(2,Y) :− edge(2,Z),reach(Z,Y)

6. reach(2,Y) :− reach(2,Y)

10. reach(1,2) :−

11. reach(1,Y) :− reach(3,Y)

12. reach(3,Y) ;− reach(3,Y)

13. reach(3,Y) :− edge(3,Z),reach(Z,Y)

14. reach(3,Y) :− reach(1,Y)

15. reach(3,2) :−

4. reach(2,Y) :− reach(2,Y)

edge(3,1).edge(2,2).edge(1,3).edge(1,2)

reach(X,Y):− edge(X,Y).

:− table reach/2.
reach(X,Y):− edge(X,Z),reach(Z,Y).

25. reach(3,1) :−

24. reach(1,3) :−23. reach(1,1) :−22. reach(1,2) :−

21. reach(3.3) :−

20. reach(1,3) :− 19. reach(1,2) :−

18. reach(1,Y) :− edge(1,Y)

17. reach(3,1) :−

9. reach(2,2) :−

8. reach(2,2) :−

2. reach(1,Y) :− edge(1,Z), reach(Z,Y)

1. reach(1,Y) :− reach(1,Y)

Figure 10.1: A program PRrec and SLG forest for (local) evaluation of ?- reach(1,Y)

CHAPTER 10. DEBUGGING AND PROFILING 323

• trace/1 produces a Prolog-style trace that takes little account of tabling. logforest

structures its output according to the forest-of-trees model, and takes little account
of program clause resolution.

• logforest is implemented in C for efficiency, while trace/1 is built on top of XSBs
interactive debugger. Unlike trace/1, logforest can therefore to produce logs for
very large evaluations with little overhead.

We stress that the forest logging approch is under development and its features are subject
to change.

Currently, logforest captures the following actions.

• A call to a tabled subgoal If a positive call to a tabled subgoal S1 is made from a tree
for S2 a Prolog-readable fact of the form tc(S1,S2,Stage,Counter) is logged, where
Counter is the ordinal number of the fact, and Stage is

– new if S1 is a new subgoal

– cmp if S1 is not a new subgoal and has been completed

– incmp if S1 is not a new subgoal but has not been completed

If the call is negative a fact of the form nc(S1,S2,Stage,Counter) is logged, where
all arguments are as above.

For instance, in the above example, node 3 would be represented as tc(reach(2,Y),reach(1,Y),2)

(the reason for using the counter value of 2 rather than 3 is explained below). If S1

is the first tabled subgoal in an evaluation, S2 is the atom null.

• Derivation of a new answer When a new unconditional answer A is derived for
subgoal S and added to the table (i.e. A is not already an answer for S) a fact
of the form na(A,S,Counter) is logged. In the above example, the answer node 9
would be represented as na([2],reach(2,_v1),4) where the first argument is a list
of substitutions for the variables _v1,...,_vn in S.

When a new conditional answer A :- D|, with substitution A and delayed literals D. is
derived for subgoal S and added to the table a fact of the form nda(A,S,D,Counter)

is logged.

• Return of an answer to a consuming subgoal When an unconditional answer A is re-
turned to a consuming subgoal S in a tree for ST , a fact of the form ar(A,S,ST,Counter)

is logged. A log entry is made only if the table for S is incomplete (see the explanation
below).

If the answer A is conditional, the fact has the form dar(A,S,ST,Counter), where
each argument is as above.

CHAPTER 10. DEBUGGING AND PROFILING 324

• Delaying a selected negative literal. If a selected negative literal L of a node N is
delayed, because it is involved in a loop through negation, and N is in a tree for ST ,
a fact of the form dly(L,ST ,Counter) is logged.

• Subgoal completion

– When a set S of subgoals is determined to be completely evaluated and is com-
pleted, a fact of the form cmp(S,SCCNum,Counter) is logged for each S ∈ S.
Here SCCNum is simply a number giving an ordinal value that can be used to
group subgoals into mutually dependent sets of subgoals (here called Strongly
Conneced Components or SCCs), i.e. the SCCNum of each S ∈ S has the same
value, but that value is not used for a completion fact of any subgoal not in S.

– When a subgoal S is early completed, i.e. it is determined that no more answers
for S are possile or are desired a fact of the form cmp(S,ec,Counter) is logged.
If S belonged to a larger mutually dependent set S when it was early completed,
S will also be included in the completion facts for S.

• Table Abolishes

– When a tabled subgoal S is abolished, a fact of the form ta(subg(S),Counter)

is logged.

– When all tables for a predicate p/n are abolished, a fact of the form ta(pred(p/n),Counter)

is logged.

– When all tables are abolished, a fact of the form ta(all,Counter) is logged.

• Location of errors Whenever an error is thrown and the execution is in a tree for
a subgoal S, a Prolog-readable fact of the form err(S,Counter) is logged, where
Counter is the ordinal number of the fact. The primary purpose of this fact is to
indicate the nearest tabled call that gave rise to an uncaughterror.

logforest does not contain

• Information about the occurrence of program clause resolution either when used to
produce children of tabled predicates, or when it is used to produce children whose
nodes have a selected literal that is non-tabled.

• Information about the return of answers from completed tables. XSB uses a so-called
completed table optimization which treats answer return from completed tables in a
manner akin to program clause resolution.

The inclusion of the above two features in logforest would significantly slow down execu-
tion of XSB. However, future versions of logforest may include expanded logging features
for negation, for call and answer subsumption and for incremental tabling 2.

2Currently, attributes of attributed variables are not printed out.

CHAPTER 10. DEBUGGING AND PROFILING 325

Example 10.3.2 The forest for reach(1,Y) in the foregoing example has the log file as
shown in Table 10.1.

log_forest(+Call) module: tables
log_forest(+Call,+Options) module: tables

These predicates turn on forest logging, call Call then turn logging off. Currently,
the only option is file(File), which directs the logging to the file File. If Options

is an empty list or if log_forest/1 is called, the log will be sent to standard output 3.

load_forest_log(+File) module: tables

The log produced by log_forest/[1,2] is a Prolog file that can be compiled and/or
loaded dynamically just as any other Prolog file. However, for large logs (i.e. those
of many megabytes) use of load_dync/[1,2] XSB commands can drastically reduce
the time needed to load the file, while use of the proper index/2 declarations can
greately improve query time. The simple predicate, load_forest_log/1 loads a log
file and indexes needed arguments.

10.3.2 Analyzing the log; seeing the forest through the trees

As previously described, forest logging is based on the formal operational semantics of SLG,
and as a result the log can be analyzed to query any result that can be modelled by the
theory. But despite the power of forest logging, it can be difficult to use. Not all users have
the background to fully understand the operational semantics of SLG. Even those users
with a formal background may find it difficult to write efficient analysis routines for logs
of large computations 4. Accordingly, XSB provides routines that analyze logs and display
information about a computation. These routines can answer many questions about a
computation and can provide the starting point for further exploration. We introduce these
routines via an extended example.

Example 10.3.3 This example arises from the actual use of forest logging to understand a
Flora-2 computation [85], in which the Cyc reasoner (cf. http://www.cyc.com) was trans-
lated into Silk (cf. http://silk.semwebcentral.org) and used to answer various questions in
biology. Silk itself compiles into Flora-2 which in turn compiles into XSB 5. After transla-
tion, query answering took more resources than expected, and users wanted to determine
why. Using the features of Version 3.3, the first step is to call statistics/0 at the end of
the computation. The statistics indicated that the computation took about 30 seconds of
CPU time and 300 megabytes of table space, while XSB’s trail had allocated over 1 gigabyte
of space. The call to statistics/0 also showed the following information:

3Future options will be able to turn on and off the logging of various types of facts.
4I find it difficult myself!
5This example was run in 2012 using a 64-bit server with a large amount of RAM.

CHAPTER 10. DEBUGGING AND PROFILING 326

Log File Forest Explanation
tc(reach(1,_v0),null,new,0) node 1

node 2 created by program clause resol.
node 3 created by program clause resol.

tc(reach(2,_v0),reach(1,_v0),new,1) node 4
node 5 created by program clause resol.
node 6 created by program clause resol.

tc(reach(2,_v0),reach(2,_v0),incmp,2) repeated subgoal registered
node 7 created by program clause resol.
node 8 created by program clause resol.

na([2],reach(2,_v0),3) node 8 registered as answer
ar([2],reach(2,_v0),reach(2,_v0),4) node 9 created by answer resol.
cmp(reach(2,_v0),2,5) 9a reach(2,_v0) completed

node 10 created by return from completed table
na([2],reach(1,_v0),6) node 10 registered as an answer

node 11 created by program clause resol.
tc(reach(3,_v0),reach(1,_v0),new,7) node 12

node 13 created by program clause resol.
node 14 created by program clause resol.

tc(reach(1,_v0),reach(3,_v0),incmp,8) node 14 repeated subgoal registered
ar([2],reach(1,_v0),reach(3,_v0),9) node 15 created by answer resol.
na([2],reach(3,_v0),10) node 15 registered as an answer

node 16 created by program clause resol.
node 17 created by program clause resol.

na([1],reach(3,_v0),11) node 17 registered as an answer
node 18 created by program clause resol.
node 19 created by program clause resol. (repeated answer)
node 20 created by program clause resol.

na([3],reach(1,_v0),12) node 20 registered as an answer
ar([3],reach(1,_v0),reach(3,_v0),13) node 21 created by answer return
na([3],reach(3,_v0),14) node 21 registered as an answer
ar([2],reach(3,_v0),reach(1,_v0),15) node 22 created by answer resol.
ar([1],reach(3,_v0),reach(1,_v0),16) node 23 created by answer resol.
na([1],reach(1,_v0),17) node 23 registered as an answer
ar([3],reach(3,_v0),reach(1,_v0),18) node 24 created by answer resol.
ar([1],reach(1,_v0),reach(3,_v0),19) node 25 created by answer resol.v
cmp(reach(1,_v0),1,20)
cmp(reach(3,_v0),1,21)

Table 10.1: Log file for computation in Figure 10.1

CHAPTER 10. DEBUGGING AND PROFILING 327

8678944 variant call check/insert ops: 615067 producers, 8063877 variants.

317346 answer check/insert ops: 304899 unique inserts, 12447 redundant.

In other words, there were nearly 10 million tabled subgoals that were called, indicating
that this computation was heavily tabled (a characteristic of most Flora-2 computations),
It also shows that the average number of answers per tabled subgoal is rather small.

This basic information leads to several questions. Why were there so many tabled
subgoals? Did the tabling have anything to do with the large amount of choice-point/trail
space that was allocated? Which tabled subgoals had answers? How many times did a
given tabled predicate call another tabled predicate?

Some of these questions can be answered by table_dump/[2,3]: particularly, what
tabled subgoals were called, and which had answers. However table_dump/[2,3] cannot
provide other information, such as the dependencies of given tabled subgoals on other
tabled subgoals or the order in which operations occurred. From a formal perspective,
table_dump/[2,3] does not allow a user to analyze an entire SLG forest: only the “table”,
i.e., the subgoals in the forest and the unordered set of its answers. The table omits
any information about interior nodes or completion information, both of which are used to
compute dependency information. Dependencies are useful in analyzing most computations,
but is especially important in Flora-2 computations such as this one, that make heavy use of
HiLog. This use of HiLog means that the dependencies of tabled predicates on one another
is not at all obvious, and may not easily be determined by static analysis.

The next step, therefore, in analyzing this computation is to rerun it with forest logging.
For this computation forest logging has no impact on memory usage, but increases the time
of the computation from about 30 seconds to about 52 seconds — around 73% in this case.
It is worthwhile noting that the actual overhead of forest logging varies depending on how
heavily the computation is tabled. The log itself had slightly over 14 million entries which
were loaded into XSB via load_forest_log/1. The log took about 140 seconds to load
and about 7.8 Gbytes of space for the log facts and their multiple and trie indexes 6.

The easiest way to start the analysis is to ask the query ?- forest_log_overview,
which for this example gives:

There were 613496 subgoals in 463330 (completed) SCCs.

93918 subgoals were early-completed.

0 subgoals were not completed in the log.

There were a total of 8670043 tabled subgoal calls:

613496 were calls to new subgoals

4467747 were calls to incomplete subgoals

3588800 were calls to complete subgoals

6The load time for this example, about 100,000 facts/second is typical for 2012 CPUs; the size of the
loaded code is larger than usual, due in part to the expansion in the size of terms caused by the HiLog
encoding.

CHAPTER 10. DEBUGGING AND PROFILING 328

Number of SCCs with 1 subgoals is 463322

Number of SCCs with 4 subgoals is 1

Number of SCCs with 7 subgoals is 1

Number of SCCs with 52 subgoals is 1

Number of SCCs with 110 subgoals is 4

Number of SCCs with 149671 subgoals is 1

The overview extends the information shown by statistics/0. First, the total number
of completed and non-completed SCCs is given along with a count of how many of the
completed subgoals were early completed. Information about non-completed SCCs is useful,
since the forest log may be analyzed for a computation that does not terminate. Since this
computation did terminate, all subgoals in the log were completed 7. Note that there is also
a breakdown of calls to tabled subgoals that distinguishes whether the tabled subgoal was
new, completed, or incomplete. Recall that calls to completed tabled subgoals essentialy
treat the answers in the table as facts, so that these calls are efficient. Making a call to
an incomplete subgoals on the other hand means that the calling and called subgoals are
mutually recursive 8 and execution of recursive sets of subgoals can be expensive, especially
in terms of space.

Finally, the overview report provides the distributions of tabled subgoals across SCCs.
While most of the SCCs were small there was a large one, with nearly 150,000 mutually
dependent subgoals. Clearly the large SCC should be examimed. The first step is to obtain
its index. The query

get_scc_size(SCC,Index)), Index > 1000.

returns the information that the index of the large SCC was 39. The query analyze_an_scc(39,userout)

then provides the following information.

There are 149671 subgoals and 4461290 links (average of 30.8073 edges per subgoal)

within the SCC

There are 2 subgoals in the SCC for the predicate backchainForbidden / 0

There are 2 subgoals in the SCC for the predicate

http://www.cyc.com/silk/implementation/transformationPredicate / 0

:

There are 15613 subgoals in the SCC for the predicate gpLookupSentence / 3

There are 15613 subgoals in the SCC for the predicate removalSentence / 3

There are 18770 subgoals in the SCC for the predicate forwardSentence / 3

7The slight difference between the number of subgoals shown here and the number shown by statistics/0

is due to the use of tabling in the Flora compiler.
8This statement is true in local evaluation but not in batched evaluation.

CHAPTER 10. DEBUGGING AND PROFILING 329

There are 18771 subgoals in the SCC for the predicate lookupSentence / 3

Calls from assertedSentence/3 to lookupSentence/3 : 32

Calls from backchainForbidden/0 to ’http://www.cyc.com/silk/implementation/transformationPredicate’/0

:

Calls from transformationSentence/2 to sbhlSentence/3 : 5479

Calls from tvaSentence/3 to removalSentence/3 : 7695

It is evident from the first line in this report that the vast majority of the calls to incomplete
tables during this computation occur in the SCC under investigation. Since information
on incomplete tables is kept in XSB’s choice point stack (cf. [62]), the evaluation of SCC
39 is the likely culprit behind the large amount of stack space required. The subgoals in
the SCC are first broken out by their predicate name and arity, then the edges within the
SCC are broken out by the predicates of their caller and called subgoals. At this point a
programmer can review the various rules for lookupSentence/3, forwardSentence/3 and
other predicates to determine whether the recursion is intended and if so, whether it can
be simplified.

Using abstraction in the analysis

Within the SCC analysis, information about a given tabled subgoal S was abstracted to the
functor and arity of S. For this example, abstraction was necessary, as reporting 150,000
subgoals or 4,000,000+ would not provide useful information for a human being. However,
it could be the case that seeing the tabled subgoals themselves would be useful for a smaller
SCC. Even for an SCC of this size, different levels of abstraction could be useful: mode
information or type information might be useful in a given circumstance.

Example 10.3.4 Making the call ?- analyze_an_scc(39,userout,abstract_modes(_,_))

applies the predicate abstract_modes/2 to each term, producing an output of the form:

There are 149671 subgoals and 4461290 links (average of 30.8073 edges per subgoal)

within the SCC

There are 3 subgoals in the SCC for the predicate backchainRequired(g,g)

There are 2 subgoals in the SCC for the predicate backchainForbidden(g,g)

:

There are 29254 subgoals in the SCC for the predicate gpLookupSentence(g,g)

There are 29254 subgoals in the SCC for the predicate removalSentence(g,g)

Calls from assertedSentence(g,g) to lookupSentence(g,g) : 10

Calls from assertedSentence(m,g) to lookupSentence(m,g) : 22

:

CHAPTER 10. DEBUGGING AND PROFILING 330

Calls from transformationSentence(m,g) to sbhlSentence(m,g) : 741

Calls from tvaSentence(g,g) to removalSentence(g,g) : 7695

abstract_modes(In,Out) simply goes through each argument of In and unifies the corre-
sponding argument of Out with a v if the argument is a variable, a g if the argument is
ground, and m otherwise.

abstract_modes/2 is simply an example: any term-abstraction predicate may be passed
into the last argument of analyze_an_scc/3 9.

Analyzing Negation

Many programs that use negation are stratified in such a way that they do not require
the use of Delaying and Simplification operations, and the routines described in the
previous section are sufficient for these programs. However if a program does not have
a two-valued well-founded model, a user would often like to understand why. Even in a
program that is two-valued, the heavy use of Delaying and Simplification can indicate
that some rules may need to be optimized by having their literals reordered.

Example 10.3.5 Figure 10.2 shows a program with negation and illustrates SLG resolution
for the query p(c) to the program. The nodes in Figure 10.2 have been annotated with
the order in which they were created under local scheduling. In the formalism used by
Figure 10.2, the symbol | in a node separates the unresolved goals to the right from the
delayed goals to the left. In the evaluation state where nodes 1 through 10 have been
created, p(b) has been completed, and p(a) and p(c) are in the same SCC. There are no
more clauses or answers to resolve, but p(a) is involved in a loop through negation in node
5, and nodes 2 and 10 involve p(a) and p(c) in a negative loop 10.

In situations such as this, where all resolution has been performed for nodes in an
SCC, an evaluation may have to apply a Delaying operation to a negative literal such as
not(p(a)), in order to explore whether other literals to its right might fail. When multiple
literals can be delayed, an arbitrary one is chosen to be delayed first. So the evaluation
delays the selected literal of node 2 to generate node 12 producing a conditional answer – an
answer with a non-empty delay list (cf. Section 5.3.2 for an overview of how XSB computes
and allows inspection of delayed literals). Next, not p(a) in node 5 is delayed, failing that
computation path, and not p(c) in node 10 is delayed to produce node 15 and failing the
final computation path for p(a). At this stage the SCC {p(a), p(c)} is completely evaluated
meaning that there are no more operations applicable for goal literals (as opposed to delay

9Because of the special representation of Flora-2 terms, abstraction was used to produce the output of
Example 10.3.4, while a more sophisticated version of abstract_modes/2 was used in Example 10.3.4.

10In this example, we ignore the effects of early completion which would complete p(b) immediately upon
creation of node 8, obviating the need to create node 9.

CHAPTER 10. DEBUGGING AND PROFILING 331

p(c):− nor p(a).
p(X):− t(X,Y,Z),not p(X),not(p(Y).

:− table p/1. t(a,b,a)
t(a,a,b)p(b)

5 p(a):− |not p(a),not p(b) 6 p(a):− | not p(b), not p(a) 10 p(a):− | not p(c), not p(b).

15 p(a):− not p(c) | not p(b).13 p(a):− not p(a) | not p(b)

9 p(b):− |t(b,Y,Z),not p(Y), not p(Z).

9a complete

8 p(b) :− |

7 p(b) :− | p(b)

16 fail

11 fail

14 fail

3 p(a) :− | p(a)

17 p(c) :− |

1 p(c) :− | p(c)

12 p(c):− not p(a) |

2 p(c):− | not p(a)

4 p(a):− |t(a,Y,Z),not p(Y), not p(Z).

Figure 10.2: A Normal Program and SLG Forest for Evaluation of the Query p(c)

literals). Since p(a) is completely evaluated with no answers, conditional or otherwise, the
evaluation determines it to be failed and a Simplification operation can be applied to the
conditional answer of node 12, leading to the unconditional answer in node 17 and success
of the literal p(c).

As indicated previously, the forest log overview includes a total count of Delaying and
Simplification operations, as well as a count of conditional answers. In addition, SCC
analysis counts negative as well as positive links within the SCC. The current version of
forest logging also provides a means to examine the causes of answers that have an undefined
truth value. Recall from Example 10.3.5 that there are two types of causes of an undefined
truth value: either 1) a negative literal explicitly undergoes a Delaying operation; or 2) a
conditional answer may be used to resolve a literal. It can be shown that in local evaluation,
a conditional answer A will never be returned out of an SCC if A is successful or failed in
the well-founded model of a program. This means that if an answer for S is undefined, then
it would be caused operationally by a Delaying operation within the SCC of S or within

CHAPTER 10. DEBUGGING AND PROFILING 332

some other SCC on which S depends. So to understand why an atom is undefined it can
be useful understand the “root causes” of the delay: to examine SCCs in which Delaying

operations were executed and conditional answers were derived, but the answers could not
be simplified.

Example 10.3.6 As a use case, logging was made of execution of a Flora-2 program that
tested out a new defeasibility theory. The forest log overview indicated that the top-level
query was undefined:

:

There were a total of 55 negative delays

There were a total of 0 simplifications

There were a total of 695 unconditional answers derived:

There were a total of 66 conditional answers derived:

The analysis predicate three_valued_scc(List) produces a list of all SCC indices in which
Delaying caused the derivation of conditional answers. These SCCs can then be analyzed
as discussed in the previous section.

10.3.3 Discussion

Using log forest imposes a relatively minimal overhead on most computations, considering
the information it can provide, and loading and analysis is relatively quick. For this example,
the top level analysis took around 10 seconds, and analysing SCC 39 took about 20 seconds
in Example 10.3.3 and about 60 seconds in Example 10.3.4. For more information, see [75].

10.3.4 Predicates for Forest Logging

forest_log_overview module: tables

Provides an overview of subgoals, calls, and SCCs in the forest log as indicated in
Section 10.3.2.

get_scc_size(?Index,?Size) module: tables

This simple predicate determines the indices of SCCs whose size is Size, for use with
analyze_an_scc/[2,3].

three_valued_sccs(List) module: tables

If there are any SCCs in the log where delay is performed, causing conditional answers
to be added that were not simplified into unconditional answers, unifies List with the
index of all such SCCs.

analyze_an_scc(+Index,+File) module: tables
analyze_an_scc(+Index,+File,+Abstraction) module: tables

These predicates can be used to analyze the SCC indexed by Index in a forest log,

CHAPTER 10. DEBUGGING AND PROFILING 333

as explained in Section 10.3.2. The output is written to File; calling the pred-
icate with File set to userout causes the output to be written to the console.
In analyze_an_scc/2, tabled subgoals are abstracted to predicate indicators, in
analyze_an_scc/3, a two-ary abstraction predicate in usermod is called.

Error conditions on File are the same as tell/1.

abstract_modes(Term,AbstractedTerm) module: usermod

abstract_modes(In,Out) simply goes through each argument of Term and unifies the
corresponding argument of Abstracted with a v if the argument is a variable, a g if
the argument is ground, and m otherwise.

Chapter 11

Definite Clause Grammars

11.1 General Description

Definite clause grammars (DCGs) are an extension of context free grammars that have
proven useful for describing natural and formal languages, and that may be conveniently
expressed and executed in Prolog. A Definite Clause Grammar rule is executable because
it is just a notational variant of a logic rule that has the following general form:

Head –> Body.

with the declarative interpretation that “a possible form for Head is Body”. The procedural
interpretation of a grammar rule is that it takes an input sequence of symbols or character
codes, analyses some initial portion of that list, and produces the remaining portion (pos-
sibly enlarged) as output for further analysis. In XSB, the exact form of this sequence is
determined by whether XSB’s DCG mode is set to use tabling or not, as will be discussed
below. In either case, the arguments required for the input and output lists are not written
explicitly in the DCG rule, but are added when the rule is translated (expanded) into an
ordinary normal rule during parsing. Extra conditions, in the form of explicit Prolog literals
or control constructs such as if-then-elses (’->’/2) or cuts (’!’/0), may be included in the
Body of the DCG rule and they work exactly as one would expect.

The syntax of DCGs is orthogonal to whether tabling is used for DCGs or not. An
overview of DCG syntax supported by XSB is as follows:

1. A non-terminal symbol may be any HiLog term other than a variable or a number. A
variable which appears in the body of a rule is equivalent to the appearance of a call
to the standard predicate phrase/3 as it is described below.

2. A terminal symbol may be any HiLog term. In order to distinguish terminals from
nonterminals, a sequence of one or more terminal symbols α, β, γ, δ, . . . is written

334

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 335

within a grammar rule as a Prolog list [α, β, γ, δ, . . .], with the empty sequence
written as the empty list []. The list of terminals may contain variables but it has to
be a proper list, or else an error message is sent to the standard error stream and the
expansion of the grammar rule that contains this list will fail. If the terminal symbols
are ASCII character codes, they can be written (as elsewhere) as strings.

3. Extra conditions, expressed in the form of Prolog predicate calls, can be included in
the body (right-hand side) of a grammar rule by enclosing such conditions in curly
brackets, ’{’ and ’}’. For example, one can write:

positive_integer(N) –> [N], {integer(N), N > 0}. 1

4. The left hand side of a DCG rule must consist of a single non-terminal, possibly
followed by a sequence of terminals (which must be written as a unique Prolog list).
Thus in XSB, unlike SB-Prolog version 3.1, “push-back lists” are supported.

5. The right hand side of a DCG rule may contain alternatives (written using the usual
Prolog’s disjunction operator ’;’ or using the usual BNF disjunction operator ’|’.

6. The Prolog control primitives if-then-else (’->’/2), nots (not/1, fail_if/1, ′\ +′/1

or tnot/1) and cut (’!’/0) may also be included in the right hand side of a DCG rule.
These symbols need not be enclosed in curly brackets. 2 All other Prolog’s control
primitives, such as repeat/0, must be enclosed explicitly within curly brackets if they
are not meant to be interpreted as non-terminal grammar symbols.

11.2 Translation of Definite Clause Grammar rules

In this section we informally describe the translation of DCG rules into normal rules in
XSB. Each grammar rule is translated into a Prolog clause as it is consulted or com-
piled. This is accomplished through a general mechanism of defining the hook predicate
term_expansion/2, by means of which a user can specify any desired transformation to
be done as clauses are read by the reader of XSB’s parser. This DCG term expansion is as
follows:

A DCG rule such as:

p(X) –> q(X).

will be translated (expanded) into:

1A term like {foo} is just a syntactic-sugar for the term ’{}’(foo).
2Readers familiar with Quintus Prolog may notice the difference in the treatment of the various kinds of

not. For example, in Quintus Prolog a not/1 that is not enclosed within curly brackets is interpreted as a
non-terminal grammar symbol.

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 336

p(X, Li, Lo) :-

q(X, Li, Lo).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) –> q(X), r(X, Y), s(Y).

the corresponding input and output arguments are identified, translating into:

p(X, Y, Li, Lo) :-

q(X, Li, L1),

r(X, Y, L1, L2),

s(Y, L2, Lo).

Terminals are translated using the predicate ’C’/3 (See section 11.3 for its description).
For instance:

p(X) –> [go, to], q(X), [stop].

is translated into:

p(X, S0, S) :-

’C’(S0, go, S1),

’C’(S1, to, S2),

q(X, S2, S3),

’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate into them-
selves. For example,

positive_number(X) –>

[N], {integer(N), N > 0},

fraction(F), {form_number(N, F, X)}.

translates to:

positive_number(X, Li, Lo) :-

’C’(Li, N, L1),

integer(N),

N > 0,

L1 = L2,

fraction(F, L2, L3),

form_number(N, F, N),

L3 = Lo.

Similarly, a cut is translated literally.

Push-back lists (a proper list of terminals on the left-hand side of a DCG rule) translate
into a sequence of ’C’/3 goals with the first and third arguments reversed. For example,

it_is(X), [is, not] –> [aint].

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 337

becomes

it_is(X, Li, Lo) :-

’C’(Li, aint, L1),

’C’(Lo, is, L2),

’C’(L2, not, L1).

Disjunction has a fairly obvious translation. For example, the DCG clause:

expr(E) –>

expr(X), "+", term(Y), {E is X+Y}
| term(E).

translates to the Prolog rule:

expr(E, Li, Lo) :-

(expr(X, Li, L1),

’C’(L1, 43, L2), % 0’+ = 43

term(Y, L2, L3)

E is X+Y,

L3 = Lo

; term(E, Li, Lo)

).

11.2.1 Definite Clause Grammars and Tabling

Tabling can be used in conjunction with Definite Clause Grammars to get the effect of a more
complete parsing strategy. When Prolog is used to evaluate DCG’s, the resulting parsing
algorithm is “recursive descent”. Recursive descent parsing, while efficiently implementable,
is known to suffer from several deficiencies: 1) its time can be exponential in the size of the
input, and 2) it may not terminate for certain context-free grammars (in particular, those
that are left or doubly recursive). By appropriate use of tabling, both of these limitations
can be overcome. With appropriate tabling, the resulting parsing algorithm is a variant of
Earley’s algorithm and of chart parsing algorithms.

In the simplest cases, one needs only to add the directive :- auto_table (see Sec-
tion 3.10.4) to the source file containing a DCG specification. This should generate any
necessary table declarations so that infinite loops are avoided (for context-free grammars).
That is, with a :- auto_table declaration, left-recursive grammars can be correctly pro-
cessed. Of course, individual table directives may also be used, but note that the arity
must be specified as two more than that shown in the DCG source, to account for the extra
arguments added by the expansion. However, the efficiency of tabling for DCGs depends on
the representation of the input and output sequences used, a topic to which we now turn.

Consider the expanded DCG rule from the previous section:

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 338

p(X, S0, S) :-

’C’(S0, go, S1),

’C’(S1, to,S2),

q(X, S2, S3),

’C’(S3, stop, S).

In a Prolog system, each input and output variable, such as S0 or S is bound to a variable
or a difference list. In XSB, this is called list mode. Thus, to parse go to lunch stop the
phrase would be presented to the DCG rule as a list of tokens [go,to,lunch,stop] via a
call to phrase/3 such as:

phrase(p(X),[go,to,lunch,stop]).

or an explicit call to p/3, such as:

p(X,[go,to,lunch,stop|X],X).

Terminal elements of the sequence are consumed (or generated) via the predicate ’C’/3

which is defined for Prolog systems as:

’C’([Token|Rest],Token,Rest).

While such a definition would also work correctly if a DCG rule were tabled, the need
to copy sequences into or out of a table can lead to behavior quadratic in the length of the
input sequence (See Section 5.2.4). As an alternative, XSB allows a mode of DCGs that
defines ’C’/3 as a call to a Datalog predicate word/3 :

’C’(Pos,Token,Next_pos):- word(Pos,Token,Next_pos).

assuming that each token of the sequence has been asserted as a word/3 fact, e.g:

word(0,go,1).

word(1,to,2).

word(2,lunch,3).

word(3,stop,4).

The above mode of executing DCGs is called datalog mode.

word/3 facts are asserted via a call to the predicate tphrase_set_string/1. After-
wards, a grammar rule can be called either directly, or via a call to tphrase/1. To parse
the list [go,to,lunch,stop] in datalog mode using the predicate p/3 from above, the call

tphrase_set_string([go,to,lunch,stop])

would be made, afterwards the sequence could be parsed via the goal:

tphrase(p(X)).

or

p(X,0,F).

To summarize, DCGs in list mode have the same syntax as they do in datalog mode:

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 339

they just use a different definition of ’C’/3. Of course tabled and non-tabled DCGs can use
either definition of ’C’/3. Indeed, this property is necessary for tabled DCG predicates to
be able to call non-tabled DCG predicates and vice-versa. At the same time,tabled DCG
rules may execute faster in datalog mode, while non-tabled DCG rules may execute faster
in list mode.

Finally, we note that the mode of DCG parsing is part of XSB’s state. XSB’s default
mode is to use list mode: the mode is set to datalog mode via a call to tphrase_set_string/3

and back to list mode by a call to phrase/2 or by a call to reset_dcg_mode/0.

11.3 Definite Clause Grammar predicates

The library predicates of XSB that support DCGs are the following:

phrase(+Phrase, ?List)

This predicate is true iff the list List can be parsed as a phrase (i.e. sequence of
terminals) of type Phrase. Phrase can be any term which would be accepted as a
nonterminal of the grammar (or in general, it can be any grammar rule body), and
must be instantiated to a non-variable term at the time of the call; otherwise an error
message is sent to the standard error stream and the predicate fails. This predicate
is the usual way to commence execution of grammar rules.

If List is bound to a list of terminals by the time of the call, then the goal corresponds
to parsing List as a phrase of type Phrase; otherwise if List is unbound, then the
grammar is being used for generation.

tphrase(+Phrase)

This predicate is succeeds if the current database of word/3 facts can be parsed via
a call to the term expansion of +Phrase whose input argument is set to 0 and whose
output argument is set to the largest N such that word(_,_,N) is currently true.

The database of word/3 facts is assumed to have been previously set up via a call
to tphrase_set_string/1 (or variant). If the database of word/3 facts is empty,
tphrase/1 will abort.

phrase(+Phrase, ?List, ?Rest)

This predicate is true iff the segment between the start of list List and the start of
list Rest can be parsed as a phrase (i.e. sequence of terminals) of type Phrase . In
other words, if the search for phrase Phrase is started at the beginning of list List,
then Rest is what remains unparsed after Phrase has been found. Again, Phrase can
be any term which would be accepted as a nonterminal of the grammar (or in general,
any grammar rule body), and must be instantiated to a non-variable term at the time
of the call; otherwise an error message is sent to the standard error stream and the
predicate fails.

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 340

Predicate phrase/3 is the analogue of call/1 for grammar rule bodies, and provides
a semantics for variables in the bodies of grammar rules. A variable X in a grammar
rule body is treated as though phrase(X) appeared instead, X would expand into a
call to phrase(X, L, R) for some lists L and R.

expand_term(+Term1, ?Term2)

This predicate is used to transform terms that appear in a Prolog program before
the program is compiled or consulted. The default transformation performed by
expand_term/2 is that when Term1 is a grammar rule, then Term2 is the correspond-
ing Prolog clause; otherwise Term2 is simply Term1 unchanged. If Term1 is not of the
proper form, or Term2 does not unify with its clausal form, predicate expand_term/2

simply fails.

Users may augment the default transformations by asserting clauses for the predicate
term_expansion/2 to usermod. After term_expansion(Term_a,Term_b) is asserted,
then if a consulted file contains a clause that unifies with Term_a the clause will be
transformed to Term_b before further compilation. expand_term/2 calls user clauses
for term_expansion/2 first; if the expansion succeeds, the transformed term so ob-
tained is used and the standard grammar rule expansion is not tried; otherwise, if
Term1 is a grammar rule, then it is expanded using dcg/2; otherwise, Term1 is used
as is.

Example: Suppose the following clause is asserted:

?- assert(term_expansion(foo(X),bar(X))).

and that the file te.P contains the clause foo(a) then the clause will automatically
be expanded upon consulting the file:

| ?- [te].

[Compiling /Users/macuser/te]

[te compiled, cpu time used: 0.0170 seconds]

[te loaded]

yes

| ?- bar(X).

X = a

yes

| ?- foo(X).

++Error[XSB/Runtime/P]: [Existence (No procedure usermod : foo / 1 exists)] []

Forward Continuation...

However, read/[1,2] does not automatically perform term expansion

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 341

| ?- use_module(standard,[expand_term/2]).

yes

| ?- read(X),expand_term(X,Y).

foo(a).

X = foo(a)

Y = bar(a)

yes

’C’(?L1, ?Terminal, ?L2)

This predicate generally is of no concern to the user. Rather it is used in the trans-
formation of terminal symbols in grammar rules and expresses the fact that L1 is
connected to L2 by the terminal Terminal. This predicate is needed to avoid prob-
lems due to source-level transformations in the presence of control primitives such as
cuts (’!’/0), or if-then-elses (’->’/2) and is defined by the single clause:

’C’([Token|Tokens], Token, Tokens).

The name ’C’ was chosen for this predicate so that another useful name might not be
preempted.

tphrase_set_string(+List)

This predicate

1. abolishes all tables;

2. retracts all word/3 facts from XSB’s store; and

3. asserts new word/3 facts corresponding to List as described in Section 11.2.1.

implicitly changing the DCG mode from list to datalog.

tphrase_set_string_keeping_tables(+List) module: dcg

This predicate is the same as tphrase_set_string, except it does not abolish any
tables. When using this predicate, the user is responsible for explicitly abolishing the
necessary tables.

tphrase_set_string_auto_abolish(+List) module: dcg

This predicate is the same as tphrase_set_string, except it abolishes tables that
have been indicated as dcg-supported tables by a previous call to set_dcg_supported_table/1.

set_dcg_supported_table(+TabSkel) module: dcg

This predicate is used to indicate to the DCG subsystem that a particular tabled
predicate is part of a DCG grammar, and thus the contents of its table depends on

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 342

the string being parsed. TabSkel must be the skeleton of a tabled predicate. When
tphrase_set_string_auto_abolish/1 is called, all tables that have been indicated
as DCG-supported by a call to this predicate will be abolished.

dcg(+DCG_Rule, ?Prolog_Clause) module: dcg

Succeeds iff the DCG rule DCG_Rule translates to the Prolog clause Prolog_Clause.
At the time of call, DCG_Rule must be bound to a term whose principal functor is
’–>’/2 or else the predicate fails. dcg/2 must be explicitly imported from the module
dcg.

11.4 Two differences with other Prologs

The DCG expansion provided by XSB is in certain cases different from the ones provided
by some other Prolog systems (e.g. Quintus Prolog, SICStus Prolog and C-Prolog). The
most important of these differences are:

1. XSB expands a DCG clause in such a way that when a ’!’/0 is the last goal of the
DCG clause, the expanded DCG clause is always steadfast.

That is, the DCG clause:

a –> b, ! ; c.

gets expanded to the clause:

a(A, B) :- b(A, C), !, C = B ; c(A, B).

and not to the clause:

a(A, B) :- b(A, B), ! ; c(A, B).

as in Quintus, SICStus and C Prolog.

The latter expansion is not just optimized, but it can have a different (unintended)
meaning if a/2 is called with its second argument bound.

However, to obtain the standard expansion provided by the other Prolog systems, the
user can simply execute:

set_dcg_style(standard).

To switch back to the XSB-style DCG’s, call

set_dcg_style(xsb).

This can be done anywhere in the program, or interactively. By default, XSB starts
with the XSB-style DCG’s. To change that, start XSB as follows:

xsb -e "set_dcg_style(standard)."

Problems of DCG expansion in the presence of cuts have been known for a long time
and almost all Prolog implementations expand a DCG clause with a ’!’/0 in its

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 343

body in such a way that its expansion is steadfast, and has the intended meaning
when called with its second argument bound. For that reason almost all Prologs
translate the DCG clause:

a –> ! ; c.

to the clause:

a(A, B) :- !, B = A ; c(A, B).

But in our opinion this is just a special case of a ’!’/0 being the last goal in the body
of a DCG clause.

Finally, we note that the choice of DCG style is orthogonal to whether the DCG mode
is list or datalog.

2. Most of the control predicates of XSB need not be enclosed in curly brackets. A
difference with, say Quintus, is that predicates not/1, ′\ +′/1, or fail_if/1 do not
get expanded when encountered in a DCG clause. That is, the DCG clause:

a –> (true -> X = f(a) ; not(p)).

gets expanded to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not p(A,B))

and not to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not(p,A,B))

that Quintus Prolog expands to.

However, note that all non-control but standard predicates (for example true/0 and
’=’/2) get expanded if they are not enclosed in curly brackets.

Chapter 12

Exception Handling

We define the term exceptions as errors in program execution that are handled by a non-
local change in execution state. Exception handling in XSB is ISO-compatable, and has
been extended to handle tabled evaluations.

12.1 The Mechanics of Exception Handling

We address the case of non-tabled evaluations before discussing the extensions for tabling.

12.1.1 Exception Handling in Non-Tabled Evaluations

The preferred mechanism for dealing with exceptions in XSB is to use the predicates
catch/3, throw/1, and default_user_error_handler/1 together. These predicates are
ISO-compatable, and their use can give a great deal of control to exception handling. At
a high level, when an exception is encountered an error term T is thrown. In a Prolog
program, throwing an error term T causes XSB to examine its choice point stack until it
finds a catcher that unifies with T . This catcher then calls a handler. If no explicit catcher
for T exists, a default handler is invoked, which usually results in an abort, and returns
execution to the top-level of the interpreter, or to the calling C function.

A handler is set up when catch(Goal,Catcher,Handler) is called. At this point a
continuation is saved (i.e. a Prolog choice point), and Goal is called. If no exceptions are
encountered, answers for Goal are obtained as usual. Within the execution of Goal, an ex-
ception is usually thrown by calling a Prolog predicate in the error_handler module, or by
executing a C-level error function. However, if a user-defined error type is desired, the Prolog
predicate throw/1 can also be called directly. As mentioned above, throw/1 searches for an
ancestor of the current environment called by catch/3 and whose catcher (second argument)
unifies with Error. If such an ancestor is found, program execution reverts to the ancestor

344

CHAPTER 12. EXCEPTION HANDLING 345

and all intervening choice points are removed. The catcher’s Handler goal is called and the
exception is thereby handled. On the other hand, if no ancestor was called using catch/3

the system checks whether a clause with head default_user_error_handler(Term) has
been asserted, such that Term unifies with Error. If so, this handler is executed. If not,
XSB’s default system error handler in invoked an error message is output and execution
returns to the top level of the interpreter.

The following, somewhat fanciful example, helps clarify these concepts 1. Consider the
predicate userdiv/2 (Figure 12.1) which is designed to be called with the first argument
instantiated to a number. A second number is then read from a console, and the first
number is divided by the second, and unified with the second argument of userdiv/2. By
using catch/3 and throw/1 together the various types of errors can be caught.

:- import error_writeln/1 from standard.

:- import type_error/4 from error_handler.

userdiv(X,Ans):-

catch(userdiv1(X,Ans),mydiv1(Y),handleUserdiv(Y,X)).

userdiv1(X,Ans):-

(number(X) -> true; type_error(number,X,userdiv1/2,1)),

write(’Enter a number: ’),read(Y),

(number(Y) -> true ; throw(mydiv1(error1(Y)))),

(Y < 0 -> throw(mydiv1(error2(Y))); true),

(Y =:= 0 -> throw(error(zerodivision,userdiv/1,[])); true),

Ans is X/Y.

handleUserdiv(error1(Y),_X):-

error_writeln([’a non-numeric denominator was entered in userdiv/1: ’,Y]),fail.

handleUserdiv(error2(Y),_X):-

error_writeln([’a negative denominator was entered in userdiv/1: ’,Y]),fail.

Figure 12.1: The userdiv/1 program

The behavior of this program on some representative inputs is shown below.

| ?- userdiv(p(1),F).

++Error[XSB/Runtime/P]: [Type (p(1) in place of number)] in arg 1 of predicate userdiv1/2

Forward Continuation...

... machine:xsb_backtrace/1

... error_handler:type_error/4

... standard:call/1

1Code for this example can be found in $XSBDIR/examples/exceptions.P.

CHAPTER 12. EXCEPTION HANDLING 346

... x_interp:_$call/1

... x_interp:call_query/1

... standard:call/1

... standard:catch/3

... x_interp:interpreter/0

... loader:ll_code_call/3

... standard:call/1

... standard:catch/3

no

| ?- userdiv(3,F).

Enter a number: foo.

a non-numeric denominator was entered in userdiv/1: foo

no

|| ?- userdiv(3,F).

Enter a number: -1.

a negative denominator was entered in userdiv/1: -1

no

| ?- userdiv(3,Y).

Enter a number: 2.

Y = 1.5000

yes

Note, however the following behavior.

| ?- userdiv(3,F).

Enter a number: 0.

++Error[XSB/Runtime/P] uncaught exception: error(zerodivision,userdiv / 1)

Aborting...

By examining the program above, it can be seen that if p(1) is entered, the predicate
type_error/3 is called. type_error/3 is an XSB mechanism to throw an ISO-style type
error from Prolog. Such an error is known to the default system error handler which
prints out a message along with a backtrace that indicates the calling context in which the
error arose (this behavior can be controlled: see Section 12.5). Alternately, in the second
case, when -1 is entered, the error term mydiv1(error2(-1)) is thrown, which is caught
within userdiv/2 and handled by handleUserdiv/2. Finally, when 0 is entered for the
denominator, an error term of the form error(zerodivision,userdiv/1) is thrown, and
that this term does not unify with the second argument of the catch/3 literal in the body
of userdiv/1, or with a known ISO error. The error is instead caught by XSB’s default
system error handler which prints an uncaught exception message and aborts to the top
level of the interpreter.

CHAPTER 12. EXCEPTION HANDLING 347

XSB has two default system error handlers: one used when XSB is called as a stand-
alone process, and another when XSB is embedded in a process. Each recognizes certain
error formats (see Section 12.2), and handles the rest as uncaught exceptions. However,
there may be times when an application requires special default handling: perhaps the
application calls XSB from through a socket, so that aborts are not practical. Alternately,
perhaps XSB is being called from a graphical user interface via Interprolog [9] or some
other interface, and in addition to a special abort handling, one would like to display
an error window. In these cases it is convenient to make use of the dynamic predicate
default_user_error_handler/1. default_user_error_handler/1 is called immediately
before the default system error handler, and after it is ascertained that no catcher for an
error term is available via a catch/3 ancestor. It is important to note that the system
error handlers catch errors only in the main thread, and do not affect errors thrown by
goals executed by thread_create/[2,3]. Error terms thrown by goals executed by non-
detached threads are stored internally, and can be obtained by thread_join/2. Error terms
thrown by detached threads are lost when the thread exits, so that any error handling for
a detached thread should be performed within the thread itself. See Chapter 7 for further
information.

Accordingly, suppose the following clause is asserted into usermod:

?- assert((default_user_error_handler(error(zerodivision,Pred)):-

error_writeln([’Aborting: division by 0 in: ’,Pred]))).

The behavior will now be

| ?- userdiv(4,F).

Enter a number: 0.

Aborting: division by 0 in: userdiv / 1

The actions of catch/3 and throw/1 resemble that of the Prolog cut in that they remove
choice points that lie between a call to throw/1 and the matching catch/3 that serves as
its ancestor.

The predicate call_cleanup/2 (cf. Section 6.11) can be used with catch/3, since
the goal call_cleanup(Goal,Cleanup) executes Cleanup whenever computation of Goal

is completed, whether because Goal has thrown an exception, has failed, or has succeeded
with its last answer. call_cleanup/2 can thus be used to release resources created by Goal

(such as streams, mutexes, database cursors, etc.). However, if Goal throws an exception,
call_cleanup/2 will re-throw the exception after executing cleanup.

12.1.2 Exception Handling in Tabled Evaluation

The exception handling as previously described requires extensions in order to work well
with tabled predicates. First, if an unhandled exception is thrown duing evaluation of a

CHAPTER 12. EXCEPTION HANDLING 348

tabled subgoal S and S is not completed, the table for S is not meaningful and should be
removed. (Tables that have been completed are not affected by exceptions.) Accordingly,
the user will sometimes see the message:

Removing incomplete tables...

written to standard feedback. But what about exceptions that are caught during the com-
putation of S?

The proper action to take in such a case is complicated by the scheduling mechanism
of tabling which, as discussed in Chapter 5, is more complex than in Prolog. Rather than
a simple depth-first search, as in Prolog, tabled evaluations effectively perform a series of
fixed-point computations for various sets of mutually dependent subgoals, which are termed
SCCs 2. In fact, a tabled evaluation can be seen as a tree of SCCs (in batched evaluation)
or a chain of SCCs (in local evaluation). In a tabled evalution XSB’s throw mechanism
searches for the nearest catcher C among its ancestors

• whose Catchterm unifies with the thrown error; and

• where C is between SCCs: that is where the set of subgoals that depend on C is
disjoint from the set of subgoals upon which C depends. We term this the SCC
restriction for exception handling.

This behavior can be best understood by an example. Consider the query a(X) to the
program in Figure 12.2 which has the following output:

:- table a/1, b/1, c/1,d/1.

a(X):- writeln(a_calling_b),b(X).

b(X):- writeln(b_calling_a),a(X).

b(X):- writeln(b_calling_c),catch(c(X),_,(writeln(handled_1),fail)).

c(X):- writeln(c_calling_d),d(X).

c(X):- writeln(c_aborting),abort.

d(X):- writeln(d_calling_c),catch(c(X),_,(writeln(handled_2),fail)).

Figure 12.2: A program to illustrate exception handling in tabled evaluations

| ?- a(X).

2This term is used since sets of mutually dependent subgoals are formally modelled as (approximate)
Strongly Connected Components within a dependency graph.

CHAPTER 12. EXCEPTION HANDLING 349

a_calling_b

b_calling_a

b_calling_c

c_calling_d

d_calling_c

c_aborting

Removing incomplete tables...

handled_1

Note that there are 2 SCCs, {a(X), b(X)} and {c(X), d(X)}. When the abort is called in
the body of c(X) the catch in the body of d(X) is its nearest ancestor; however this catch
is skipped over, and the catch in the body of b(X) takes effect. This catch is between the
SCCs – the first SCC depends on it, but the second doesn’t. Due to the SCC restriction,
the actual behavior of exception handling with tabling is thus somewhat less intuitive than
in Prolog. If this restriction were lifted, there would be no guarantee that there existed a
unique catch that was the closest ancestor of an exception.

While the above mechanism offers a great deal of flexibility, for many cases the best
approach to exception handling is to keep it simple.

1. Use catches when there will be no tabled subgoal between an exception and its catcher.
For instance, sometimes it may be annoying to have atom_codes/2 throw an exception
rather than failing, if given an integer in its first argument. This can be addressed by
the predicate

my_atom_codes(X,Y):-

catch(atom_codes(1,B),error(type_error(A,B),C,D),writeln(E)).

which, for a type error, does not interact with tabling in any way.

2. Similarly, if only subgoals to completed tables occur between an exception and its
catcher, exception handling behaves just as in case 1).

3. Otherwise, abort the entire tabled computation and handle it from there.

Obtaining Information about a Tabled Computation after an Exception is Thrown

XSB backtraces (Section 12.5) provide information about the context in which error is
thrown, but in a tabled computation additional information is available. If the Prolog flag
exception_pre_action is set to print_incomplete_tables (its default setting is none),
then when an exception is thrown, incomplete tables and their SCC information at the time
an exception is thrown are printed to a file via print_incomplete_tables/1. The file may
be obtained through the predicate get_scc_dumpfile/1 in the module tables. No file is
generated unless the exception is thrown over at least one incomplete table.

CHAPTER 12. EXCEPTION HANDLING 350

12.2 Representation of ISO Errors

All exceptions that occur during the execution of an XSB program can be caught. However,
by structuring error terms in a consistent manner, different classes of errors can be handled
much more easily by user-defined handlers. This philosophy partly underlies the ISO Stan-
dard for defining classes of Prolog errors [34]. While the ISO standard defines various types
of errors and how they should arise during execution of ISO Prolog predicates, it does not
define the actual error terms a system should use. Accordingly, we define the formats for
various ISO errors. Below, in Section 12.3 we provide predicates for throwing various ISO
errors and performing various error checks.

In the following predicates, Msg is either a list of HiLog terms or a comma-list of HiLog
terms. Each of the error/2 terms below can also be represented as error/3 terms, where
the third argument is instantiated to the representation of a backtrace 3.

error(domain_error(Valid_type,Culprit),Msg) is the format of an ISO type error,
where Valid_type is the domain expected and Culprit is the term observed. Unlike
types, domains can be user-defined.

error(evaluation_error(Flag),Msg) is the format of an ISO evaluation error (e.g. over-
flow or underflow), and Flag is the type of evaluation error encountered.

error(existence_error(Type,Culprit),Msg) is the format of an ISO type error, where
Type is the type of a resource and Culprit is the term observed (e.g., a predicate,
stream, attribute handler, etc.).

error(instantiation_error,Msg)) is the format of an ISO instantiation error.

error(permission_error(Op,Obj_type,Culprit).Msg) is the format of an ISO per-
mission error, for an operation Op applied to an object of type Obj_type, where
Culprit was observed.

error(representation_error(Flag).Msg) is the format of an ISO representation error
(e.g., the maximum arity of a predicate has been exceeded), and Flag is the type of
representation error encountered.

error(resource_error(Flag).Msg) is the format of an ISO resource error (e.g. allowed
memory has been used, or too many files have been opened), and Flag is the type of
resource error encountered.

error(syntax_error,Msg) and error(syntax_error(Culprit),Msg) are alternate for-
mats of an ISO syntax error, where Culprit is used for a syntactically-incorrect
sequence of tokens.

3If a program catches errors itself, error/3 may need to be imported from error_handler.

CHAPTER 12. EXCEPTION HANDLING 351

error(system_error(Flag),Msg) is the format of an ISO system error, and Flag is the
type of system error encountered.

error(type_error(Valid_type,Culprit),Msg) is the format of an ISO type error, where
Valid_type is the type expected and Culprit is the term observed. This should be
used for checks of Prolog types only (i.e. integers, floats, atoms, etc.)

In addition, XSB also makes use of some other types of errors.

error(table_error,Msg) is the format of an error arising when using XSB’s tabling mech-
anism.

error(misc_error,Msg) is the format of an error that is not otherwise classified.

error(thread_cancel,Id) is the format of an error ball for a thread that has been can-
celled by XSB thread Id (See Chapter 7 for details on thread cancellation.)

In Version 3.3 of XSB, errors for ISO predicates usually, but not not always ISO-
compliant. First, when XSB determines it is out of available system memory, recovering
from such an error may be difficult at best. Accordingly the computation is aborted in the
sequential engine, or XSB exits in the multi-threaded engine 4. Second, errors in XSB code
sometimes arise as miscellaneous errors rather than as a designated ISO-error type.

When XSB generates a memory exception at the OS level (e.g., a segmentation violation
or bus error) it prints out a backtrace and exits. This should be caused only by a bug in
XSB or included C code. The first predicate in the backtrace that is printed in these
circumstances may be incorrect or redundant. This is because the memory structures used
to generate the backtrace are not always completely consistent, and so an interrupt at an
unexpected point may result in the use of somewhat inconsistent information.

12.3 Predicates to Throw and Handle Errors

12.3.1 Predicates to Throw Errors

XSB provides a variety of predicates that throw errors 5. In general, we recommend the
use of predicates such as domain_error/4 over the direct use of throw/1 when possible.

throw(+ErrorTerm) ISO
Throws the error ErrorTerm. Execution traverses up the choice point stack until a
goal of the form catch(Goal,Term,Handler) is found such that Term unifies with

4This does not include overflowaing a memory limit specified by the flag max_memory.
5C functions for throwing terms and ISO-style errors are described in Volume 2, Chapter 3 Foreign

Language Interface.

CHAPTER 12. EXCEPTION HANDLING 352

ErrorTerm. In this case, Handler is called. If no catcher is found in the main thread,
the system looks for a clause of default_user_error_handler(Term) such that Term

unifies with ErrorTerm — if no such clause is found the default system error handler
is called. In a non-main joinable thread, the error term is stored internally and the
thread exits; in a detached thread, the thread exits with no action taken. throw/1

is most useful in conjunction with specialized handlers for new types of errors not
already supported in XSB.

domain_error(+Valid_type,-Culprit,+Predicate,+Arg) module: error_handler
Throws a domain error. Using the default system error handler (with backtrace_on_error
set to off) an example is

domain_error(posInt,-1,checkPosInt/3,3).

++Error[XSB/Runtime/P]: [Domain (-1 not in domain posInt)] in arg 3 of predicate

checkPosInt/3

evaluation_error(+Flag,+Predicate,+Arg) module: error_handler
Throws an evaluation error. Using the default system error handler (with backtrace_on_error
set to off) an example is

evaluation_error(zero_divisor,unidiv/1,2).

++Error[XSB/Runtime/P]: [Evaluation (zero_divisor)] in arg 2 of predicate unidiv/2

existence_error(+Object_type,?Culprit,+Predicate,+Arg) module: error_handler
Throws an existence error. Using the default system error handler (with backtrace_on_error
set to off) an example is

existence_error(file,’myfile.P’,’load_intensional_rules/2’,2).

++Error[XSB/Runtime/P]: [Existence (No file myfile.P exists)] in arg 2 of predicate

load_intensional_rules/2

instantiation_error(+Predicate,+Arg,+State) module: error_handler
Throws an instantiation error. Using the default system error handler, an example
(with backtrace_on_error set to off) is

?- instantiation_error(foo/1,1,nonvar).

++Error[XSB/Runtime/P]: [Instantiation] in arg 1 of predicate foo/1: must be nonvar

permission_error(+Op,+Obj_type,?Culprit,+Predicate) module: error_handler
Throws a permission error. Using the default system error handler, an example (with
backtrace_on_error set to off) is

| ?- permission_error(write,file,’myfile.P’,foo/1).

++Error[XSB/Runtime/P]: [Permission (Operation) write on file: myfile.P] in foo/1

representation_error(+Flag,+Predicate,+Arg) module: error_handler
Throws a representation error. Using the default system error handler, an example
(with backtrace_on_error set to off) is

CHAPTER 12. EXCEPTION HANDLING 353

representation_error(max_arity,assert/1,1).

++Error[XSB/Runtime/P]: [Representation (max_arity)] in arg 1 of predicate assert/1

resource_error(+Flag,+Predicate) module: error_handler
Throws a resource error. Using the default system error handler (with backtrace_on_error
set to off) and example is

resource_error(open_files,open/3)

++Error[XSB/Runtime/P]: [Resource (open_files)] in predicate open/3

type_error(+Valid_type,-Culprit,+Predicate,+Arg) module: error_handler
Throws a type error. Using the default system error handler, an example (with
backtrace_on_error set to off) is

| ?- type_error(atom,f(1),foo/1,1).

++Error[XSB/Runtime/P]: [Type (f(1) in place of atom)] in arg 1 of predicate foo/1

misc_error(+Message) module: error_handler

Throws a miscellaneous error that will be caught by the default system handler. For
good programming practice miscellaneous errors should only be thrown when the cases
above are not applicable, and the type of error is not of interest for structured error
handling. Such situations occur can occur for instance in debugging, during program
development, or in small-special purpose programs. Note that this misc_error/2

replaces the obsolescent XSB predicates abort/1 and abort/2.

12.3.2 Predicates to Handle Errors

For best results, output for handling errors should be sent to XSB’s standard error stream
using the alias user_error or one of the predicates described below.

catch(?Goal,?CatchTerm,+Handler) ISO
Calls Goal, and sets up information so that future throws will be able to access
CatchTerm under the mechanism mentioned above. catch/3 does not attempt to
clean up system level resources. Thus, it is left up to the handler to close open tables
(via close_open_tables/0, close any open files, reset current input and output, and
so on 6.

default_user_error_handler(?CatchTerm)

Handles any error terms that unify with CatchTerm that are not caught by invocations
of catch/3. This predicate does close open tables and release mutexes held by the
calling thread, but does not attempt to clean up other system level resources, which
is left to the handler.

6cf. the default system error handler, which performs these functions, if needed.

CHAPTER 12. EXCEPTION HANDLING 354

error_write(?Message) module: standard
error_writeln(?Message) module: standard

Utility routines for user-defined error catching. These predicates output Message to
XSB’s STDERR stream, rather than to XSB’s STDOUT stream, as does write/1 and
writeln/1. In addition, if Message is a comma list, the elements in the comma list
are output as if they were concatenated together. Each of these predicates must be
implicitly from the module standard.

close_open_tables module: machine

Removes table data structures for all incomplete tables, but does not affect any com-
plete tables. In Version 3.3 this predicate should only be used to handle exceptions
in default_user_error_handler/1. In addition, for the multi-threaded engine, this
predicate unlocks any system mutexes held by the thread calling this predicate.

12.4 Convenience Predicates

The following convenience predicates are provided to make a commonly used check and to
throw an ISO error if the check is not satisfied; some are written directly in C for speed. All
these predicates must be imported from the module error_handler, which also contains
provides a few other specialized checks.

check_acyclic(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is acyclic. If so, the predicate succeeds; if not it throws a miscella-
neous error.

check_atom(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is an atom. If so, the predicate succeeds; if not it throws a type
error.

check_callable(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is callable. If so, the predicate succeeds; if not it throws a type
error.

check_ground(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is ground. If so, the predicate succeeds; if not it throws an instan-
tiation error.

check_integer(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is an integer. If so, the predicate succeeds; if not it throws a type
error.

check_nonvar(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is not a variable. If not, the predicate succeeds; if Term is a variable,
it throws an instantiation error.

CHAPTER 12. EXCEPTION HANDLING 355

check_nonvar_list(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is a list, each of whose elements is ground. If so, the predicate
succeeds; if not it throws an instantiation error.

check_one_thread(+Operation,+Object_Type,+Predicate) module: error_handler

In the multi-threaded engine, check_one_thread/3 checks that there is only one
active thread: if not, a miscellaneous error is thrown indicating that Operation is
not permitted on ObjectType as called by Predicate, when more than one thread is
active. This check provides a convenient way to allow inclusion of certain operations
that are difficult to make thread-safe by other means.

In the single-threaded engine this predicate always succeeds.

check_stream(?Stream,+Predicate,+Arg) module: error_handler

Checks that Stream is a stream. If so, the predicate succeeds; if not it throws an
instantiation error 7.

check_var(?Term,+Predicate,+Arg) module: error_handler

Checks that Term is a variable. If so, the predicate succeeds; if not it throws an
instantiation error.

12.5 Backtraces

Displaying a backtrace of the calling context of an error in addition to an error message
can greatly expedite debugging. For XSB’s default error handler, backtraces are printed
out by default, a behavior that can be overridden for a given thread by the command:
set_prolog_flag(backtrace_on_error,off). For users who write their own error han-
dlers, the following predicates can be used to manipulate backtraces.

It is important to note that Prolog backtraces differ in a significant manner from back-
traces obtained from other languages, such as C backtraces produced by GDB. This is be-
cause a Prolog backtrace obtains forward continuations from the local environment stack,
and in the WAM, local stack frames are only created when a given clause requires perma-
nent variables – otherwise these stack frames are optimized away. The precise conditions
for optimizing away a local stack frame require an understanding of the WAM (and of a
specific compiler). However in general, longer clauses with many variables require a local
stack frame and their forward continuations will be displayed, while shorter clauses with
fewer variables do not and their forward continuations will not be displayed.

xsb_backtrace(-Backtrace) module: machine

Upon success Backtrace is bound to a structure indicating the forward continuations

7The representation of streams in XSB is subject to change.

CHAPTER 12. EXCEPTION HANDLING 356

for a point of execution. This structure should be treated as opaque, and manipulated
by one of the predicates below.

get_backtrace_list(+Backtrace,-PredicateList) module: error_handler

Given a backtrace structure, this predicate produces a list of predicate identifiers or
the form Module:Predicate/Arity. This list can be manipulated as desired by error
handling routines.

print_backtrace(+Backtrace) module: error_handler

This predicate, which is used by XSB’s default error handler, prints a backtrace
structure to XSB’s standard error stream.

Chapter 13

Foreign Language Interface

When XSB is used to build real-world systems, a foreign-language interface may be necessary
to:

• combine XSB with existing programs and libraries, thereby forming composite sys-
tems;

• interface XSB with the operating system, graphical user interfaces or other system
level programs;

• speed up certain critical operations.

XSB has both a high-level and the low-level interface to C. The low-level interface is
much more flexible, but it requires greater attention to details of how the data is passed
between XSB and C. To connect XSB to a C program using the high-level interface requires
very little work, but the program must be used “as is” and it must take the input and
produce the output supported by this high-level interface. Before describing the interfaces
themselves, we first describe aspects common to both the lower- and higher-level foreign
language interfaces.

The foreign language interface can also support C++ programs. Since XSB is written in
C, the interface functions in the foreign C++ module must have the declaration extern “C”,
and a separate compiler option (e.g. specifying g++ rather than gcc) may need to be given
to ensure proper linkage, inclusion of C++ libraries, etc. In addition, on certain platforms
compilation may need to be done externally to XSB – see the xasp 1package for a example
of using the foreign language interface with C++ files. For the rest of this chapter, we restrict
our attention to foreign predicates written in C.

357

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 358

13.1 Foreign Language Modules

Foreign predicates must always appear in modules, and these modules can contain only
foreign predicates. A foreign module differs from a Prolog module in that the foreign
module’s source file must appear in a *.c file rather than a *.P file (or .pl file). This
*.c file cannot contain a main() function. Furthermore, a *.P file with the same name
must not be present or else the *.c file is ignored and the module is compiled as a regular
Prolog module. The interface part of a foreign module, which has the same syntax as that
of a normal module, is written in Prolog and must appear in a *.H file. If the lower-level
interface is used, this *.H file contains explicit export/1 declarations for the the foreign
predicates that are to be used by other modules; if the higher-level interface is used, the
declarations have the form foreign_pred/1.

The Prolog predicates attached to foreign functions are deterministic, in the sense that
they succeed at most once for a given call and are not re-entered on backtracking. Note
that this requirement imposes no serious limitation, since it is always possible to divide
a foreign predicate into the part to be done on the first call and the part to be redone
on backtracking. Backtracking can then take place at the Prolog level where it is more
naturally expressed.

A foreign module can be compiled or consulted just like a normal Prolog module. Cur-
rently, predicates consult/[1,2] recompile both the *.c and the *.H files of a foreign
module when at least one of them has been changed from the time the corresponding object
files have been created (see the section Compiling and Consulting in Volume 1) 1. The C
compiler used to compile the *.c files can be set as a defaults to that used for the config-
uration of XSB (refer to the section Getting Started with XSB in Volume 1). This default
behavior includes the C compilation options used to compile XSB when it was configured,
along with a default set of include files so that header files in XSB directories can be ob-
tained. Alternately, the user can add options to be passed to the C compiler. To give an
example, the following command will compile file file.c using the default C Compiler with
optimization and by including /usr/local/X11/R6/include to the directories that will be
searched for header files.

:- consult(file, [cc_opts(’-O2 -I/usr/local/X11/R6/include’)]).

Note in particular, that if XSB were compiled with the -g debugging option, then the C file
will be also 2. Any Prolog compiler options are ignored when compiling a foreign module.

1In addition, if a C module compiled by the single-threaded XSB engine is loaded by the multi-threaded
engine, it will be recompiled, and vice-versa.

2 In a 64-bit platform, users may override the default compilation of XSB by the configuration options
-with-bits32 or -with-bits64. If either of these options is used, the default compilation options will pass
along the appropriate memory options. If XSB is compiled with a memory option that is not the default of
the platform, and if an externally compiled C file is to be loaded into XSB, it must be ensured that the C
file has been compiled with the appropriate memory options: -m32 or -m64 if gcc is used.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 359

Prolog-specific directives such as index, hilog, table, auto_table or even import make
no sense in the case of a foreign module and thus are ignored by the compiler. However,
another directive, namely ldoption, is recognized in a foreign module and is used to instruct
the dynamic loading and linking of the module. The syntax of the ldoption directive is
simply:

:- ldoption(Option).

where Option should either be an atom or a list of atoms. Multiple ldoption directives
may appear in the same .H file of a foreign module 3. In Unix-derived systems, the foreign
language interface of XSB uses ld command that combines object programs to create an
executable file or another object program suitable for further ld processing. Version 3.3 of
XSB assumes that the ld command resides in the file /usr/bin/ld.

13.2 Lower-Level Foreign Language Interface

Creating a foreign predicate using the lower-level foreign language interface is almost entirely
a matter of writing C code. Consider the foreign module $XSBDIR/examples/XSB_calling_c/simple_foreign.[cH]

The .H file has the form:

:- export minus_one/2, my_sqrt/2, change_char/4.

:- ldoption(’-lm’). % link together with the math library

When the lower level foreign language interface is used, C functions that implement
foreign predicates must return values of type int. The return value is not used by a Prolog
argument; rather if a non-zero is returned, the foreign predicate succeeds; a zero return
value means failure.

At the C level, the function that implements the Prolog predicate must have the same
name as the Prolog predicate (that is declared in the *.H file), and must have a special
context parameter macro. The context parameter macro allows C functions to be used
with both the single-threaded and multi-threaded engines, and are described in detail in
Section 13.2.1. The Prolog level arguments are converted to C data structures through
several predefined functions rather than through direct parameter passing 4. The C file
simple_foreign.c corresponding to the above .H file is as follows.

3Mac OSX users using 10.3 or above should have the environment variable MACOSX_DEPLOYMENT_TARGET

set to 10.3 so that the compiler generates code that can be dynamically linked by XSB. This should be done
automatically by XSB on initialization, but it is useful to check if encountering problems.

4The inclusion of context parameters changes the lower-level interface for Version 3.0. C files written
for previous versions of XSB continue to work properly for the single-threaded engine in, but will not work
properly for the multi-threaded engine.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 360

/*--*/

#include <math.h>

#include <stdio.h>

#include <string.h>

#include <alloca.h>

/*----- Make sure your C compiler finds the following header file. -----

----- One way to do this is to include the directory XSB/emu on the -----

----- compiler’s command line with the -I (/I in Windows) option -----*/

#include "cinterf.h"

/*---*/

int minus_one(CTXTdecl)

{

int i = ptoc_int(CTXTc 1);

ctop_int(CTXTc 2, i-1);

return TRUE;

}

/*---*/

int my_sqrt(CTXTdecl)

{

int i = ptoc_int(CTXTc 1);

ctop_float(CTXTc 2, (float) pow((double)i, 0.5));

return TRUE;

}

/*---*/

int change_char(CTXTdecl)

{

char *str_in;

int pos;

int c;

char *str_out;

str_in = (char *) ptoc_string(CTXTc 1);

str_out = (char *) alloca(strlen(str_in)+1);

strcpy(str_out, str_in);

pos = ptoc_int(CTXTc (2);

c = ptoc_int(CTXTc (3);

if (c < 0 || c > 255) /* not a character */

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 361

return FALSE; /* this predicate will fail on the Prolog side */

str_out[pos-1] = c;

extern_ctop_string(CTXTc 4, str_out);

return TRUE;

}

/*--*/

Before describing the C program used, here is a sample session illustrating the behavior
of the predicates in simple_foreign.

XSB Version 2.0 (Gouden Carolus) of June 26, 1999

[i686-pc-linux-gnu; mode: optimal; engine: slg-wam; scheduling: batched]

| ?- [simple_foreign].

[Compiling C file ./simple_foreign.c using gcc]

[Compiling Foreign Module ./simple_foreign]

[simple_foreign compiled, cpu time used: 0.0099993 seconds]

[simple_foreign loaded]

yes

| ?- change_char(’Kostis’, 2, w, TempStr),

change_char(TempStr, 5, h, GrkName).

TempStr = Kwstis

GrkName = Kwsths;

no

| ?- minus_one(43, X).

X = 42;

no

| ?- minus_one(43, 42). % No output unification is allowed

Wrong arg in ctop_int 2a2 (Reg = 2)

yes

| ?- my_sqrt(4,X).

X = 2

yes

| ?- my_sqrt(23,X).

X = 4.7958;

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 362

no

Consider the function minus_one() above. As discussed, it takes a context parameter
(explained below), and returns an integer, and as can be seen the return values can be
specified by the macros TRUE and FALSE. From the Prolog perspective the first argument
to minus_one/2 is an (integer) input argument, while the second is an (integer) output
argument. Input arguments for basic C types are translated from their Prolog representation
to a C representation by functions of the form ptoc_<type>() – here ctop_int(). The
single parameter of such a function is the number of the Prolog argument that is to be
transformed and the function returns the C representation. Output arguments are converted
from C to Prolog by corresponding functions of the form ctop_<type>() – here ctop_int().
For converting C back to Prolog, the first parameter of ctop_int() is the number of the
Prolog argument to be transformed and the second is the C value to be transformed. In
the session output above, if an improper argument is given to minus_one/2 it will emit a
warning, and succeed. Also note that the call my_sqrt(23,X) succeeds once, but fails on
backtracking since it is deterministic, as are all other foreign language functions.

The above example illustrates the exchange of basic types through the lower-level inter-
face – e.g. atoms, integers, and floating-point numbers. The lower-level interface also allows
a user to pass lists and terms between XSB and C as will be discussed in Section 13.2.3.

13.2.1 Context Parameters

When using the lower-level interface, context parameters must be added to many C functions
in order for the functions to be used with XSB’s multi-threaded engine. In the multi-
threaded engine, variables for Prolog’s virtual machine, as well as for thread-private data
structures are stored in a context structure. This context structure must be passed to any
functions that need to access elements of a thread’s virtual machine – including many of the
functions that are used to exchange data between Prolog and C. We note in passing that
when using the multi-threaded engine, a user must ensure that foreign-language functions
are thread-safe, by using standard multi-threaded programming techniques, including XSB’s
mutex predicates (see the Section Predicates for Thread Synchronization in Volume 1 of this
manual). On the other hand, in the single-threaded engine virtual machine elements are
kept in static variables, so that context parameters are not required.

The lower-level C interface makes use of a set of macros to address the requirements
of the different engines. The data exchange functions discussed in this chapter, ptoc_xxx,
ctop_xxx, c2p_xxx, p2c_xxx, and p2p_xxx usually, but not always, require information
about a threads virtual machine state. If a C function directly or indirectly calls a data
interchange function that requires a context parameter, the function must have a context
parameter in its declaration, calls, and prototypes in order to be used by the multi-threaded
engine. These context parameters have the following forms:

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 363

• In function declarations, use the macro CTXTdecl in the code for a function that would
otherwise be void, and CTXTdeclc as the first argument in the code for a function
with parameters (CTXTdeclc and CTXTdecl are similar, except that macro expansion
of CTXTdeclc for the multi-threaded engine includes a comma). The example for
minus_one(CTXTdecl) shows use of this macro.

• In function calls use the macro CTXT in the code for a function that would otherwise
be void, and CTXTc as the first argument in the code for a function with parameters.
As an example, a call to minus_one would have the form minus_one(CTXT).

• In function prototypes use the macro CTXTdecltype in the code for a function that
would otherwise be void, and CTXTdecltypec as the first argument in the code for a
function with parameters. As an example, a prototype for minus_one would have the
form minus_one(CTXTdecltype).

Fortunately, when compiling with the multi-threaded engine, it is easy to determine at
compile time whether context parameters are correct. If compilation of a function foo gives
an error along the lines of:

foofile.c: In function ‘foo’:

foofile.c:109: error: ‘th’ undeclared (first use in this function)

Then the declaration of foo omitted a context parameter. If compilation gives an error
along the lines of

foofile.c: In function ‘foo_caller’:

:

foofile.c:149: error: too few arguments to function ‘foo’

Then the call to foo may have omitted a context parameter.

Note that context parameters are only necessary if the lower-level interface is used. The
higher-level interface automatically generates any context parameters it needs.

13.2.2 Exchanging Basic Data Types

The basic interface assumes that correct modes (i.e., input or output parameters) and types
are being passed between the C and Prolog levels. As a result, output unification should
be explicitly performed in the Prolog level. The prototypes for the conversion functions
between Prolog and C should be declared before the corresponding functions are used. This
is done by including the "cinterf.h" header file. Under Unix, the XSB foreign C interface
automatically finds this file in the XSB/emu directory. Under Windows (including Cygwin),

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 364

the user must compile and create the DLL out of the C file manually, so the compiler option
‘/I...\XSB\emu’ is necessary.

The following C functions are used to convert basic types between Prolog and C.

int ptoc_int(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corresponding
to the Nth argument of a Prolog predicate. This function returns the value of that
argument in as a C int.

double ptoc_float(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corresponding
to the Nth argument of a Prolog predicate. This function returns the value of that
argument as a C double. By default, XSB provides double precision, but if XSB was
configured with –enable-fast-floats less than single precision can be provided 5.

char *ptoc_string(CTXTdeclc int N)

CTXTdeclc is a context parameter; N is assumed to hold a Prolog integer corresponding
to the Nth argument of a Prolog predicate. This function returns the value the C
string (of type char *) that corresponds to this interned Prolog atom. WARNING:
the string should be copied before being manipulated in any way: otherwise unexpected
results may arise whenever the interned Prolog atom is unified.

void ctop_int(CTXTdeclc int N, int V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free
variable, and this function binds that variable to an integer of value V.

void ctop_float(CTXTdeclc int N, float V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free
variable, and this function binds that variable to a floating point number of value V.

void extern_ctop_string(CTXTdeclc int N, char * V)

CTXTdeclc is a context parameter; argument N is assumed to hold a Prolog free
variable. If needed, this function interns the string to which V points as a Prolog
atom and then binds the variable in argument N to that atom.

13.2.3 Exchanging Complex Data Types

If the lower-level interface is used, exchanging basic data types is sufficient for most ap-
plications. Exchanging complex data types is also possible, although doing so is slightly

5The fast float configuration option does represents floating point values as directly tagged single precision
values rather than as indirectly tagged double precision values. Speed increases in arithmetic can be gained
from this optimization, in exchange for significant precision loss on floating point numbers.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 365

more involved than exchanging basic types. To exchange complex data types, the lower-
level interface uses only one C data type: prolog_term, which can point to any XSB term.
On the C side, the type of the term can be checked and then processed accordingly. For
instance, if the term turns out to be a structure, then it can be decomposed and the functor
can be extracted along with the arguments. If the term happens to be a list, then it can
be processed in a loop and each list member can be further decomposed into its atomic
components. The advanced interface also provides functions to check the types of these
atomic components and for converting them into C types.

We begin by presenting the functions used to exchange complex data types, before pre-
senting a detailed example below. As when exchanging basic C types, the file emu/cinterf.h

must be included in the C program in order to make the prototypes of the relevant functions
known to the C compiler.

The first set of functions is typically used to check the type of Prolog terms passed into
the C program.

xsbBool is_attv((prolog_term) T)

is_attv(T) returns TRUE if T represents an XSB attributed variable, and FALSE

otherwise.

xsbBool is_float((prolog_term) T)

is_float(T) returns TRUE if T represents an XSB float value, and FALSE otherwise.

xsbBool is_functor((prolog_term) T)

is_functor(T) returns TRUE if T represents an XSB structure value (not a list), and
FALSE otherwise.

xsbBool is_int((prolog_term) T)

is_int(T) returns TRUE if T represents an XSB integer value, and FALSE otherwise.

xsbBool is_list((prolog_term) T)

is_list(T) returns TRUE if T represents an XSB list value (not nil), and FALSE

otherwise.

xsbBool is_nil((prolog_term) T)

is_nil(T) returns TRUE if T represents an XSB [] (nil) value, and FALSE otherwise.

xsbBool is_string((prolog_term) T)

is_string(T) returns TRUE if T represents an XSB atom value, and FALSE otherwise.

xsbBool is_var((prolog_term) T)

is_var(T) returns TRUE if T represents an XSB variable, and FALSE otherwise.

After checking the types of the arguments passed in from the Prolog side, the next task
usually is to convert Prolog data into the types understood by C. This is done with the

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 366

following functions. The first three convert between the basic types. The last two extract
the functor name and the arity. Extraction of the components of a list and the arguments
of a structured term is explained later.

int p2c_int((prolog_term) V)

The prolog_term parameter must represent a Prolog integer, and p2c_int returns
the C representation of that integer.

double p2c_float((prolog_term) V)

The prolog_term parameter must represent a Prolog floating point number, and
p2c_float returns the C representation of that floating point number.

char *p2c_string((prolog_term) V)

The prolog_term parameter must represent a (Prolog) atom, and p2c_string re-
turns that atom as a C string. The pointer returned points to the actual atom name
in XSB ’s atom table, and thus it must NOT be modified by the calling program.

char *p2c_functor((prolog_term) V)

The prolog_term parameter must represent a structured term (not a list). p2c_functor

returns the name of the main functor symbol of that term as a string. The pointer
returned points to the actual functor name in XSB ’s space, and thus it must NOT
be modified by the calling program.

int p2c_arity((prolog_term) V)

The prolog_term parameter must represent a structured term (not a list). p2c_arity

returns the arity of the main functor symbol of that term as a C int.

The next batch of functions support conversion of data in the opposite direction: from
basic C types to the type prolog_term. These c2p_* functions all return a boolean value
TRUE if successful and FALSE if unsuccessful. The XSB term argument must always contain
an XSB variable, which will be bound to the indicated value as a side effect of the function
call.

xsbBool c2p_int(CTXTdeclc (int) N, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_int binds the prolog_term V (which must
be a variable) to the integer value N, creating a Prolog integer.

xsbBool c2p_float(CTXTdeclc (double) F, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_float binds the prolog_term V (which must
be a variable) to the (double) float value F, creating a double Prolog float.

xsbBool c2p_string(CTXTdeclc (char *) S, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_string binds the prolog_term V (which
must be a variable) to the Prolog atom corresponding to the char *S. During this
process the Prolog atom is interned into XSB’s atom table.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 367

The following functions create Prolog data structures within a C program. This is
usually done in order to pass these structures back to the Prolog side.

xsbBool c2p_functor(CTXTdeclc (char *) S, (int) N, (prolog_term) V)

CTXTdeclc is a context parameter; c2p_functor binds the prolog_term V (which
must be a variable) to an open term whose main functor symbol is given by S (of type
char *) and whose arity is N. An open term is one with all arguments as new distinct
variables.

xsbBool c2p_list(CTXTdeclc (prolog_term) V)

CTXTdeclc is a context parameter; c2p_list binds the prolog_term V (which must
be a variable) to an open list term, i.e., a list term with both car and cdr as new
distinct variables. Note: to create an empty list use the function c2p_nil described
below.

xsbBool c2p_nil(CTXTdeclc (prolog_term) V)

CTXTdeclc is a context parameter; c2p_nil binds the prolog_term V (which must
be a variable) to the atom [] (nil).

prolog_term p2p_new()

Create a new Prolog variable. This is sometimes needed when you want to create a
Prolog term on the C side and pass it to the Prolog side.

To use the above functions, one must be able to get access to the components of the
structured Prolog terms. This is done with the help of the following functions:

prolog_term p2p_arg((prolog_term) T, (int) A)

Parameter T must be a prolog_term that is a structured term (but not a list). A
is a positive integer (no larger than the arity of the term) that specifies an argument
position of the term T. p2p_arg returns the Ath subfield of the term T.

prolog_term p2p_car((prolog_term) T)

Parameter T must be a prolog_term that is a list (not nil). p2p_car returns the car
(i.e., head of the list) of the term T.

prolog_term p2p_cdr((prolog_term) T)

Parameter T must be a prolog_term that is a list (not nil). p2p_cdr returns the cdr
(i.e., tail of the list) of the term T.

It is important to realize that these functions return the actual Prolog term that is, say,
the head of a list or the actual argument of a structured term. Thus, assigning a value to
such a Prolog term also modifies the head of the corresponding list or the relevant argument
of the structured term. It is precisely this feature that allows passing structured terms and
lists from the C side to the Prolog side. For instance,

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 368

prolog_term plist, /* a Prolog list */

structure; /* something like f(a,b,c) */

prolog_term tail, arg;

..........

tail = p2p_cdr(plist); /* get the list tail */

arg = p2p_arg(structure, 2); /* get the second arg */

/* Assume that the list tail was supposed to be a prolog variable */

if (is_var(tail))

c2p_nil(CTXTc tail); /* terminate the list */

else {

fprintf(stderr, "Something wrong with the list tail!");

exit(1);

}

/* Assume that the argument was supposed to be a prolog variable */

c2p_string(CTXTc "abcdef", arg);

In the above program fragment, we assume that both the tail of the list and the second
argument of the term were supposed to be bound to Prolog variables. In case of the tail,
we check if this is, indeed, the case. In case of the argument, no checks are done; XSB will
issue an error (which might be hard to track down) if the second argument is not currently
bound to a variable.

The last batch of functions is useful for passing data in and out of the Prolog side of
XSB. The first function is the only way to get a prolog_term out of the Prolog side; the
second function is sometimes needed in order to pass complex structures from C into Prolog.

prolog_term reg_term(CTXTdeclc (int) R)

CTXTdeclc is a context parameter. Parameter R is an argument number of the Prolog
predicate implemented by this C function (range 1 to 255). The function reg_term

returns the prolog_term in that predicate argument.

xsbBool p2p_unify(CTXTdeclc prolog_term T1, prolog_term T2)

Unify the two Prolog terms. This is useful when an argument of the Prolog predicate
(implemented in C) is a structured term or a list, which acts both as input and output
parameter. CTXTdeclc is a context parameter.

For instance, consider the Prolog call test(X, f(Z)), which is implemented by a C
function with the following fragment:

prolog_term newterm, newvar, z_var, arg2;

.....

/* process argument 1 */

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 369

c2p_functor(CTXTc "func",1,reg_term(CTXTc 1));

c2p_string(CTXTc "str",p2p_arg(reg_term(CTXTc 1),1));

/* process argument 2 */

arg2 = reg_term(CTXTc 2);

z_var = p2p_arg(arg2, 1); /* get the var Z */

/* bind newterm to abc(V), where V is a new var */

c2p_functor(CTXTc "abc", 1, newterm);

newvar = p2p_arg(newterm, 1);

newvar = p2p_new();

....

/* return TRUE (success), if unify; FALSE (failure) otherwise */

return p2p_unify(CTXTc z_var, newterm);

On exit, the variable X will be bound to the term func(str). Processing argument 2 is
more interesting. Here, argument 2 is used both for input and output. If test is called
as above, then on exit Z will be bound to abc(_h123), where _h123 is some new Prolog
variable. But if the call is test(X,f(1)) or test(X,f(Z,V)) then this call will fail (fail
as in Prolog, i.e., it is not an error), because the term passed back, abc(_h123), does not
unify with f(1) or f(Z,V). This effect is achieved by the use of p2p_unify above.

We conclude this section with two real examples of functions that pass complex data in
and out of the Prolog side of XSB. These functions are part of the POSIX regular expression
matching package of XSB. The first function uses argument 2 to accept a list of complex
Prolog terms from the Prolog side and does the processing on the C side. The second
function does the opposite: it constructs a list of complex Prolog terms on the C side and
passes it over to the Prolog side in argument 5.

(We should note that this second function could cause a heap overflow in XSB were it
to build a large list of values. Instead of building a large list of values on the XSB heap,
one would better design the functions to return smaller values, in which case XSB will be
able to automatically expand the heap as necessary.)

/* XSB string substitution entry point: replace substrings specified in Arg2

with strings in Arg3.

In:

Arg1: string

Arg2: substring specification, a list [s(B1,E1),s(B2,E2),...]

Arg3: list of replacement string

Out:

Arg4: new (output) string

Always succeeds, unless error.

*/

int do_regsubstitute__(CTXTdecl)

{

/* Prolog args are first assigned to these, so we could examine the types

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 370

of these objects to determine if we got strings or atoms. */

prolog_term input_term, output_term;

prolog_term subst_reg_term, subst_spec_list_term, subst_spec_list_term1;

prolog_term subst_str_term=(prolog_term)0,

subst_str_list_term, subst_str_list_term1;

char *input_string=NULL; /* string where matches are to be found */

char *subst_string=NULL;

prolog_term beg_term, end_term;

int beg_offset=0, end_offset=0, input_len;

int last_pos = 0; /* last scanned pos in input string */

/* the output buffer is made large enough to include the input string and the

substitution string. */

char subst_buf[MAXBUFSIZE];

char *output_ptr;

int conversion_required=FALSE; /* from C string to Prolog char list */

input_term = reg_term(CTXTc 1); /* Arg1: string to find matches in */

if (is_string(input_term)) /* check it */

input_string = string_val(input_term);

else if (is_list(input_term)) {

input_string =

p_charlist_to_c_string(input_term, input_buffer, sizeof(input_buffer),

"RE_SUBSTITUTE", "input string");

conversion_required = TRUE;

} else

xsb_abort("RE_SUBSTITUTE: Arg 1 (the input string) must be an atom or a character list");

input_len = strlen(input_string);

/* arg 2: substring specification */

subst_spec_list_term = reg_term(CTXTc 2);

if (!is_list(subst_spec_list_term) && !is_nil(subst_spec_list_term))

xsb_abort("RE_SUBSTITUTE: Arg 2 must be a list [s(B1,E1),s(B2,E2),...]");

/* handle substitution string */

subst_str_list_term = reg_term(CTXTc 3);

if (! is_list(subst_str_list_term))

xsb_abort("RE_SUBSTITUTE: Arg 3 must be a list of strings");

output_term = reg_term(CTXTc 4);

if (! is_var(output_term))

xsb_abort("RE_SUBSTITUTE: Arg 4 (the output) must be an unbound variable");

subst_spec_list_term1 = subst_spec_list_term;

subst_str_list_term1 = subst_str_list_term;

if (is_nil(subst_spec_list_term1)) {

strncpy(output_buffer, input_string, sizeof(output_buffer));

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 371

goto EXIT;

}

if (is_nil(subst_str_list_term1))

xsb_abort("RE_SUBSTITUTE: Arg 3 must not be an empty list");

/* initialize output buf */

output_ptr = output_buffer;

do {

subst_reg_term = p2p_car(subst_spec_list_term1);

subst_spec_list_term1 = p2p_cdr(subst_spec_list_term1);

if (!is_nil(subst_str_list_term1)) {

subst_str_term = p2p_car(subst_str_list_term1);

subst_str_list_term1 = p2p_cdr(subst_str_list_term1);

if (is_string(subst_str_term)) {

subst_string = string_val(subst_str_term);

} else if (is_list(subst_str_term)) {

subst_string =

p_charlist_to_c_string(subst_str_term, subst_buf, sizeof(subst_buf),

"RE_SUBSTITUTE", "substitution string");

} else

xsb_abort("RE_SUBSTITUTE: Arg 3 must be a list of strings");

}

beg_term = p2p_arg(subst_reg_term,1);

end_term = p2p_arg(subst_reg_term,2);

if (!is_int(beg_term) || !is_int(end_term))

xsb_abort("RE_SUBSTITUTE: Non-integer in Arg 2");

else{

beg_offset = int_val(beg_term);

end_offset = int_val(end_term);

}

/* -1 means end of string */

if (end_offset < 0)

end_offset = input_len;

if ((end_offset < beg_offset) || (beg_offset < last_pos))

xsb_abort("RE_SUBSTITUTE: Substitution regions in Arg 2 not sorted");

/* do the actual replacement */

strncpy(output_ptr, input_string + last_pos, beg_offset - last_pos);

output_ptr = output_ptr + beg_offset - last_pos;

if (sizeof(output_buffer)

> (output_ptr - output_buffer + strlen(subst_string)))

strcpy(output_ptr, subst_string);

else

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 372

xsb_abort("RE_SUBSTITUTE: Substitution result size %d > maximum %d",

beg_offset + strlen(subst_string),

sizeof(output_buffer));

last_pos = end_offset;

output_ptr = output_ptr + strlen(subst_string);

} while (!is_nil(subst_spec_list_term1));

if (sizeof(output_buffer) > (output_ptr-output_buffer+input_len-end_offset))

strcat(output_ptr, input_string+end_offset);

EXIT:

/* get result out */

if (conversion_required)

c_string_to_p_charlist(output_buffer,output_term,"RE_SUBSTITUTE","Arg 4");

else

/* DO NOT intern. When atom table garbage collection is in place, then

replace the instruction with this:

c2p_string(CTXTc output_buffer, output_term);

The reason for not interning is that in Web page

manipulation it is often necessary to process the same string many

times. This can cause atom table overflow. Not interning allows us to

circumvent the problem. */

extern_ctop_string(CTXTc 4, output_buffer);

return(TRUE);

}

/* XSB regular expression matcher entry point

In:

Arg1: regexp

Arg2: string

Arg3: offset

Arg4: ignorecase

Out:

Arg5: list of the form [match(bo0,eo0), match(bo1,eo1),...]

where bo*,eo* specify the beginning and ending offsets of the

matched substrings.

All matched substrings are returned. Parenthesized expressions are

ignored.

*/

int do_bulkmatch__(CTXTdecl)

{

prolog_term listHead, listTail;

/* Prolog args are first assigned to these, so we could examine the types

of these objects to determine if we got strings or atoms. */

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 373

prolog_term regexp_term, input_term, offset_term;

prolog_term output_term = p2p_new();

char *regexp_ptr=NULL; /* regular expression ptr */

char *input_string=NULL; /* string where matches are to be found */

int ignorecase=FALSE;

int return_code, paren_number, offset;

regmatch_t *match_array;

int last_pos=0, input_len;

char regexp_buffer[MAXBUFSIZE];

if (first_call)

initialize_regexp_tbl();

regexp_term = reg_term(CTXTc 1); /* Arg1: regexp */

if (is_string(regexp_term)) /* check it */

regexp_ptr = string_val(regexp_term);

else if (is_list(regexp_term))

regexp_ptr =

p_charlist_to_c_string(regexp_term, regexp_buffer, sizeof(regexp_buffer),

"RE_MATCH", "regular expression");

else

xsb_abort("RE_MATCH: Arg 1 (the regular expression) must be an atom or a character list");

input_term = reg_term(CTXTc 2); /* Arg2: string to find matches in */

if (is_string(input_term)) /* check it */

input_string = string_val(input_term);

else if (is_list(input_term)) {

input_string =

p_charlist_to_c_string(input_term, input_buffer, sizeof(input_buffer),

"RE_MATCH", "input string");

} else

xsb_abort("RE_MATCH: Arg 2 (the input string) must be an atom or a character list");

input_len = strlen(input_string);

offset_term = reg_term(CTXTc 3); /* arg3: offset within the string */

if (! is_int(offset_term))

xsb_abort("RE_MATCH: Arg 3 (the offset) must be an integer");

offset = int_val(offset_term);

if (offset < 0 || offset > input_len)

xsb_abort("RE_MATCH: Arg 3 (=%d) must be between 0 and %d", input_len);

/* If arg 4 is bound to anything, then consider this as ignore case flag */

if (! is_var(reg_term(CTXTc 4)))

ignorecase = TRUE;

last_pos = offset;

/* returned result */

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 374

listTail = output_term;

while (last_pos < input_len) {

c2p_list(CTXTc listTail); /* make it into a list */

listHead = p2p_car(listTail); /* get head of the list */

return_code = xsb_re_match(regexp_ptr, input_string+last_pos, ignorecase,

&match_array, &paren_number);

/* exit on no match */

if (! return_code) break;

/* bind i-th match to listHead as match(beg,end) */

c2p_functor(CTXTc "match", 2, listHead);

c2p_int(CTXTc match_array[0].rm_so+last_pos, p2p_arg(listHead,1));

c2p_int(CTXTc match_array[0].rm_eo+last_pos, p2p_arg(listHead,2));

listTail = p2p_cdr(listTail);

last_pos = match_array[0].rm_eo+last_pos;

}

c2p_nil(CTXTc listTail); /* bind tail to nil */

return p2p_unify(CTXTc output_term, reg_term(CTXTc 5));

}

13.3 Foreign Modules That Call XSB Predicates

A C function that has been called from XSB through the lower-level foreign language
interface may want to call back into XSB to have XSB evaluate a predicate. This can
be done by using the interface described in Chapter 3 (Volume 2) on calling XSB from
another language. The interface described there allows a caller to initialize XSB and pass
queries to it. However, since XSB has already called a foreign module, XSB does not need
to be initialized. However it does need to manage the registers that are in use to support
interaction with the foreign module currently executing. So there are some minor differences
with the interface described in Chapter 3.

First, XSB should not be initialized. I.e., a foreign module should not call xsb_init or
xsb_init_string. Second, the foreign module must protect the XSB registers it is currently
using when it calls XSB. To do this, after it has retrieved its arguments into local variables
and before it calls any XSB predicate, it must call xsb_query_save(NumRegs), which saves
the current XSB registers and initializes them to be able to accept a new query. NumRegs is
the number of registers used to interact with the currently executing foreign routine (i.e.,
the arity of the predicate that called this foreign code.) When the foreign routine has
completed its work, it will set the appropriate registers with the appropriate return values
and return to the caller. Before it does this, it must call xsb_query_restore() to restore
the saved registers and prepare XSB for the return. Note that it must be called before any
of the output registers are accessed to set return values. (It must also be called even if no

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 375

values are returned.)

In summary the extra functions needed to call XSB from a foreign module are:

int xsb_query_save(CTXTc (byte) NumRegs)

This function is used in a foreign routine that is called from XSB. It is used to save
the current contents of the XSB registers and to initialize them to be prepared to
accept a query. It must be called after a foreign routine collects its input arguments
from the XSB registers and before it invokes any XSB predicate.

int xsb_query_restore(CTXT)

This function is used in a foreign routine that is called from XSB and in turn calls
an XSB predicate. It is used to restore the previously saved contents of the XSB
registers. It must be called after all XSB predicates have been called and returned,
and before the current foreign routine sets its output parameters and returns to XSB.

An example where a foreign module and XSB call each other recursively can be found
in the directory $XSB_DIR/examples/XSB_calling_c and files fibr.[cH] and fibp.P.

13.4 Foreign Modules That Link Dynamically with Other
Libraries

Sometimes a foreign module might have to link dynamically with other (non-XSB) libraries.
Typically, this happens when the foreign module implements an interface to a large external
library of utilities. One example of this is the package libwww in the XSB distribution, which
provides a high-level interface to the W3C’s Libwww library for accessing the Web. The
library is compiled into a set of shared objects and the libwww module has to link with
them as well as with XSB.

The problem here is that the loader must know at run time where to look for the shared
objects to link with. On Unix systems, this is specified using the environment variable
LD_LIBRARY_PATH; on Windows, the variable name is LIBPATH. For instance, under Bourne
shell or its derivatives, the following will do:

LD_LIBRARY_PATH=dir1:dir2:dir3

export LD_LIBRARY_PATH

One problem with this approach is that this variable must be set before starting XSB. The
other problem is that such a global setting might interact with other foreign modules.

To alleviate the problem, XSB dynamically sets LD_LIBRARY_PATH (LIBPATH on Win-
dows) before loading foreign modules by adding the directories specified in the -L option in
ldoption. Unfortunately, this works on some systems (Linux), but not on others (Solaris).

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 376

One route around this difficulty is to build a runtime library search path directly into the
object code of the foreign module. This can be specified using a loader flag in ldoption.
The problem here is that different systems use a different flag! To circumvent this, XSB
provides a predicate that tries to guess the right flag for your system:

runtime_loader_flag(+Hint,-Flag)

Currently it knows about a handful of the most popular systems, but this will be ex-
panded. The argument Hint is not currently used. It might be used in the future to
provide runtime_loader_flag with additional information that can improve the accuracy
of finding the right runtime flags for various systems.

The above predicate can be used as follows:

...,

runtime_loader_flag(_,Flag),

fmt_write_string(LDoptions, ’%sdir1:dir2:dir2 %s’, args(Flag,OldLDoption)),

fmt_write(File, ’:- ldoption(%s).’, LDoptions),

file_nl(File).

13.5 Higher-Level Foreign Language Interface

The high-level foreign predicate interface was designed to release the programmer from the
burden of having to write low-level code to transfer data from XSB to C and vice-versa.
Instead, all the user needs to do is to describe each C function and its corresponding Prolog
predicates in the .H files. The interface then automatically generates wrappers that translate
Prolog terms and structures to proper C types, and vice-versa. These wrappers also check
for type-correctness of arguments to the C function; in addition, in Unix-derived systems
the wrappers are automatically compiled and loaded along with the foreign predicates in
the .c file 6.

As with the lower-level foreign interfaces, when predicates are defined in a foreign module
myfile.[cH], the predicates must be explicitly imported from the module to be used 7. For
an example of using the higher level interface, see $XSBDIR/examples/XSB_calling_c/second_foreign.[cH].

13.5.1 Declaration of high level foreign predicates

The basic formats of a foreign predicate declaration are:

6for Windows, please see special instructions in Section 13.6.
7In Version 3.3, a foreign module that uses the higher-level C interface must be explicitly consulted before

it can be used.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 377

:- foreign_pred predname ([+-]parg1, [+-]parg2,...)

from funcname (carg1:type1, carg2:type2, ...):functype.

and

:- private_foreign_pred predname ([+-]parg1, [+-]parg2,...)

from funcname (carg1:type1, carg2:type2, ...):functype.

where:

foreign_pred, private_foreign_pred

declares a new foreign predicate. For most cases, the declaration foreign_pred

can be used in both the multi-threaded and the sequential engine. The declaration
private_foreign_pred needs to be used only in the multi-threaded engine when the
external foreign function, funcname contains a context parameter as its first argument
because funcname needs to access thread-private data or other information from the
context of the XSB thread (see Section 13.2.1). This case is uncommen, and mostly
occurs for users who are creating XSB packages (e.g. the XASP interface to Smodels).

predname

is the name of the foreign Prolog predicate.

parg1, parg2, ...

are the predicate arguments. Each argument is preceded by either ’+’ or ’-’, indicating
its mode as input or output respectively. The names of the arguments must be the
same as those used in the declaration of the corresponding C function. If a C argument
is used both for input and output, then the corresponding Prolog argument can appear
twice: once with “+” and once with “-”. In addition, a special argument retval is
used to denote the argument that corresponds to the return value of the C function;
it must always have the mode ’-’.

funcname

is the name of the function in the .c file. At compile-time a C function with name
predname will be generated which will translate arguments from Prolog to C, call
funcname, and then translate arguments back from C to Prolog.

carg1, carg2, ...

is the list of arguments of the C function. The names used for the arguments must
match the names used in the Prolog declaration.

type1, type2, ...

are the types associated to the arguments of the C function. This is not the set of C
types, but rather a set of descriptive types, as defined in Table 13.5.1.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 378

Descriptive Type Mode Usage Associated C Type Comments

int + int integer numbers
float + double floating point numbers
atom + unsigned long atom represented as an unsigned long
chars + char * the textual representation of an atom is passed to C as a string
chars(size) + char * the textual representation of an atom is passed to C

as a string in a buffer of size size

string + char * a prolog list of characters is passed to C as a string
string(size) + char * a prolog list of characters is passed to C as a string
term + prolog_term the unique representation of a term
intptr + int * the location of a given integer
floatptr + double * the location of a given floating point number
atomptr + unsigned long * the location of the unique representation of a given atom
charsptr + char ** the location of the textual representation of an atom
stringptr + char ** the location of the textual representation of a list of characters
termptr + prolog_term * the location of the unique representation of a term
intptr - int * the integer value returned is passed to Prolog
floatptr - double * the floating point number is passed back to Prolog
charsptr - char ** the string returned is passed to Prolog as an atom
stringptr - char ** the string returned is passed back as a list of characters
atomptr - unsigned long * the number returned is passed back to Prolog as the

unique representation of an atom
termptr - prolog_term * the number returned is passed to Prolog as the unique

representation of a term
chars(size) +- char * the atom is copied from Prolog to a buffer, passed to C

and converted back to Prolog afterwards
string(size) +- char * the list of characters is copied from Prolog to a buffer,

passed to C and back to Prolog afterwards
intptr +- int * an integer is passed from Prolog to C and from C back to Prolog
floatptr +- double * a float number is passed from Prolog to C, and back to Prolog
atomptr +- unsigned long * the unique representation of an atom is passed to C, and back to Prolog
charsptr +- char ** the atom is passed to C as a string, and a string is passed to

Prolog as an atom
stringptr +- char ** the list of characters is passed to C, and a string passed to Prolog

as a list of characters
termptr +- prolog_term * the unique representation of a term is passed to C,

and back to Prolog

Table 13.1: Allowed combinations of types and modes, and their meanings

functype

is the return type of the C function.

Using the higher-level interface, the same C code can be used for both the sequential
and the multi-threaded engines, and no context parameters are required in a user’s C code
unless thread context information is explicitly needed. However, a foreign module compiled
for the single-threaded engine will need to be recompiled for the multi-threaded engine and
vice-versa.

Table 13.5.1 provides the correspondence between the types allowed on the C side of a
foreign module declaration and the types allowed on the Prolog side of the declaration.

In all modes and types, checks are performed to ensure the types of the arguments.
Also, all arguments of type ’-’ are checked to be free variables at call time.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 379

13.6 Compiling Foreign Modules on Windows and under Cyg-

win

Due to the complexity of creating makefiles for the different compilers under Windows, XSB
doesn’t attempt to compile and build DLL’s for the Windows foreign modules automatically.
However, for almost all typical cases the user should be able to easily adapt the sample
makefile for Microsoft VC++:

XSB/examples/XSB_calling_c/MakefileForCreatingDLLs

It is important that the C program will have the following lines near the top of the file:

#include "xsb_config.h"

#ifdef WIN_NT

#define XSB_DLL

#endif

#include "cinterf.h"

Note that these same DLLs will work under Cygwin — XSB’s C interface under Cygwin
is like that under Windows rather than Unix.

If the above makefile cannot be adapted, then the user has to create the DLL herself.
The process is, roughly, as follows: first, compile the module from within XSB. This will
create the XSB-specific object file, and (if using the higher-level C interface) the wrappers.
The wrappers are created in a file named xsb_wrap_modulename.c.

Then, create a project, using the compiler of choice, for a dynamically-linked library
that exports symbols. In this project, the user must include the source code of the module
along with the wrapper created by XSB. This DLL should be linked against the library

XSB\config\x86-pc-windows\bin\xsb.lib

which is distributed with XSB. In VC++, this library should be added as part of the
linkage specification. In addition, the following directories for included header files must be
specified as part of the preprocessor setup:

XSB\config\x86-pc-windows

XSB\prolog_includes

XSB\emu

In VC++, make sure you check off the “No precompiled headers” box as part of the “Precom-
piled headers” specification. All these options are available through the Project»Settings

menu item.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 380

13.7 Functions for Use in Foreign Code

In addition to functions for passing data between Prolog an C, XSB contains other functions
that may be useful in Foreign C code. We mention a few here that pertain to throwing
exceptions from C code (cf. Volume 1 Chapter 8: Exception Handling). These functions
can be used by code that uses either the lower- or higher-level interface.

void xsb_domain_error(CTXTdeclc char *valid_domain,Cell culprit,char *pred,int arity,int arg)

Used to throw an ISO-style domain error from foreign code, indicating that culprit

is not in domain valid_domain in argument arg of pred/arity.

Example: The code fragment

Cell num;

:

xsb_domain_error(CTXTc "not_less_than_zero",num,"atom_length",2,2);

in atom_length/2 gives rise to the behavior

| ?- atom_length(abcde,-1).

++Error[XSB/Runtime/P]: [Domain (-1 not in domain not_less_than_zero)]

in arg 2 of predicate atom_length/2)

void xsb_existence_error(CTXTdeclc char *objType,Cell culprit,char *pred,int arity,int arg)

Used to throw an ISO-style existence error from foreign code, indicating that an
object culprit of type objType does not exist, in argument arg of pred/arity.

Example: The code fragment

Cell tid;

:

xsb_existence_error(CTXTc "thread",reg[2],"xsb_thread_join",1,1);

in thread_join/1 gives rise to a the behavior

| ?- thread_join(7).

++Error[XSB/Runtime/P]: [Existence (No thread 1 exists)]

in arg 1 of predicate thread_join/1)

if a thread with thread id 7 does not exist.

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 381

void xsb_instantiation_error(CTXTdeclc char *pred,int arity,int arg,char *state)

Used to throw an ISO-style instantiation error from foreign code. If state is a
NULL pointer, the message indicates that there is an instantiation error for argument
arg of of pred/arity. If state is non-NULL, the message additionally indicates that
argument arg must be state.

Example: The code fragment

xsb_instantiation_error(CTXTc "atom_length",2,1,NULL);

in atom_length/2 gives rise to a the behavior

| ?- atom_length(X,Y).

++Error[XSB/Runtime/P]: [Instantiation] in arg 1 of predicate atom_length/2

void xsb_misc_error(CTXTdeclc char *message,char *pred,int arity)

Used to throw a non ISO-error from foreign code, printing message and indicating
that the error arose in pred/arity.

void xsb_permission_error(CTXTdeclc char *op,char *obj,Cell culprit,char *pred,int arity)

Used to throw an ISO-style permission error from foreign code, indicating that an
operation of type op on type obj is not permitted on culprit, in argument arg of
pred/arity.

Example: The code fragment

xsb_permission_error(CTXTc "unlock mutex","mutex not held by thread",

xsb_thread_id,"mutex_unlock",2);

in mutex_unlock/1 gives rise to a the behavior

| ?- mutex_unlock(mymut).

++Error[XSB/Runtime/P]: [Permission (Operation) unlock mutex on mutex not held

by thread: 0] in predicate mutex_unlock/1)

if thread 0 does not own mutex mymut.

void xsb_resource_error(CTXTdeclc char *resource,char *pred,int arity)

Used to indicate that there are not sufficient resources of type resource for pred/arity

to succeed.

Example: The code fragment

xsb_resource_error(th,"system threads","thread_create",2);

CHAPTER 13. FOREIGN LANGUAGE INTERFACE 382

in thread_create/1 gives rise to a the behavior

| ?- thread_create(X).

++Error[XSB/Runtime/P]: [Resource (system threads))] in predicate thread_create/2)

If the number of system threads has been exceeded.

void xsb_type_error(CTXTdeclc char *valid_type,Cell culprit,char *pred,int arity,int arg)

Used to throw an ISO-style type error from foreign code, indicating that culprit is
not in ISO type valid_type in argument arg of pred/arity.

Example: The code fragment

Cell num;

:

if (!isinteger(num)) xsb_type_error(CTXTc "integer",num,"atom_length",2,2);

in atom_length/2 gives rise to the behavior

| ?- atom_length(foo,a).

++Error[XSB/Runtime/P]: [Type (a in place of integer)] in arg 2

of predicate atom_length/2)

void xsb_throw(CTXTdeclc prolog_term Ball)

Used to throw a Prolog term from C code, when an ISO-style error is not required.
The term can be caught and handled by the Prolog predicate catch/3 just as any
other thrown term; however if it is not caught, XSB’s default error handler will treat
it as an unhandled exception.

Chapter 14

Embedding XSB in a Process

There are many situations in which it is desirable to use XSB as a rule- or constraint- pro-
cessing subcomponent of a larger system that is written in another language. Depending
on the intended architecture, it may be appropriate for XSB to reside in its own process,
separate from other components of an application, and communicating through sockets,
a database, or some other mechanism. However it is often useful for XSB to reside in
the same process as other components. To do this, one wants to be able to call XSB
from the host language, providing queries for XSB to evaluate, and retrieving back the
answers. An interface for calling XSB from C is provided for this purpose and is de-
scribed in this chapter. Based on this C interface, XSB can also be called from Java
either through a JNI or a socket-based interface, as described in the documentation for
Interprolog, available through xsb.sourceforge.net. To call XSB from Visual Basic, a
DLL is created as described in this chapter, and additional declarations must be made
in visual basic as described in the web page “How to use XSB DLL from Visual Basic”
http://xsb.sourceforge.net/vbdll.html. In addition, the interface described in this
chapter has also been extended to allow XSB to be called from Delphi and Ruby. However,
since all of these interfaces – Java, Ruby, Delphi and Visual Basic – depend on XSB’s C
API, we refer in this chapter to C programs or threads calling XSB, although each of the
examples suitably modified can be extended to other calling languages.

New to Version 3.1 are extensions to the C API to allow multiple XSB threads to be
called from multiple C threads 1. In this Chapter, we provide an overview of XSB’s C API,
and then elaborate its use through a series of examples, beginning with a single XSB thread
called by a single C thread, then showing how a C thread can interact with multiple XSB
threads, and finally discuss how multiple XSB threads can interact with multiple POSIX
threads. Finally, Section 14.3 describes each C function in the API.

1XSB’s threading model is based on POSIX threads, which can be called in Windows through a variety
of POSIX APIs – see Volume 1 chapter 8 Multi-threaded Programming in XSB.

383

http://xsb.sourceforge.net/vbdll.html

CHAPTER 14. EMBEDDING XSB IN A PROCESS 384

14.1 Calling XSB from C

XSB provides several C functions (declared in $XSBDIR/emu/cinterf.h and defined in
$XSBDIR/emu/cinterf.c), which can be called from C to interact with XSB as a subroutine.
These functions allow a C program to interact with XSB in a number of ways.

• XSB may be initialized, using most of the parameters available from the command-
line.

• XSB may then execute a series of commands or queries. A command is a deterministic
query which simply succeeds or fails without performing any unification on the query
term. On the other hand, a non-deterministic query can be evaluated so that its
answer substitutions are retrieved one at a time, as they are produced, just as if XSB
were called on a command line. Alternately a non-deterministic query can be closed
in the case where not every answer to the query is needed. Only one query per thread
can be active at a time. I.e., an application must completely finish processing one
query to a given thread T (either by retrieving all the answers for it, or by issuing a
call to xsb_close_query(), before trying to evaluate another using T .

• Finally, XSB can be closed, so that no more queries can be made to any XSB threads.

In general, while any functions in the C API to XSB can be intermixed, the functions
can be classified as belonging to three different levels.

• A VarString level which uses an XSB-specific C-type definition for variable-length
strings (Section 14.4), to return answers.

• A fixed-string level provides routines that return answers in fixed-length strings.

• A register-oriented level that requires users to set up queries by setting registers for
XSB which are made globally available to calling functions. The mechanisms for this
resemble the lower-level C interface discussed in Chapter 13. This level of interface
should only be used for the single-threaded applications, as it is difficult to prevent
race-conditions at this level of interface when multiple C threads are used to call XSB.

The appropriate level to use depends on the nature of the calling program, the speed desired,
and the expertise of the programmer. By and large, functions in the VarString level are
the the easiest and safest to use, but they depend on a C type definition that may not be
available to all calling programs (e.g. it may be difficult to use if the calling program is
not directly based on C, such as Visual Basic or Delphi). For such applications functions
from the fixed-string level would need to be used instead. In general, most applications
should use either functions from the VarString or the fixed-string level, rather than the
register-oriented level. This latter level should only be used by programmers who are willing
to work at a low interface level, when the utmost speed is needed by an application, and
when multiple threads do not need to interact with XSB.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 385

14.2 Examples of Calling XSB

We introduce a series of examples of how XSB would be called using the string-level inter-
faces. Simple examples of the register-level interface are given in the XSB/examples/c_calling_XSB

subdirectory, in files cmain.c, cmain2.c, ctest.P, and Makefile, but are not discussed in
this section.

We structure out discussion by first showing how to construct a C program to call the
single-threaded engine alone in Section 14.2.1. This example is mostly pedagogic: with a
small amount of extra coding a C program can be constructed to call both the single- and the
multi-threaded engine, and these extensions are discussed in Section 14.2.2. Next, we show
how to a C program can call and manage multiple XSB threads in Section 14.2.3. Finally,
we show how multiple XSB threads can interact with multiple C threads in Section 14.2.3.

14.2.1 The XSB API for the Sequential Engine Only

We start with a simple program shown, in Figure 14.1, that will call the following XSB
predicate

p(a,b,c).

p(1,2,3).

p([1,2],[3,4],[5,6]).

p(A,B,A).

r(c,b,a).

r(3,2,1).

r([5,6],[3,4],[1,2]).

r(_A,B,B).

and backtrack through unifying answers (cf. $XSBDIR/examples/c_calling_xsb/edb.P).
. This example will only compile properly if the sequential engine is used, and its style is
not recommended: it will be shown in Section 14.2.2 how to extend the style.

We discuss the program in Figure 14.1 in detail. This program, slightly modified so that
it compiles with the multi-threaded engine is in $XSBDIR/examples/c_calling_xsb/cvartest.c.
An executable for this program can be make most easily by calling $XSBDIR/examples/c_calling_xsb/make.P,
which makes the executable cvstest.

The program begins by including some standard C headers: note that string.h is
needed for string manipulation routines such as strcpy. In addition, the XSB library header
cinterf.h is necessary for the XSB C API. Since the program in Figure 14.1 uses functions
in the VarString interface, within main() the routine XSB_StrDefine(return_string)

declares and initializes a structure of type VarString, named return_string.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 386

#include <stdio.h>

#include <string.h>

/* cinterf.h is necessary for the XSB API, as well as the path manipulation routines*/

#include "cinterf.h"

extern char *xsb_executable_full_path(char *);

extern char *strip_names_from_path(char*, int);

int main(int argc, char *argv[]) {

char init_string[1024];

int rc;

XSB_StrDefine(return_string);

/* xsb_init_string() relies on the calling program to pass the absolute or relative

path name of the XSB installation directory. We assume that the current

program is sitting in the directory ../examples/c_calling_xsb/

To get the installation directory, we strip 3 file names from the path. */

strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));

if (xsb_init_string(init_string) == XSB_ERROR) {

fprintf(stderr,"++initializing XSB: %s/%s\n",xsb_get_init_error_type(),

xsb_get_init_error_message());

exit(XSB_ERROR);

}

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string("consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(),xsb_get_error_message());

rc = xsb_query_string_string("p(X,Y,Z).",&return_string,"|");

while (rc == XSB_SUCCESS) {

printf("Return %s\n",(return_string.string));

rc = xsb_next_string(&return_string,"|");

}

if (rc == XSB_ERROR)

fprintf(stderr,"++Query Error: %s/%s\n"xsb_get_error_type(),xsb_get_error_message());

xsb_close();

}

Figure 14.1: Calling the Sequential Engine Using the VarString Interface

CHAPTER 14. EMBEDDING XSB IN A PROCESS 387

The next order of business is to initialize XSB. In order to do this, xsb_init_string()

needs to know the installation directory for XSB, which must be passed as part of the
initialization string. In Figure 14.1 this is done by manipulating the path of the executable
(cvstest) that calls XSB. In fact any other approach would also work as long as the XSB
installation directory were passed. Within the initialization string, other command line
arguments can be passed to XSB if desired with the following exceptions: the arguments -B

(boot module), -D (command loop driver), -i (interpreter) and -d (disassembler) cannot
be used when calling XSB from a foreign language 2. As a final point on initialization, note
that the function xsb_init() can also be used to initialize XSB based on an argument
vector and count (see Section 14.3).

Note that the calling program checks for any errors returned by xsb_init_string() and
other API commands. In general, xsb_init_string() may throw an error if the XSB’s
installation directory has become corrupted, or for similar reasons. This mechanism for
error handling is different than that used if XSB is called in its usual stand-alone mode,
in which case such an error would cause XSB to exit). An error returned by XSB’s API
are similar to an error ball described in Volume 1 Exception Handling in that it has both a
type and a message. For normal Prolog exceptions, XSB’s API will throw the same kinds of
errors as XSB called in a stand-alone (or server) mode, i.e. instantiation errors, type errors,
etc. However XSB’s API adds two new error types:

• init_error is used as the type of an error discovered upon initialization of XSB,
before query and command processing has begun. If an init_error is raised, XSB
has not been properly initialized and will not run.

• unrecoverable_error is used to indicate that XSB has encountered an error, (such
as a memory allocation error), during command or query processing from which it
cannot recover. Such an error would cause XSB to immediately exit if it were called
in a stand-alone mode. In general the calling program should handle unrecoverable
errors as fatal since there is a good chance that the error conditions will affect the
calling program as well as XSB.

Errors raised by xsb_init_string() usually have type init_type.

and a string pointer to the associated message can be found by the function xsb_get_init_error_message().

As can be seen from the example, handling errors from commands is done in manner
similar to that of initialization. For non-initialization errors, a string pointer to the type
can be obtained by xsb_get_error_type(), while a string pointer to the message can be
obtained by xsb_get_error_message().

Next in Figure 14.1 the file edb.P is consulted (containing the p/3 and r/3 predicates
shown above). Note, that the argument to xsb_command_string must be a syntactically

2In previous versions of XSB, initialization from the C level required a -n option to be passed. This is
no longer required.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 388

valid Prolog term ending with a period, otherwise a syntax error will be thrown, which may
be displayed through xsb_get_error_type() and xsb_get_error_message() 3.

Queries to XSB are a little more complicated than commands. Since a query may
return multiple solutions, a query should usually be called from inside a loop. In Fig-
ure 14.1, the query is opened with xsb_query_string(). If the query has at least one
answer, xsb_query_string() will return XSB_SUCCESS; if the query fails, it will return
XSB_FAILURE, and if there is an exception it will return XSB_ERROR as usual. Any answer
will be returned as a string in the VarString return_string, and each argument of the
query will be separated by the character |. Thus, in our example, the first answer will write
the string

a|b|c

Once a query has been opened, subsequent answers can be obtained via xsb_next_string().
These answers are written to return_string in the same manner as xsb_query_string_string().

1|2|3

[1,2]|[3,4]|[5,6]

_h102|_h116|_h102

A query is automatically closed when no more answers can be derived from it. Alternately, a
query that may have answers remaining can be closed using the command xsb_close_query().
If the calling application will need to pass more queries or commands to XSB nothing need
be done at this point: a new queries or commands can be invoked using one of the functions
just discussed. However if the calling process is finished with XSB and will never need it
again during the life of the process, it can call xsb_close().

An Example using Fixed Strings

Figure 14.2 shows a fragment of code indicating how the previous example would be
modified if the fixed-string interface were used. Note that return_string now becomes
a pointer to explicitly malloc-ed memory. To open the query p(X,Y,Z) the function
xsb_query_string_string_b() is called, with the _b indicating that a fixed buffer is be-
ing used rather than a VarString. The call is similar to xsb_query_string_string(),
except that the length anslen of the buffer pointed to by return_string is now also
required. If the answer to be returned (including separators) is longer than anslen,
xsb_query_string_string_b() will return XSB_OVERFLOW. If this happens, a new an-
swer buffer can be used (here the old one is realloc-ed) and the answer retrieved via
xsb_get_last_answer_string. Similarly, further answers are obtained via xsb_next_string_b()

whose length must be checked. Thus the only difference between the fixed-string level and
the VarString level is that the length of each answer should be checked and xsb_get_last_answer_string()

called if necessary.
3Most XSB errors are handled in this manner when XSB is called through its API. A few errors will print

directly to stderr and some XSB warnings will print to stdwarn which upon startup is dup-ed to stderr.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 389

int retsize = 15;

char *return_string;

int anslen;

return_string = malloc(retsize);

rc = xsb_query_string_string_b(CTXTc "p(X,Y,Z).",return_string,retsize,&anslen,"|");

while (rc == XSB_SUCCESS || rc == XSB_OVERFLOW) {

if (rc == XSB_OVERFLOW) {

return_string = (char *) realloc(return_string,anslen);

return_size = anslen;

rc = xsb_get_last_answer_string(CTXTc return_string,retsize,&anslen);

}

printf("Return %s %d\n",return_string,anslen);

rc = xsb_next_string_b(CTXTc return_string,15,&anslen,"|");

}

Figure 14.2: Calling XSB using the Fixed String Interface

14.2.2 The General XSB API

The previous section showed how to use the XSB API with both the VarString type and
without, but did not consider the multi-threaded engine. In fact, there are different ways
to use XSB’s multi-threading that can have advantages for various situations. In the first
mode, threads are managed from Prolog, with a single XSB thread called from the API;
that XSB thread can then create another XSB thread that does work, and the first thread
can return almost immediately to handle more requests from the API’s caller. A second
model allows the caller to manipulate a pool of several XSB threads, so that different XSB
threads may be called from different threads over the API. In this model each C, Java,
Ruby, or other thread could a number of different Prolog threads. In this section we sketch
how to use the API to illustrate the first model, and sketch the second model in the next
section.

Figure 14.3 shows how relevant portions of the previous VarString example can be
adapted to use the multi-threaded engine. The main change is that a new variable is
introduced on the C side that points to the context of the main thread. As pointed out in
Chapter 13, each thread in the multi-threaded engine has a context in which is kept much
of its thread-specific data (excluding tables and dynamic code). Of the threads running in
the multi-threaded engine the thread created upon the call to xsb_init() is designated as
the main thread, and is closed only upon calling xsb_close().

Within the multi-threaded engine, a call to an API function such as xsb_query_string_string()

CHAPTER 14. EMBEDDING XSB IN A PROCESS 390

.....

/* context.h is necessary for the type of a thread context. */

#include "context.h"

int main(int argc, char *argv[])

{

char init_string[MAXPATHLEN];

int rc;

XSB_StrDefine(return_string);

strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));

if (xsb_init_string(init_string) == XSB_ERROR) {

fprintf(stderr,"++initializing XSB: %s/%s\n",xsb_get_init_error_type(),

xsb_get_init_error_message());

exit(XSB_ERROR);

}

#ifdef MULTI_THREAD

th_context *th = xsb_get_main_thread();

#endif

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string(CTXTc "consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(CTXT),

xsb_get_error_message(CTXT));

rc = xsb_query_string_string(CTXTc "p(X,Y,Z).",&return_string,"|");

while (rc == XSB_SUCCESS) {

printf("Return %s\n",(return_string.string));

rc = xsb_next_string(CTXTc &return_string,"|");

}

if (rc == XSB_ERROR)

fprintf(stderr,"++Query Error: %s/%s\n",xsb_get_error_type(CTXT),xsb_get_error_message(CTXT));

xsb_close();

}

Figure 14.3: Calling the Single- or Multi-Threaded Engine Using the VarString Interface

CHAPTER 14. EMBEDDING XSB IN A PROCESS 391

is actually a call to a specific thread to do some work (using a thread context pointer). Ac-
cordingly, since any errors produced will be specific to a given thread, all calls to error
reporting functions are also thread-specific. If no specific thread is needed, it may be best
just to use the main thread, which is what is done in Figure 14.3. The thread context
pointer th is initialized to the main thread using the API macro xsb_get_main_thread().
Afterwards, this pointer is passed into the various interface functions by making use of XSB
macros defined in context.h In the multi-threaded engine, these macros are defined as

#define CTXT th

#define CTXTc th,

while in the single-threaded engine they are defined as empty strings, as is xsb_get_main_thread().
As a result the code in Figure 14.3 will compile and run properly both for the single-threaded
and the multi-threaded engines.

At this stage, suppose one wanted a new thread to execute a specific command, say
do_foo. In this case, a C call such as

xsb_query_string_string(CTXTc "thread_create(do_foo,Id).",&return_string,"|")

creates a thread to execute the command, and returns the thread id of the newly created
thread in return_string. The behavior of this newly created thread is exactly the same
as if it were created from the XSB command line: in particular the newly created thread
will automatically exit upon completion of its command. As a somewhat technical point,
there are two different ways of referring to XSB threads. The foreign language interfaces
described in Chapter 13 and here use pointers to thread contexts so that the interfaces use
much of the same code as the XSB engine. However Prolog refers to threads using thread
identifiers. The two different forms can be converted into each other by the functions
xsb_thread_id_to_context() and xsb_thread_context_to_id().

14.2.3 Managing Multiple XSB Threads through the API

The ability to pass thread contexts into query and command functions allows a great deal of
flexibility 4. Once XSB is initialized, XSB threads can be created from C and can execute
independently of each other, effectively giving the ability for different calling threads to
query XSB in a mechanism reminiscent of database cursors.

Figure 14.4 illustrates a very simple example of this. XSB is initialized and the file edb.P

consulted exactly as in Figure 14.4. However, the function xsb_ccall_thread_create()

causes the XSB thread p_th to create a new thread, causes the new thread to call the same
command loop as the main thread, and sets r_th to point to the context of the new thread.

4For the sake of brevity, we sometimes abuse notation and do not always distinguish between thread-
contexts and their pointers.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 392

.....

/* context.h is necessary for the type of a thread context. */

#include "context.h"

int main(int argc, char *argv[])

{

static th_context *p_th, *r_th;

char init_string[MAXPATHLEN];

int rcp, rcr;

XSB_StrDefine(p_return_string);

XSB_StrDefine(r_return_string);

strcpy(init_string,strip_names_from_path(xsb_executable_full_path(argv[0]),3));

if (xsb_init_string(init_string)) {

fprintf(stderr,"%s initializing XSB: %s/%s\n",xsb_get_init_error_type(),

xsb_get_init_error_message());cin

exit(XSB_ERROR);

}

p_th = xsb_get_main_thread();

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string(p_th, "consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(p_th),

xsb_get_error_message(p_th));

xsb_ccall_thread_create(p_th,&r_th);

rcp = xsb_query_string_string(p_th,"p(X,Y,Z).",&p_return_string,"|");

rcr = xsb_query_string_string(r_th,"r(X,Y,Z).",&r_return_string,"|");

while (rcp == XSB_SUCCESS && rcr == XSB_SUCCESS) {

printf("Return p %s\n",(p_return_string.string));

rcp = xsb_next_string(p_th, &p_return_string,"|");

printf("Return r %s\n",(r_return_string.string));

rcr = xsb_next_string(r_th, &r_return_string,"|");

}

if (rcp == XSB_ERROR)

fprintf(stderr,"++Query Error p: %s/%s\n",xsb_get_error_type(p_th),xsb_get_error_message(p_th));

if (rcr == XSB_ERROR)

fprintf(stderr,"++Query Error r: %s/%s\n",xsb_get_error_type(r_th),xsb_get_error_message(r_th));

xsb_close();

}

Figure 14.4: Manipulating Multiple Threads Using the VarString Interface

CHAPTER 14. EMBEDDING XSB IN A PROCESS 393

The new thread r_th can be used for commands or queries just as p_th. Figure 14.4 shows
that queries to the two threads can be interleaved, and errors for both threads can be
checked and reported independently.

It is important to note that since each thread created by xsb_ccall_thread_create()

goes into a command-loop similar to the command loop, it will stay around until it is
explicitly killed or until XSB is closed. The call

xsb_kill_thread(r_th);

is needed to make r_th to exit. Once a thread is exited, all of its data structures will be freed,
including those that support xsb_get_error_type() and xsb_get_error_message() 5.

14.2.4 Calling Multiple XSB Threads using Multiple C Threads

Figure 14.4 shows how two XSB threads can be created, can receive different queries and can
interleave their backtracking and answer return. Although Figure 14.4 demonstrated only
backtracking through simple predicates, the mechanism employed works for complicated
examples using tabling, dynamic code, and other features. All this provides a sophisticated
interface, but it is not “fully” multi-threaded in the following sense. When a C thread T
causes XSB to execute a command or query the thread must wait until the calling function
returns before proceeding. In certain applications it may be useful, for example, for T to
create a C thread Tnew which runs asynchronously from T , executing the XSB command or
query and then exiting. Alternately, an application may want to have a pool of C threads
that can interact with a pool of XSB threads.

XSB’s C API has been designed to support these features. Figure 14.5 shows fragments
of Figure 14.4 rewritten so that the routines to print out the answers to the queries p(X,Y,Z)

and r(X,Y,Z) can be called from C threads specially designed for this purpose. More
specifically, the routine query_ps() calls p_th to query p(X,Y,Z) and backtrack through its
answers – its use of a single void * argument and a void * return reflect the requirements
of functions that are to be called using pthread_create().

We note several points about this example. First the XSB API is a low-level API
that can be used to build application specific interfaces, and some experience with pthread
programming is useful if multiple XSB threads are called from multiple C threads. For
instance, one issue is fairness. When called from the C API each XSB thread XT makes use
of mutexes to ensure that it answers only one query or command at a time. If multiple C
threads are are waiting for XT to respond to requests or queries, there is no guarantee that
the requests will be processed in any sort of order, or even that a request will eventually
be handled (In order to ensure this, the calling program would have to use a queue or
some other scheduling mechanism to send requests to the XSB thread). In addition, it is

5Note that causing XSB’s main thread to exit will cause the entire process to exit – not just XSB.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 394

important to note that, the main XSB thread should only be called from the C thread that
initialized XSB.. This restriction is due to the current design of synchronizing an XSB
thread with calling threads, and may be lifted in the future.

Protected and Non-Protected API Functions

Example 14.5 shows that, when the Varstring functions are used, if a single calling thread
opens a query to an XSB thread XT , XT will be protected from queries and commands
posed by other C threads until the query is closed, failed out of, or exits via an error. In fact,
queries (and commands) are protected when the Varstring or fixed string interfaces are
used. However, consider what may happen when the register level interface is used. In this
case, a calling thread may call one or more API functions to set up the registers, execute a
command or query, call several more API functions to obtain the output, and so on. For this
reason, if an application uses API commands that depend on user manipulation of regis-
ters (xsb_command(),xsb_query(),xsb_query_string(), and xsb_next()) the user must
ensure that only one calling thread interacts with an XSB thread when that thread in the
course of executing a command or query. See $XSB_DIR/examples/c_calling_xsb/cregs_thread2.c

for an example of how mutexes can be used to protect XSB threads.

When writing multi-threaded applications in XSB, be sure to be aware of how multiple
threads share (and do not share) dynamic data and tables. By default dynamic predicates
(and tables) are unique to a given thread. For data to be shared by multiple threads, a
predicate must be declared to be shared. See section 7.2 for details.

14.3 A C API for XSB

14.3.1 Initializing and Closing XSB

int xsb_init_string(char *options)

This function is used to initialize XSB via an initialization string *options, and must
be called before any other calls can be made. The initialization string must include
the path to the XSB directory installation directory $XSB_DIR, which is expanded to
an absolute path by XSB. Any other command line options may be included just as
in a command line except -D, -d, -B and -i. For example, a call from an executable
in a sibling directory of XSB might have the form

xsb_init_string("../XSB -e startup.");

which initializes XSB with the goal ?- startup.

Return Codes

• XSB_SUCCESS indicates that initialization returned successfully.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 395

.....

void *query_ps(void * arg) {

int rc;

th_context *p_th;

XSB_StrDefine(p_return_string);

p_th = (th_context *)arg;

rc = xsb_query_string_string(p_th,"p(X,Y,Z).",&p_return_string,"|");

while (rc == XSB_SUCCESS) {

printf("Return p %s\n",(p_return_string.string));

rc = xsb_next_string(p_th, &p_return_string,"|");

}

if (rc == XSB_ERROR)

fprintf(stderr,"++Query Error p: %s/%s\n",xsb_get_error_type(p_th),xsb_get_error_message(p_th));

return NULL;

}

int main(int argc, char *argv[]) {

char init_string[MAXPATHLEN];

static th_context *p_th, *r_th;

int pstatus, rstatus;

pthread_t pthread_id,rthread_id;

XSB_StrDefine(p_return_string);

XSB_StrDefine(r_return_string);

.....

main_th = xsb_get_main_thread();

/* Create command to consult a file: edb.P, and send it. */

if (xsb_command_string(xsb_get_main_thread(), "consult(’edb.P’).") == XSB_ERROR)

fprintf(stderr,"++Error consulting edb.P: %s/%s\n",xsb_get_error_type(main_th),

xsb_get_error_message(main_th));

xsb_ccall_thread_create(main_th,&r_th);

xsb_ccall_thread_create(main_th,&p_th);

pthread_create(&rthread_id,NULL,command_rs,r_th);

pthread_create(&pthread_id,NULL,command_ps,p_th);

pthread_create(&rthread_id,NULL,command_rs,r_th);

pthread_create(&pthread_id,NULL,command_ps,p_th);

rstatus = pthread_join(rthread_id,&rreturn);

if (rstatus != 0) fprintf(stderr,"R join returns status %d\n",rstatus);

pstatus = pthread_join(pthread_id,&preturn);

if (pstatus != 0) fprintf(stderr,"P join returns status %d\n",pstatus);

xsb_kill_thread(r_th);

xsb_close();

}

Figure 14.5: Manipulating Multiple XSB Threads Using Multiple C Threads

CHAPTER 14. EMBEDDING XSB IN A PROCESS 396

• XSB_ERROR

– init_error if any error occurred during initialization.
– permission_error if xsb_init_string() is called after XSB has already

been correctly initialized.

int xsb_init(int argc, char *argv[])

This function is a variant of xsb_init_string() which passes initialization argu-
ments as an argument vector: argc is the count of the number of arguments in the
argv vector. The argv vector is exactly as would be passed from the command line
to XSB.

• argv[0] must be an absolute or relative path name of the XSB installation direc-
tory (i.e., $XSB_DIR). Here is an example, which assumes that we invoke the C
program from the XSB installation directory.

int main(int argc, char *argv[])

{

int myargc = 1;

char *myargv[1];

/* XSB_init relies on the calling program to pass the addr of the XSB

installation directory. From here, it will find all the libraries */

myargv[0] = ".";

/* Initialize xsb */

xsb_init(myargc,myargv);

}

The return codes for xsb_init() are the same as those for xsb_init_string().

int xsb_close()

This routine closes the entire connection to XSB . After this, no more calls can
be made (not even calls to xsb_init_string() or xsb_init()). In Version 3.3, no
guarantee is made that all space used by XSB will be restored to the process (even
when the process has dynamically linked to XSB), but space for any XSB tables is
freed.

Return Codes

• XSB_SUCCESS indicates that XSB was closed successfully.

• XSB_ERROR

– permission_error if xsb_closed() when XSB has not been (correctly)
initialized.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 397

14.3.2 Passing Commands to XSB

int xsb_command_string(th_context *th, char *cmd)

This function passes a command to the XSB thread designated by th (the first
argument is not used in the single-threaded engine). No query can be active in th

when the command is called. The command is a string consisting of a Prolog (or
HiLog) term terminated by a period (.).

When used in the multi-threaded engine, xsb_command_string protects the called
thread from API calls from other pthreads until the command is finished.

Return Codes

• XSB_SUCCESS indicates that the command succeeded.

• XSB_FAILURE indicates that the command failed.

• XSB_ERROR

– permission_error if xsb_command_string() is called while a query is open
in th.

– Otherwise, any queries thrown during execution of the command are access-
able through xsb_get_error_type(th) and xsb_get_error_message(th).

int xsb_command(th_context *th)

This function passes a command to the XSB thread designated by th (the first ar-
gument is not used in the single-threaded engine). Any previous query must have
already been closed. Before calling xsb_command(), the calling program must con-
struct the term representing the command in register 1 in the XSB thread’s space.
This can be done by using the c2p_* (and p2p_*) routines, which are described in
Section 13.2.3 below. Register 2 may also be set before the call to xsb_query() (using
xsb_make_vars(int) and xsb_set_var_*()) in which case any variables set to values
in the ret/n term will be so bound in the call to the command goal. xsb_command

invokes the command represented in register 1 and returns XSB_SUCCESS if the com-
mand succeeds, XSB_FAILURE if it fails, and XSB_ERROR if an error is thrown while
executing the command.

When used in the multi-threaded engine, xsb_command_string does not protect the
called thread from API calls from other pthreads until the command is finished. It is
the user’s responsibility to protect the XSB thread, using a mutex or other concurrency
control, from the time the goal begins to be constructed in the register 1 until the
command has completed.

Apart from the steps necessary to formulate the query and the lack of protection of the
XSB thread, the behavior of xsb_command() is similar to that of xsb_command_string(),
including its return codes.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 398

14.3.3 Querying XSB

int xsb_query_string_string(th_context *th, char *query, VarString *buff, char *sep)

This function opens a query to the XSB thread designated by th (the first argu-
ment is not used in the single-threaded engine); it returns the first answer (if there is
one) as a VarString. Any previous query to th must have already been closed. Any
query may return multiple data answers. The first is found and made available to the
caller as a result of this call. To get any subsequent answers, xsb_next_string()

must be called. An example call is:

rc = xsb_query_string_string(th, "append(X,Y,[a,b,c]).",buff,";");

The second argument is the period-terminated query string. The third argument is
a pointer to a variable string buffer in which the subroutine returns the answer (if
any.) The variable string data type VarString is explained in Section 14.4. (Use
xsb_query_string_string_b() if you cannot declare a parameter of this type in
your programming language.) The last argument is a string provided by the caller,
which is used to separate arguments in the returned answer. For the example query,
buff would be set to the string:

[];[a,b,c]

which is the first answer to the append query. There are two fields of this answer,
corresponding to the two variables in the query, X and Y. The bindings of those vari-
ables make up the answer and the individual fields are separated by the sep string,
here the semicolon (;). In the answer string, XSB atoms are printed without quotes.
Complex terms are printed in a canonical form, with atoms quoted if necessary, and
lists produced in the normal list notation.

When used in the multi-threaded engine, xsb_query_string_string protects the
called thread from API calls from other pthreads until the entire query is finished.

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR

– permission_error if xsb_query_string_string() is called while a query
to th is open.

– Otherwise, any errors thrown during execution of the query are accessable
through xsb_get_error_type() and xsb_get_error_message().

CHAPTER 14. EMBEDDING XSB IN A PROCESS 399

int xsb_query_string_string_b(th_context *th,char *query,char *buff,int bufflen,int *anslen,char *sep)

This function provides a lower-level alternative to xsb_query_string_string (not us-
ing the VarString type), which makes it easier for non-C callers (such as Visual Basic
or Delphi) to access XSB functionality. Any previous query to th must have already
been closed. Any query may return possibly multiple data answers. The first is found
and made available to the caller as a result of this call. To get any subsequent an-
swers, xsb_next_string_b() or a similar function must be called. The first and last
arguments are the same as in xsb_query_string_string(). The buff, bufflen, and
anslen parameters are used to pass the answer (if any) back to the caller. buff is a
character array provided by the caller in which the answer is returned. bufflen is the
length of the buffer (buff) and is provided by the caller. anslen is returned by this
routine and is the length of the computed answer. If that length is less than bufflen,
then the answer is put in buff (and null-terminated). If the answer is longer than will
fit in the buffer (including the null terminator), then the answer is not copied to the
buffer and XSB_OVERFLOW is returned. In this case the caller can retrieve the answer
by providing a bigger buffer (of size greater than the returned anslen) in a call to
xsb_get_last_answer_string().

When used in the multi-threaded engine, xsb_query_string_string_b protects the
called thread from API calls from other pthreads until the entire query is finished.

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR

– permission_error if xsb_query_string_string_b() is called while a query
to th is open.

– Otherwise, any queries thrown during execution of the command are access-
able through xsb_get_error_type() and xsb_get_error_message().

• XSB_OVERFLOW indicates that the query succeeded, but the answer was too long
for the buffer.

int xsb_query(th_context *th)

This function passes a query to the XSB thread th. Any previous query to th must
have already been closed. Any query may return possibly multiple data answers.
The first is found and made available to the caller as a result of this call. To get
any subsequent answers, xsb_next() or a similar function must be called. Before
calling xsb_query() the caller must construct the term representing the query in
the XSB thread’s register 1 (using routines described in Section 13.2.3 below.) If
the query has no answers (i.e., just fails), register 1 is set back to a free variable and
xsb_query() returns XSB_FAILURE. If the query has at least one answer, the variables
in the query term in register 1 are bound to those answers and xsb_query() returns

CHAPTER 14. EMBEDDING XSB IN A PROCESS 400

XSB_SUCCESS. In addition, register 2 is bound to a term whose main functor symbol
is ret/n, where n is the number of variables in the query. The main subfields of this
term are set to the variable values for the first answer. (These fields can be accessed by
the functions p2c_*, or the functions xsb_var_*, described in Section 13.2.3 below.)
Thus there are two places the answers are returned. Register 2 is used to make it
easier to access them. Register 2 may also be set before the call to xsb_query()

(using xsb_make_vars(int) and xsb_set_var_*()) in which case any variables set
to values in the ret/n term will be so bound in the call to the goal.

When used in the multi-threaded engine, xsb_query does not protect the called thread
from API calls from other pthreads until the query is finished, or even when the
registers are being accessed. It is the user’s responsibility to protect the XSB thread,
using a mutex or other concurrency control, from the time the goal begins to be
constructed in the register 1 until the query is closed, failed, or exited upon error.

int xsb_get_last_answer_string(th_context *th, char *buff, int bufflen, int *anslen)

This function is used only when a call xsb_query_string_string_b() or xsb_next_string_b()

to th returns XSB_OVERFLOW, indicating that the buffer provided was not big enough
to contain the computed answer. In that case the user may allocate a larger buffer
and then call this routine to retrieve the answer (that had been saved.) Only one
answer is saved per thread, so this routine must called immediately after the failing
call in order to get the right answer. The parameters are the same as the 2nd through
4th parameters of xsb_query_string_string_b().

Return Codes

• XSB_OVERFLOW indicates that the answer was still too long for the buffer.

int xsb_query_string(th_context *th,char *query)

This function passes a query to the XSB thread th. The query is a string consisting
of a term that can be read by the XSB reader. The string must be terminated
with a period (.). Any previous query must have already been closed. In all other
respects, xsb_query_string() is similar to xsb_query(), except the only way to
retrieve answers is through Register 2. The ability to create the return structure and
bind variables in it is particularly useful in this function.

When used in the multi-threaded engine, xsb_query_string does not protect the
called thread from API calls from other pthreads until the query is finished, or even
when the registers are being accessed. It is the user’s responsibility to protect the XSB
thread, using a mutex or other concurrency control, from the time the goal begins to
be constructed in the register 1 until the query is closed, failed, or exited upon error.

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 401

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR indicates that an error occurred while executing the query.

int xsb_next_string(th_context *th,VarString *buff,char *sep)

This routine is called after xsb_query_string() to retrieve a subsequent answer in
buff. If a query is not open in th, an error is returned. This function treats answers
just as xsb_query_string_string(). For example after the example call

rc = xsb_query_string_string(th,"append(X,Y,[a,b,c]).",buff,";");

which returns with buff set to

[];[a,b,c]

Then a call:

rc = xsb_next_string(th,buff,";");

returns with buff set to

[a];[b,c]

the second answer to the indicated query.

In the multi-threaded engine, xsb_next_string() protects the XSB thread from con-
current access by other threads as long as the query was invoked by xsb_query_string_string(_b).

Return Codes

• XSB_SUCCESS indicates that the query succeeded.

• XSB_FAILURE indicates that the query failed.

• XSB_ERROR indicates that an error occurred while executing the query.

int xsb_next_string_b(th_context *th, char *buff, int bufflen, int *anslen, char *sep)

This function is a variant of xsb_next_string() that does not use the VarString

type. Its parameters are the same as the 3rd through 6th parameters of xsb_query_string_string_b().
The next answer to the current query is returned in buff, if there is enough space. If
the buffer would overflow, this routine returns XSB_OVERFLOW, and the answer can be
retrieved by providing a larger buffer in a call to xsb_get_last_answer_string_b().
In any case, the length of the answer is returned in anslen.

In the multi-threaded engine, xsb_next_string() protects the XSB thread from con-
current access by other threads as long as the query was invoked by xsb_query_string_string(_b).

Return Codes

CHAPTER 14. EMBEDDING XSB IN A PROCESS 402

• XSB_SUCCESS indicates that backtracking into the query succeeded.

• XSB_FAILURE indicates that backtracking into the query failed.

• XSB_ERROR indicates that an error occurred while further executing the query.

• XSB_OVERFLOW indicates that backtracking into the query succeeded, but the new
answer was too long for the buffer.

int xsb_next(th_context *)

This function is called after xsb_query() (which must have returned XSB_SUCCESS)
to retrieve more answers. It rebinds the query variables in the term in register 1 and
rebinds the argument fields of the ret/n answer term in register 2 to reflect the next
answer to the query. Its return codes are as with xsb_next_string().

When used in the multi-threaded engine, xsb_next does not protect the called thread
from API calls from other pthreads until the query is finished, or even when the regis-
ters are being accessed. It is the user’s responsibility to protect the XSB thread, using
a mutex or other concurrency control, through the time that registers are accessed by
the calling program.

int xsb_close_query(th_context *th)

This function allows a user to close a query to th before all its answers have been
retrieved. Since XSB is (usually) a tuple-at-a-time system, answers that are not re-
trieved are not computed so that closing a query may save time. If a given query
Q is open, it is an error to open a new query without closing Q either by retriev-
ing all its answers or explicitly calling xsb_close_query() to close Q. Calling
xsb_close_query() when no query is open gives an error message, but otherwise
has no effect.

Return Codes

• XSB_SUCCESS indicates that the current query was closed.

• XSB_ERROR

– permission_error if xsb_close_query() is called while no query is open.

14.3.4 Obtaining Information about Errors

char * xsb_get_init_error_message()

Used to find error messages if xsb_init_string() or xsb_init() returns XSB_ERROR.
Any errors returned by these functions have type init_error. Because initialization
errors occur before XSB or any of its threads have been initialized, initialization errors
do not require a thread context for input.

char * xsb_get_error_type(th_context *th)

If a function called for th returned XSB_ERROR this function provides a pointer to a

CHAPTER 14. EMBEDDING XSB IN A PROCESS 403

string representing the type of the error. Types are as in Volume 1 Exception Handling
with the addition of init_error for errors that occur during initialization of XSB,
and unrecoverable_error for errors from which no recovery is possible for XSB (e.g.
inability to allocate new memory).

char *xsb_get_error_message(th_context *th)

If a function called for th returned XSB_ERROR this function provides a pointer to a
string representing a message associated with the error. For errors raised within the
Prolog portion of execution, messages are as in Volume 1 Exception Handling.

14.3.5 Thread Management from Calling Programs

int xsb_ccall_thread_create(th_context *callingThread, th_context **newThread)

Causes callingThread to create a thread pointed to by newThread. newThread

runs exactly the same interpreter loop as callingThread and all API functions will
work on newThread just as on the main thread, or any other thread. newThread will
be non-detached, and will inherit any private parameters from callingThread. To
create a thread to do a specific task or a detached thread, rather than one that exe-
cutes a command loop, simply call the query thread_create/[2,3] from one of the
query functions.

th_context *xsb_get_main_thread()

Returns a pointer to the thread context of XSB’s main thread. If XSB has not been
initialized or has been closed this function returns 0.

xsb_tid xsb_thread_id_to_context(th_context *th)

th_context *xsb_thread_context_to_id(xsb_tid id)

14.4 The Variable-length String Data Type

XSB uses variable-length strings to communicate with certain C subroutines when the size
of the output that needs to be passed from the Prolog side to the C side is not known.
Variable-length strings adjust themselves depending on the size of the data they must
hold and are ideal for this situation. For instance, as we have seem the two subroutines
xsb_query_string_string(query,buff,sep) and xsb_next_string(buff,sep) use the
variable string data type, VarString, for their second argument. To use this data type,
make sure that

#include "cinterf.h"

CHAPTER 14. EMBEDDING XSB IN A PROCESS 404

appears at the top of the program file. Variables of the VarString type are declared using
a macro that must appear in the declaration section of the program:

XSB_StrDefine(buf);

There is one important consideration concerning VarString with the automatic storage class:
they must be destroyed on exit (see XSB_StrDestroy, below) from the procedure that defines
them, or else there will be a memory leak. It is not necessary to destroy static VarString’s.

The public attributes of the type are int length and char *string. Thus, buf.string

represents the actual contents of the buffer and buf.length is the length of that data.
Although the length and the contents of a VarString string is readily accessible, the user
must not modify these items directly. Instead, he should use the macros provided for that
purpose:

• XSB_StrSet(VarString *vstr, char *str): Assign the value of the regular null-
terminated C string to the VarString vstr. The size of vstr is adjusted automati-
cally.

• XSB_StrSetV(VarString *vstr1, VarString *vstr2): Like XSB_StrSet, but the
second argument is a variable-length string, not a regular C string.

• XSB_StrAppend(VarString *vstr, char *str): Append the null-terminated string
str to the VarString vstr. The size of vstr is adjusted.

• XSB_StrPrepend(VarString *vstr, char *str): Like XSB_StrAppend, except that
str is prepended.

• XSB_StrAppendV(VarString *vstr1, VarString *vstr2): Like XSB_StrAppend,
except that the second string is also a VarString.

• XSB_StrPrependV(VarString *vstr1, VarString *vstr2): Like XSB_StrAppendV,
except that the second string is prepended.

• XSB_StrCompare(VarString *vstr1, VarString *vstr2): Compares two VarString.
If the first one is lexicographically larger, then the result is positive; if the first string
is smaller, than the result is negative; if the two strings have the same content (i.e.,
vstr1->string equals vstr2->string then the result is zero.

• XSB_StrCmp(VarString *vstr, char *str): Like XSB_StrCompare but the second
argument is a regular, null-terminated string.

• XSB_StrAppendBlk(VarString *vstr, char *blk, int size): This is like XSB_StrAppend,
but the second argument is not assumed to be null-terminated. Instead, size char-
acters pointed to by blk are appended to vstr. The size of vstr is adjusted, but the
content is not null terminated.

CHAPTER 14. EMBEDDING XSB IN A PROCESS 405

• XSB_StrPrependBlk(VarString *vstr, char *blk, int size): Like XSB_StrPrepend,
but blk is not assumed to point to a null-terminated string. Instead, size characters
from the region pointed to by blk are prepended to vstr.

• XSB_StrNullTerminate(VarString *vstr): Null-terminates the VarString string
vstr. This is used in conjunction with XSB_StrAppendBlk, because the latter does
not null-terminate variable-length strings.

• XSB_StrEnsureSize(VarString *vstr, int minsize): Ensure that the string has
room for at least minsize bytes. This is a low-level routine, which is used to in-
terface to procedures that do not use VarString internally. If the string is larger
than minsize, the size might actually shrink to the nearest increment that is larger
minsize.

• XSB_StrShrink(VarString *vstr, int increment): Shrink the size of vstr to
the minimum necessary to hold the data. increment becomes the new increment by
which vstr is adjusted. Since VarString is automatically shrunk by XSB_StrSet,
it is rarely necessary to shrink a VarString explicitly. However, one might want to
change the adjustment increment using this macro (the default increment is 128).

• XSB_StrDestroy(VarString *vstr): Destroys a VarString. Explicit destruction is
necessary for VarString’s with the automatic storage class. Otherwise, memory leak
is possible.

14.5 Passing Data into an XSB Module

The previous chapter described the low-level XSB/C interface that supports passing the
data of arbitrary complexity between XSB and C. However, in cases when data needs to be
passed into an executable XSB module by the main C program, the following higher-level
interface should suffice. (This interface is actually implemented using macros that call the
lower level functions.) These routines can be used to construct commands and queries into
XSB ’s register 1, which is necessary before calling xsb_query() or xsb_command().

void xsb_make_vars((int) N)

xsb_make_vars creates a return structure of arity N in Register 2. So this routine
may called before calling any of xsb_query, xsb_query_string, xsb_command, or
xsb_command_string if parameters are to be set to be sent to the goal. It must be
called before calling one of the xsb_set_var_* routines can be called. N must be the
number of variables in the query that is to be evaluated.

void xsb_set_var_int((int) Val, (int) N)

set_and_int sets the Nth field in the return structure to the integer value Val. It
is used to set the value of the Nth variable in a query before calling xsb_query or

CHAPTER 14. EMBEDDING XSB IN A PROCESS 406

xsb_query_string. When called in XSB, the query will have the Nth variable set to
this value.

void xsb_set_var_string((char *) Val, (int) N)

set_and_string sets the Nth field in the return structure to the atom with name
Val. It is used to set the value of the Nth variable in a query before calling xsb_query

or xsb_query_string. When called in XSB, the query will have the Nth variable set
to this value.

void xsb_set_var_float((float) Val, (int) N)

set_and_float sets the Nth field in the return structure to the floating point number
with value Val. It is used to set the value of the Nth variable in a query before calling
xsb_query or xsb_query_string. When called in XSB, the query will have the Nth

variable set to this value.

prolog_int xsb_var_int((int) N)

xsb_var_int is called after xsb_query or xsb_query_string returns an answer. It
returns the value of the Nth variable in the query as set in the returned answer. This
variable must have an integer value (which is cast to long in a 64-bit architecture).

char* xsb_var_string((int) N)

xsb_var_string is called after xsb_query or xsb_query_string returns an answer.
It returns the value of the Nth variable in the query as set in the returned answer.
This variable must have an atom value.

prolog_float xsb_var_float((int) N)

xsb_var_float is called after xsb_query or xsb_query_string returns an answer.
It returns the value of the Nth variable in the query as set in the returned answer.
This variable must have a floating point value (which is cast to double in a 64-bit
architecture).

14.6 Creating an XSB Module that Can be Called from C

To create an executable that includes calls to the above C functions, these routines, and
the XSB routines that they call, must be included in the link (ld) step.

Unix instructions: You must link your C program, which should include the main pro-
cedure, with the XSB object file located in

$XSBDIR/config/<your-system-architecture>/saved.o/xsb.o

CHAPTER 14. EMBEDDING XSB IN A PROCESS 407

Your program should include the file cinterf.h located in the XSB/emu subdirectory, which
defines the routines described earlier, which you will need to use in order to talk to XSB. It
is therefore recommended to compile your program with the option -I$XSB_DIR/XSB/emu.

The file $XSB_DIR/config/your-system-architecture/modMakefile is a makefile you
can use to build your programs and link them with XSB. It is generated automatically and
contains all the right settings for your architecture, but you will have to fill in the name of
your program, etc.

It is also possible to compile and link your program with XSB using XSB itself as follows:

:- xsb_configuration(compiler_flags,CFLAGS),

xsb_configuration(loader_flags,LDFLAGS),

xsb_configuration(config_dir,CONFDIR),

xsb_configuration(emudir,EMUDIR),

xsb_configuration(compiler,Compiler),

str_cat(CONFDIR, ’/saved.o/’, ObjDir),

write(’Compiling myprog.c ... ’),

shell([Compiler, ’ -I’, EMUDIR, ’ -c ’, CFLAGS, ’ myprog.c ’]),

shell([Compiler, CFLAGE, ’ -o ’, ’./myprog ’,

ObjDir, ’xsb.o ’, ’ myprog.o ’, LDFLAGS]),

writeln(done).

This works for every architecture and is often more convenient than using the make files 6.
There are simple examples of C programs calling XSB in the $XSB_DIR/examples/c_calling_XSB

directory, in files cmain.c, ctest.P, cmain2.c.

Windows instructions: To call XSB from C, you must build it as a DLL, which is done
as follows:

cd $XSB_DIR\XSB\build

makexsb_wind DLL="yes"

The DLL, which you can call dynamically from your program is then found in

$XSB_DIR\config\x86-pc-windows\bin\xsb.dll

Since your program must include the file cinterf.h, it is recommended to compile it with
the option /I$XSB_DIR\XSB\emu.

6The variable CFLAGS is needed in the linking stage in order to ensure that the appropriate memory option
is passed if XSB is configured –with-bits32 or –with-bits64 to override the default on a 64-bit platform.

Chapter 15

Restrictions and Current Known
Bugs

In this chapter we indicate some features and bugs of XSB that may affect the users at
some point in their interaction with the system.

If at some point in your interaction with the system you suspect that you have run across
a bug not mentioned below, please report it to (xsb-contact@cs.sunysb.edu). Please try
to find the smallest program that illustrates the bug and mail it to this address together
with a script that shows the problem. We will do our best to fix it or to assist you to bypass
it.

15.1 Current Restrictions

• The maximum arity for predicate and function symbols is 255.

• The maximum length of atoms that can be stored in an XSB object code file is in
principle 232 − 1.

• Not all of XSB’s tabling and builtins currently take account of cyclic terms, so using
them may lead to XSB hanging or crashing (cf. Section 6.8). Cyclic terms can be
checked using the predicate is_cyclic/1.

• In the current version, you should never try to rename a byte code file generated for a
module, though you can move it around in your file system. Since the module name is
stored in the file, renaming it causes the system to load it into wrong places. However,
byte code files for non-modules can be renamed at will.

• XSB allows up to 1 Gigabyte of address space for 32-bit chips. There are various
tagging schemes, which depend on the operating system and where in the 32-bit

408

CHAPTER 15. RESTRICTIONS AND CURRENT KNOWN BUGS 409

virtual address space it allocates user memory. The most general tagging scheme
(named GENERAL_TAGGING) adjusts itself to the address space in use. Other
more specific tagging schemes are available for specific architectures. Floating point
numbers are by default double precision when computed at runtime. Floating point
numbers in the compiler are only single precision (due to the way they are represented
in object byte-code files.) If –enable-fast-floats is specified, then 28-bit floats are
used. For 64-bit platforms, addresses are stored in 60 bits. However, as the object
code file format is the same as for the 32-bit versions, compiled constants are subject
to 32-bit limitations.

• Indexing on floating-point numbers is suspect, since, as implemented in XSB, the
semantics of floating-point unification is murky in the best case. Therefore, it is
advisable that if you use floating point numbers in the first argument of a procedure,
that you explicitly index the predicate in some other argument.

• The XSB compiler cannot distinguish the occurrences of a 0-ary predicate and a name
of a module (of an import declaration) as two different entities. For that reason it
fails to characterise the same symbol table entry as both a predicate and a module at
the same time. As a result of this fact, a compiler error is issued and the file is not
compiled. For that reason we suggest the use of mutually exclusive names for modules
and 0-ary predicates, though we will try to amend this restriction in future versions
of XSB.

• Tabled predicates that use call-subsumption do not handle calls that use attributed
variables, and may not use answer subsumption or incremental tabling.

15.2 Known Bugs

• The reader cannot read an infix operator immediately followed by a left parenthesis.
In such a case you get a syntax error. To avoid the syntax error just leave a blank
between the infix operator and the left parenthesis. For example, instead of writing:

| ?- X=(a,b).

write:

| ?- X= (a,b).

• The reader cannot properly read an operator defined as both a prefix and an infix
operator. For instance the declaration

:- op(1200,xf,’<=’).

:- op(1200,xfx,’<=’).

CHAPTER 15. RESTRICTIONS AND CURRENT KNOWN BUGS 410

will lead to a syntax error.

• When the code of a predicate is reloaded many times, if the old code is still in use at
the time of loading, unexpected errors may occur, due to the fact that the space of
the old code is reclaimed and may be used for other purposes.

• Currently, term comparisons (==,@<=,@<,@>, and @>=) do not work for terms that
overflow the C-recursion stack (terms that contain more than 10,000 variables and/or
function symbols).

Appendix A

GPP - Generic Preprocessor

Version 2.0 - (c) Denis Auroux 1996-99
http://www.math.polytechnique.fr/cmat/auroux/prog/gpp.html

As of version 2.1, XSB uses gpp as a source code preprocessor for Prolog programs. This
helps maintain consistency between the C and the Prolog parts of XSB through the use of
the same .h files. In addition, the use of macros improves the readability of many Prolog
programs, especially those that deal with low-level aspects of XSB. Chapter 3.10 explains
how gpp is invoked in XSB.

A.1 Description

gpp is a general-purpose preprocessor with customizable syntax, suitable for a wide range of
preprocessing tasks. Its independence on any programming language makes it much more
versatile than cpp, while its syntax is lighter and more flexible than that of m4.

gpp is targeted at all common preprocessing tasks where cpp is not suitable and where no
very sophisticated features are needed. In order to be able to process equally efficiently text
files or source code in a variety of languages, the syntax used by gpp is fully customizable.
The handling of comments and strings is especially advanced.

Initially, gpp only understands a minimal set of built-in macros, called meta-macros.
These meta-macros allow the definition of user macros as well as some basic operations
forming the core of the preprocessing system, including conditional tests, arithmetic eval-
uation, and syntax specification. All user macro definitions are global, i.e. they remain
valid until explicitly removed; meta-macros cannot be redefined. With each user macro
definition gpp keeps track of the corresponding syntax specification so that a macro can be
safely invoked regardless of any subsequent change in operating mode.

411

APPENDIX A. GPP - GENERIC PREPROCESSOR 412

In addition to macros, gpp understands comments and strings, whose syntax and be-
havior can be widely customized to fit any particular purpose. Internally comments and
strings are the same construction, so everything that applies to comments applies to strings
as well.

A.2 Syntax

gpp [-o outfile] [-I/include/path] [-Dname=val ...]

[-z|+z] [-x] [-m] [-n] [-C|-T|-H|-P|-U ... [-M ...]]

[+c<n> str1 str2] [-c str1]

[+s<n> str1 str2 c] [infile]

A.3 Options

gpp recognizes the following command-line switches and options:

• -h
Print a short help message.

• -o outfile
Specify a file to which all output should be sent (by default, everything is sent to
standard output).

• -I /include/path
Specify a path where the #include meta-macro will look for include files if they are
not present in the current directory. The default is /usr/include if no -I option is
specified. Multiple -I options may be specified to look in several directories.

• -D name=val
Define the user macro name as equal to val. This is strictly equivalent to using the
#define meta-macro, but makes it possible to define macros from the command-line.
If val makes references to arguments or other macros, it should conform to the syntax
of the mode specified on the command-line. Note that macro argument naming is not
allowed on the command-line.

• +z
Set text mode to Unix mode (LF terminator). Any CR character in the input is
systematically discarded. This is the default under Unix systems.

• -z
Set text mode to DOS mode (CR-LF terminator). In this mode all CR characters are
removed from the input, and all output LF characters are converted to CR-LF. This
is the default if gpp is compiled with the WIN_NT option.

APPENDIX A. GPP - GENERIC PREPROCESSOR 413

• -x
Enable the use of the #exec meta-macro. Since #exec includes the output of an
arbitrary shell command line, it may cause a potential security threat, and is thus
disabled unless this option is specified.

• -m
Enable automatic mode switching to the cpp compatibility mode if the name of an
included file ends in ’.h’ or ’.c’. This makes it possible to include C header files with
only minor modifications.

• -n
Prevent newline or whitespace characters from being removed from the input when
they occur as the end of a macro call or of a comment. By default, when a newline
or whitespace character forms the end of a macro or a comment it is parsed as part
of the macro call or comment and therefore removed from output. Use the -n option
to keep the last character in the input stream if it was whitespace or a newline.

• -U arg1 ... arg9
User-defined mode. The nine following command-line arguments are taken to be
respectively the macro start sequence, the macro end sequence for a call without
arguments, the argument start sequence, the argument separator, the argument end
sequence, the list of characters to stack for argument balancing, the list of characters
to unstack, the string to be used for referring to an argument by number, and finally
the quote character (if there is none an empty string should be provided). These
settings apply both to user macros and to meta-macros, unless the -M option is used
to define other settings for meta-macros. See the section on syntax specification for
more details.

• -M arg1 ... arg7
User-defined mode specifications for meta-macros. This option can only be used to-
gether with -M. The seven following command-line arguments are taken to be respec-
tively the macro start sequence, the macro end sequence for a call without arguments,
the argument start sequence, the argument separator, the argument end sequence,
the list of characters to stack for argument balancing, and the list of characters to
unstack. See below for more details.

• (default mode)
The default mode is a vaguely cpp-like mode, but it does not handle comments, and
presents various incompatibilities with cpp. Typical meta-macros and user macros
look like this:

#define x y

macro(arg,...)

This mode is equivalent to

APPENDIX A. GPP - GENERIC PREPROCESSOR 414

-U "" "" "(" "," ")" "(" ")" "#" "\\"

-M "#" "\n" " " " " "\n" "(" ")"

• -C
cpp compatibility mode. This is the mode where gpp’s behavior is the closest to that of
cpp. Unlike in the default mode, meta-macro expansion occurs only at the beginning
of lines, and C comments and strings are understood. This mode is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+c "/*" "*/" +c "//" "\n" +c "\\\n" ""

+s "\"" "\"" "\\" +s "’" "’" "\\"

• -T
TeX-like mode. In this mode, typical meta-macros and user macros look like this:

\define{x}{y}

\macro{arg}{...}

No comments are understood. This mode is equivalent to

-U "\\" "" "{" "}{" "}" "{" "}" "#" "@"

• -H
HTML-like mode. In this mode, typical meta-macros and user macros look like this:

<#define x|y>

<#macro arg|...>

No comments are understood. This mode is equivalent to

-U "<#" ">" "\B" "|" ">" "<" ">" "#" "\\"

• -P
Prolog-compatible cpp-like mode. This mode differs from the cpp compatibility mode
by its handling of comments, and is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+ccss "\!o/*" "*/" +ccss "%" "\n" +ccii "\\\n" ""

+s "\"" "\"" "" +s "\!#’" "’" ""

APPENDIX A. GPP - GENERIC PREPROCESSOR 415

• +c <n> str1 str2
Specify comments. Any unquoted occurrence of str1 will be interpreted as the be-
ginning of a comment. All input up to the first following occurrence of str2 will
be discarded. This option may be used multiple times to specify different types of
comment delimiters. The optional parameter <n> can be specified to alter the be-
havior of the comment and e.g. turn it into a string or make it ignored under certain
circumstances, see below.

• -c str1
Un-specify comments or strings. The comment/string specification whose start se-
quence is str1 is removed. This is useful to alter the built-in comment specifications
of a standard mode, e.g. the cpp compatibility mode.

• +s <n> str1 str2 c
Specify strings. Any unquoted occurrence of str1 will be interpreted as the beginning
of a string. All input up to the first following occurrence of str2 will be output as
is without any evaluation. The delimiters themselves are output. If c is non-empty,
its first character is used as a string-quote character, i.e. a character whose presence
immediately before an occurrence of str2 prevents it from terminating the string. The
optional parameter <n> can be specified to alter the behavior of the string and e.g.
turn it into a comment, enable macro evaluation inside the string, or make the string
specification ignored under certain circumstances, see below.

• -s str1
Un-specify comments or strings. Identical to -c.

• infile
Specify an input file from which gpp reads its input. If no input file is specified, input
is read from standard input.

A.4 Syntax Specification

The syntax of a macro call is the following : it must start with a sequence of characters
matching the macro start sequence as specified in the current mode, followed immediately
by the name of the macro, which must be a valid identifier, i.e. a sequence of letters, digits,
or underscores ("_"). The macro name must be followed by a short macro end sequence if
the macro has no arguments, or by a sequence of arguments initiated by an argument start
sequence. The various arguments are then separated by an argument separator, and the
macro ends with a long macro end sequence.

In all cases, the parameters of the current context, i.e. the arguments passed to the body
being evaluated, can be referred to by using an argument reference sequence followed by a
digit between 1 and 9. Macro parameters may alternately be named (see below). Further-
more, to avoid interference between the gpp syntax and the contents of the input file a quote

APPENDIX A. GPP - GENERIC PREPROCESSOR 416

character is provided. The quote character can be used to prevent the interpretation of a
macro call, comment, or string as anything but plain text. The quote character "protects"
the following character, and always gets removed during evaluation. Two consecutive quote
characters evaluate as a single quote character.

Finally, to facilitate proper argument delimitation, certain characters can be "stacked"
when they occur in a macro argument, so that the argument separator or macro end sequence
are not parsed if the argument body is not balanced. This allows nesting macro calls without
using quotes. If an improperly balanced argument is needed, quote characters should be
added in front of some stacked characters to make it balanced.

The macro construction sequences described above can be different for meta-macros and
for user macros: this is e.g. the case in cpp mode. Note that, since meta-macros can only
have up to two arguments, the delimitation rules for the second argument are somewhat
sloppier, and unquoted argument separator sequences are allowed in the second argument
of a meta-macro.

Unless one of the standard operating modes is selected, the above syntax sequences
can be specified either on the command-line, using the -M and -U options respectively
for meta-macros and user macros, or inside an input file via the #mode meta and #mode
user meta-macro calls. In both cases the mode description consists of 9 parameters for
user macro specifications, namely the macro start sequence, the short macro end sequence,
the argument start sequence, the argument separator, the long macro end sequence, the
string listing characters to stack, the string listing characters to unstack, the argument
reference sequence, and finally the quote character. As explained below these sequences
should be supplied using the syntax of C strings; they must start with a non-alphanumeric
character, and in the first five strings special matching sequences can be used (see below).
If the argument corresponding to the quote character is the empty string that functionality
is disabled. For meta-macro specifications there are only 7 parameters, as the argument
reference sequence and quote character are shared with the user macro syntax.

The structure of a comment/string is the following : it must start with a sequence
of characters matching the given comment/string start sequence, and always ends at the
first occurrence of the comment/string end sequence, unless it is preceded by an odd num-
ber of occurrences of the string-quote character (if such a character has been specified).
In certain cases comment/strings can be specified to enable macro evaluation inside the
comment/string: in that case, if a quote character has been defined for macros it can be
used as well to prevent the comment/string from ending, with the difference that the macro
quote character is always removed from output whereas the string-quote character is always
output. Also note that under certain circumstances a comment/string specification can be
disabled, in which case the comment/string start sequence is simply ignored. Finally, it is
possible to specify a string warning character whose presence inside a comment/string will
cause gpp to output a warning (this is useful e.g. to locate unterminated strings in cpp
mode). Note that input files are not allowed to contain unterminated comments/strings.

APPENDIX A. GPP - GENERIC PREPROCESSOR 417

A comment/string specification can be declared from within the input file using the
#mode comment meta-macro call (or equivalently #mode string), in which case the number
of C strings to be given as arguments to describe the comment/string can be anywhere
between 2 and 4: the first two arguments (mandatory) are the start sequence and the end
sequence, and can make use of the special matching sequences (see below). They may not
start with alphanumeric characters. The first character of the third argument, if there is
one, is used as string-quote character (use an empty string to disable the functionality),
and the first character of the fourth argument, if there is one, is used as string-warning
character. A specification may also be given from the command-line, in which case there
must be two arguments if using the +c option and three if using the +s option.

The behavior of a comment/string is specified by a three-character modifier string, which
may be passed as an optional argument either to the +c/+s command-line options or to
the #mode comment/#mode string meta-macros. If no modifier string is specified, the
default value is "ccc" for comments and "sss" for strings. The first character corresponds
to the behavior inside meta-macro calls (including user-macro definitions since these come
inside a #define meta-macro call), the second character corresponds to the behavior inside
user-macro parameters, and the third character corresponds to the behavior outside of any
macro call. Each of these characters can take the following values:

• i: disable the comment/string specification.

• c: comment (neither evaluated nor output).

• s: string (the string and its delimiter sequences are output as is).

• q: quoted string (the string is output as is, without the delimiter sequences).

• C: evaluated comment (macros are evaluated, but output is discarded).

• S: evaluated string (macros are evaluated, delimiters are output).

• Q: evaluated quoted string (macros are evaluated, delimiters are not output).

Important note: any occurrence of a comment/string start sequence inside another
comment/string is always ignored, even if macro evaluation is enabled. In other words,
comments/strings cannot be nested. In particular, the ’Q’ modifier can be a convenient
way of defining a syntax for temporarily disabling all comment and string specifications.

Syntax specification strings should always be provided as C strings, whether they are
given as arguments to a #mode meta-macro call or on the command-line of a Unix shell.
If command-line arguments are given via another method than a standard Unix shell, then
the shell behavior must be emulated, i.e. the surrounding "" quotes should be removed, all
occurrences of ’\\’ should be replaced by a single backslash, and similarly ’\"’ should be
replaced by ’"’. Sequences like ’\n’ are recognized by gpp and should be left as is.

APPENDIX A. GPP - GENERIC PREPROCESSOR 418

Special sequences matching certain subsets of the character set can be used. They are
of the form ’\x’, where x is one of:

• b: matches any sequence of one or more spaces or TAB characters (’\b’ is identical
to ’ ’).

• w: matches any sequence of zero or more spaces or TAB characters.

• B: matches any sequence of one or more spaces, tabs or newline characters.

• W: matches any sequence of zero or more spaces, tabs or newline characters.

• a: an alphabetic character (’a’ to ’z’ and ’A’ to ’Z’).

• A: an alphabetic character, or a space, tab or newline.

• #: a digit (’0’ to ’9’).

• i: an identifier character. The set of matched characters is customizable using the
#mode charset id command. The default setting matches alphanumeric characters
and underscores (’a’ to ’z’, ’A’ to ’Z’, ’0’ to ’9’ and ’_’).

• t: a TAB character.

• n: a newline character.

• o: an operator character. The set of matched characters is customizable using the
#mode charset op command. The default setting matches all characters in "+-
*/\ˆ<>=‘∼:.?@#&!%|", except in Prolog mode where ’!’, ’%’ and ’|’ are not matched.

• O: an operator character or a parenthesis character. The set of additional matched
characters in comparison with ’\o’ is customizable using the #mode charset par com-
mand. The default setting is to have the characters in "()[]{}" as parentheses.

Moreover, all of these matching subsets except ’\w’ and ’\W’ can be negated by inserting
a ’!’, i.e. by writing ’\!x’ instead of ’\x’.

Note an important distinctive feature of start sequences: when the first character of
a macro or comment/string start sequence is ’ ’ or one of the above special sequences, it
is not taken to be part of the sequence itself but is used instead as a context check: for
example a start sequence beginning with ’\n’ matches only at the beginning of a line, but
the matching newline character is not taken to be part of the sequence. Similarly a start
sequence beginning with ’ ’ matches only if some whitespace is present, but the matching
whitespace is not considered to be part of the start sequence and is therefore sent to output.
If a context check is performed at the very beginning of a file (or more generally of any
body to be evaluated), the result is the same as matching with a newline character (this
makes it possible for a cpp-mode file to start with a meta-macro call).

APPENDIX A. GPP - GENERIC PREPROCESSOR 419

A.5 Evaluation Rules

Input is read sequentially and interpreted according to the rules of the current mode. All
input text is first matched against the specified comment/string start sequences of the
current mode (except those which are disabled by the ’i’ modifier), unless the body being
evaluated is the contents of a comment/string whose modifier enables macro evaluation.
The most recently defined comment/string specifications are checked for first. Important
note: comments may not appear between the name of a macro and its arguments (doing so
results in undefined behavior).

Anything that is not a comment/string is then matched against a possible meta-macro
call, and if that fails too, against a possible user-macro call. All remaining text under-
goes substitution of argument reference sequences by the relevant argument text (empty
unless the body being evaluated is the definition of a user macro) and removal of the quote
character if there is one.

Note that meta-macro arguments are passed to the meta-macro prior to any evalua-
tion (although the meta-macro may choose to evaluate them, see meta-macro descriptions
below). In the case of the #mode meta-macro, gpp temporarily adds a comment/string
specification to enable recognition of C strings ("...") and prevent any evaluation inside
them, so no interference of the characters being put in the C string arguments to #mode
with the current syntax is to be feared.

On the other hand, the arguments to a user macro are systematically evaluated, and
then passed as context parameters to the macro definition body, which gets evaluated with
that environment. The only exception is when the macro definition is empty, in which case
its arguments are not evaluated. Note that gpp temporarily switches back to the mode in
which the macro was defined in order to evaluate it: so it is perfectly safe to change the
operating mode between the time when a macro is defined and the time when it is called.
Conversely, if a user macro wishes to work with the current mode instead of the one that
was used to define it it needs to start with a #mode restore call and end with a #mode save
call.

A user macro may be defined with named arguments (see #define description below).
In that case, when the macro definition is being evaluated, each named parameter causes
a temporary virtual user-macro definition to be created; such a macro may only be called
without arguments and simply returns the text of the corresponding argument.

Note that, since macros are evaluated when they are called rather than when they are
defined, any attempt to call a recursive macro causes undefined behavior except in the very
specific case when the macro uses #undef to erase itself after finitely many loop iterations.

Finally, a special case occurs when a user macro whose definition does not involve any
arguments (neither named arguments nor the argument reference sequence) is called in a
mode where the short user-macro end sequence is empty (e.g. cpp or TeX mode). In that

APPENDIX A. GPP - GENERIC PREPROCESSOR 420

case it is assumed to be an alias macro: its arguments are first evaluated in the current
mode as usual, but instead of being passed to the macro definition as parameters (which
would cause them to be discarded) they are actually appended to the macro definition,
using the syntax rules of the mode in which the macro was defined, and the resulting text
is evaluated again. It is therefore important to note that, in the case of a macro alias, the
arguments actually get evaluated twice in two potentially different modes.

A.6 Meta-macros

These macros are always pre-defined. Their actual calling sequence depends on the current
mode; here we use cpp-like notation.

• #define x y
This defines the user macro x as y. y can be any valid gpp input, and may for
example refer to other macros. x must be an identifier (i.e. a sequence of alphanumeric
characters and ’_’), unless named arguments are specified. If x is already defined, the
previous definition is overwritten. If no second argument is given, x will be defined as
a macro that outputs nothing. Neither x nor y are evaluated; the macro definition is
only evaluated when it is called, not when it is declared.

It is also possible to name the arguments in a macro definition: in that case, the
argument x should be a user-macro call whose arguments are all identifiers. These
identifiers become available as user-macros inside the macro definition; these virtual
macros must be called without arguments, and evaluate to the corresponding macro
parameter.

• #defeval x y
This acts in a similar way to #define, but the second argument y is evaluated im-
mediately. Since user macro definitions are also evaluated each time they are called,
this means that the macro y will undergo two successive evaluations. The usefulness
of #defeval is considerable, as it is the only way to evaluate something more than
once, which can be needed e.g. to force evaluation of the arguments of a meta-macro
that normally doesn’t perform any evaluation. However since all argument references
evaluated at define-time are understood as the arguments of the body in which the
macro is being defined and not as the arguments of the macro itself, usually one has
to use the quote character to prevent immediate evaluation of argument references.

• #undef x
This removes any existing definition of the user macro x.

• #ifdef x
This begins a conditional block. Everything that follows is evaluated only if the
identifier x is defined, until either a #else or a #endif statement is reached. Note

APPENDIX A. GPP - GENERIC PREPROCESSOR 421

however that the commented text is still scanned thoroughly, so its syntax must
be valid. It is in particular legal to have the #else or #endif statement ending the
conditional block appear as only the result of a user-macro expansion and not explicitly
in the input.

• #ifndef x
This begins a conditional block. Everything that follows is evaluated only if the
identifier x is not defined.

• #ifeq x y
This begins a conditional block. Everything that follows is evaluated only if the
results of the evaluations of x and y are identical as character strings. Any leading
or trailing whitespace is ignored for the comparison. Note that in cpp-mode any
unquoted whitespace character is understood as the end of the first argument, so it is
necessary to be careful.

• #ifneq x y
This begins a conditional block. Everything that follows is evaluated only if the
results of the evaluations of x and y are not identical (even up to leading or trailing
whitespace).

• #else
This toggles the logical value of the current conditional block. What follows is evalu-
ated if and only if the preceding input was commented out.

• #endif
This ends a conditional block started by a #if... meta-macro.

• #include file
This causes gpp to open the specified file and evaluate its contents, inserting the
resulting text in the current output. All defined user macros are still available in the
included file, and reciprocally all macros defined in the included file will be available
in everything that follows. The include file is looked for first in the current directory,
and then, if not found, in one of the directories specified by the -I command-line
option (or /usr/include if no directory was specified). Note that, for compatibility
reasons, it is possible to put the file name between "" or <>.

Upon including a file, gpp immediately saves a copy of the current operating mode
onto the mode stack, and restores the operating mode at the end of the included file.
The included file may override this behavior by starting with a #mode restore call and
ending with a #mode push call. Additionally, when the -m command line option is
specified, gpp will automatically switch to the cpp compatibility mode upon including
a file whose name ends with either ’.c’ or ’.h’.

• #exec command
This causes gpp to execute the specified command line and include its standard output

APPENDIX A. GPP - GENERIC PREPROCESSOR 422

in the current output. Note that this meta-macro is disabled unless the -x command
line flag was specified, for security reasons. If use of #exec is not allowed, a warning
message is printed and the output is left blank. Note that the specified command line
is evaluated before being executed, thus allowing the use of macros in the command-
line. However, the output of the command is included verbatim and not evaluated.
If you need the output to be evaluated, you must use #defeval (see above) to cause a
double evaluation.

• #eval expr
The #eval meta-macro attempts to evaluate expr first by expanding macros (normal
gpp evaluation) and then by performing arithmetic evaluation. The syntax and op-
erator precedence for arithmetic expressions are the same as in C ; the only missing
operators are <<, >>, ?: and assignment operators. If unable to assign a numerical
value to the result, the returned text is simply the result of macro expansion with-
out any arithmetic evaluation. The only exceptions to this rule are the == and !=
operators which, if one of the sides does not evaluate to a number, perform string
comparison instead (ignoring trailing and leading spaces).

Inside arithmetic expressions, the defined(...) special user macro is also available: it
takes only one argument, which is not evaluated, and returns 1 if it is the name of a
user macro and 0 otherwise.

• #if expr
This meta-macro invokes the arithmetic evaluator in the same manner as #eval, and
compares the result of evaluation with the string "0" in order to begin a conditional
block. In particular note that the logical value of expr is always true when it cannot
be evaluated to a number.

• #mode keyword ...
This meta-macro controls gpp’s operating mode. See below for a list of #mode com-
mands.

The key to gpp’s flexibility is the #mode meta-macro. Its first argument is always one
of a list of available keywords (see below); its second argument is always a sequence of
words separated by whitespace. Apart from possibly the first of them, each of these words
is always a delimiter or syntax specifier, and should be provided as a C string delimited
by double quotes (" "). The various special matching sequences listed in the section on
syntax specification are available. Any #mode command is parsed in a mode where "..." is
understood to be a C-style string, so it is safe to put any character inside these strings. Also
note that the first argument of #mode (the keyword) is never evaluated, while the second
argument is evaluated (except of course for the contents of C strings), so that the syntax
specification may be obtained as the result of a macro evaluation.

The available #mode commands are:

APPENDIX A. GPP - GENERIC PREPROCESSOR 423

• #mode save / #mode push
Push the current mode specification onto the mode stack.

• #mode restore / #mode pop
Pop mode specification from the mode stack.

• #mode standard name
Select one of the standard modes. The only argument must be one of: default (default
mode); cpp, C (cpp mode); tex, TeX (tex mode); html, HTML (html mode); prolog,
Prolog (prolog mode). The mode name must be given directly, not as a C string.

• #mode user "s1" ... "s9"
Specify user macro syntax. The 9 arguments, all of them C strings, are the mode
specification for user macros (see the -U command-line option and the section on
syntax specification). The meta-macro specification is not affected.

• #mode meta {user | "s1" ... "s7"}
Specify meta-macro syntax. Either the only argument is user (not as a string), and the
user-macro mode specifications are copied into the meta-macro mode specifications,
or there must be 7 string arguments, whose significance is the same as for the -M
command-line option (see section on syntax specification).

• #mode quote ["c"]
With no argument or "" as argument, removes the quote character specification and
disables the quoting functionality. With one string argument, the first character of
the string is taken to be the new quote character. The quote character cannot be
alphanumeric nor ’_’, and cannot be one of the special matching sequences either.

• #mode comment [xxx] "start" "end" ["c" ["c"]]
Add a comment specification. Optionally a first argument consisting of three char-
acters not enclosed in " " can be used to specify a comment/string modifier (see the
section on syntax specification). The default modifier is ccc. The first two string ar-
guments are used as comment start and end sequences respectively. The third string
argument is optional and can be used to specify a string-quote character (if it is "" the
functionality is disabled). The fourth string argument is optional and can be used to
specify a string delimitation warning character (if it is "" the functionality is disabled).

• #mode string [xxx] "start" "end" ["c" ["c"]]
Add a string specification. Identical to #mode comment except that the default
modifier is sss.

• #mode nocomment / #mode nostring ["start"]
With no argument, remove all comment/string specifications. With one string argu-
ment, delete the comment/string specification whose start sequence is the argument.

APPENDIX A. GPP - GENERIC PREPROCESSOR 424

• #mode preservelf { on | off | 1 | 0 }
Equivalent to the -n command-line switch. If the argument is on or 1, any newline or
whitespace character terminating a macro call or a comment/string is left in the input
stream for further processing. If the argument is off or 0 this feature is disabled.

• #mode charset { id | op | par } "string"
Specify the character sets to be used for matching the \o, \O and \i special sequences.
The first argument must be one of id (the set matched by \i), op (the set matched by
\o) or par (the set matched by \O in addition to the one matched by \o). "string"
is a C string which lists all characters to put in the set. It may contain only the
special matching sequences \a, \A, \b, \B, and \# (the other sequences and the
negated sequences are not allowed). When a ’-’ is found in-between two non-special
characters this adds all characters in-between (e.g. "A-Z" corresponds to all uppercase
characters). To have ’-’ in the matched set, either put it in first or last position or
place it next to a \x sequence.

A.7 Examples

Here is a basic self-explanatory example in standard or cpp mode:

#define FOO This is

#define BAR a message.

#define concat #1 #2

concat(FOO,BAR)

#ifeq (concat(foo,bar)) (foo bar)

This is output.

#else

This is not output.

#endif

Using argument naming, the concat macro could alternately be defined as

#define concat(x,y) x y

In TeX mode and using argument naming, the same example becomes:

\define{FOO}{This is}

\define{BAR}{a message.}

\define{\concat{x}{y}}{\x \y}

\concat{\FOO}{\BAR}

\ifeq{\concat{foo}{bar}}{foo bar}

This is output.

APPENDIX A. GPP - GENERIC PREPROCESSOR 425

\else

This is not output.

\endif

In HTML mode and without argument naming, one gets similarly:

<#define FOO|This is>

<#define BAR|a message.>

<#define concat|#1 #2>

<#concat <#FOO>|<#BAR>>

<#ifeq <#concat foo|bar>|foo bar>

This is output.

<#else>

This is not output.

<#endif>

The following example (in standard mode) illustrates the use of the quote character:

#define FOO This is \

a multiline definition.

#define BLAH(x) My argument is x

BLAH(urf)

\BLAH(urf)

Note that the multiline definition is also valid in cpp and Prolog modes despite the absence
of quote character, because ’\’ followed by a newline is then interpreted as a comment and
discarded.

In cpp mode, C strings and comments are understood as such, as illustrated by the
following example:

#define BLAH foo

BLAH "BLAH" /* BLAH */

’It\’s a /*string*/ !’

The main difference between Prolog mode and cpp mode is the handling of strings and
comments: in Prolog, a ’...’ string may not begin immediately after a digit, and a /*...*/
comment may not begin immediately after an operator character. Furthermore, comments
are not removed from the output unless they occur in a #command.

The differences between cpp mode and default mode are deeper: in default mode #com-
mands may start anywhere, while in cpp mode they must be at the beginning of a line; the
default mode has no knowledge of comments and strings, but has a quote character (’\’),

APPENDIX A. GPP - GENERIC PREPROCESSOR 426

while cpp mode has extensive comment/string specifications but no quote character. More-
over, the arguments to meta-macros need to be correctly parenthesized in default mode,
while no such checking is performed in cpp mode.

This makes it easier to nest meta-macro calls in default mode than in cpp mode. For
example, consider the following HTML mode input, which tests for the availability of the
#exec command:

<#ifeq <#exec echo blah>|blah

> #exec allowed <#else> #exec not allowed <#endif>

There is no cpp mode equivalent, while in default mode it can be easily translated as

#ifeq (#exec echo blah

) (blah

)

\#exec allowed

#else

\#exec not allowed

#endif

In order to nest meta-macro calls in cpp mode it is necessary to modify the mode description,
either by changing the meta-macro call syntax, or more elegantly by defining a silent string
and using the fact that the context at the beginning of an evaluated string is a newline
character:

#mode string QQQ "$" "$"

#ifeq $#exec echo blah

$ $blah

$

\#exec allowed

#else

\#exec not allowed

#endif

Note however that comments/strings cannot be nested ("..." inside $...$ would go unde-
tected), so one needs to be careful about what to include inside such a silent evaluated
string.

Remember that macros without arguments are actually understood to be aliases when
they are called with arguments, as illustrated by the following example (default or cpp
mode):

#define DUP(x) x x

APPENDIX A. GPP - GENERIC PREPROCESSOR 427

#define FOO and I said: DUP

FOO(blah)

The usefulness of the #defeval meta-macro is shown by the following example in HTML
mode:

<#define APPLY|<#defeval TEMP|<\##1 \#1>><#TEMP #2>>

<#define <#foo x>|<#x> and <#x>>

<#APPLY foo|BLAH>

The reason why #defeval is needed is that, since everything is evaluated in a single pass, the
input that will result in the desired macro call needs to be generated by a first evaluation
of the arguments passed to APPLY before being evaluated a second time.

To translate this example in default mode, one needs to resort to parenthesizing in
order to nest the #defeval call inside the definition of APPLY, but need to do so without
outputting the parentheses. The easiest solution is

#define BALANCE(x) x

#define APPLY(f,v) BALANCE(#defeval TEMP f

TEMP(v))

#define foo(x) x and x

APPLY(\foo,BLAH)

As explained above the simplest version in cpp mode relies on defining a silent evaluated
string to play the role of the BALANCE macro.

The following example (default or cpp mode) demonstrates arithmetic evaluation:

#define x 4

The answer is:

#eval x*x + 2*(16-x) + 1998%x

#if defined(x)&&!(3*x+5>17)

This should be output.

#endif

To finish, here are some examples involving mode switching. The following example is
self-explanatory (starting in default mode):

#mode push

#define f(x) x x

#mode standard TeX

APPENDIX A. GPP - GENERIC PREPROCESSOR 428

\f{blah}

\mode{string}{"$" "$"}

\mode{comment}{"/*" "*/"}

\f{urf} /* blah */

\define{FOO}{bar/* and some more */}

\mode{pop}

f(FOO)

A good example where a user-defined mode becomes useful is the gpp source of this docu-
ment (available with gpp’s source code distribution).

Another interesting application is selectively forcing evaluation of macros in C strings
when in cpp mode. For example, consider the following input:

#define blah(x) "and he said: x"

blah(foo)

Obviously one would want the parameter x to be expanded inside the string. There are
several ways around this problem:

#mode push

#mode nostring "\""

#define blah(x) "and he said: x"

#mode pop

#mode quote "‘"

#define blah(x) ‘"and he said: x‘"

#mode string QQQ "$$" "$$"

#define blah(x) $$"and he said: x"$$

The first method is very natural, but has the inconvenient of being lengthy and neutralizing
string semantics, so that having an unevaluated instance of ’x’ in the string, or an occurrence
of ’/*’, would be impossible without resorting to further contortions.

The second method is slightly more efficient, because the local presence of a quote
character makes it easier to control what is evaluated and what isn’t, but has the drawback
that it is sometimes impossible to find a reasonable quote character without having to
either significantly alter the source file or enclose it inside a #mode push/pop construct.
For example any occurrence of ’/*’ in the string would have to be quoted.

The last method demonstrates the efficiency of evaluated strings in the context of selec-
tive evaluation: since comments/strings cannot be nested, any occurrence of ’"’ or ’/*’ inside
the ’$$’ gets output as plain text, as expected inside a string, and only macro evaluation is

APPENDIX A. GPP - GENERIC PREPROCESSOR 429

enabled. Also note that there is much more freedom in the choice of a string delimiter than
in the choice of a quote character.

A.8 Advanced Examples

Here are some examples of advanced constructions using gpp. They tend to be pretty
awkward and should be considered as evidence of gpp’s limitations.

The first example is a recursive macro. The main problem is that, since gpp evaluates
everything, a recursive macro must be very careful about the way in which recursion is
terminated, in order to avoid undefined behavior (most of the time gpp will simply crash).
In particular, relying on a #if/#else/#endif construct to end recursion is not possible and
results in an infinite loop, because gpp scans user macro calls even in the unevaluated
branch of the conditional block. A safe way to proceed is for example as follows (we give
the example in TeX mode):

\define{countdown}{

\if{#1}

#1...

\define{loop}{\countdown}

\else

Done.

\define{loop}{}

\endif

\loop{\eval{#1-1}}

}

\countdown{10}

The following is an (unfortunately very weak) attempt at implementing functional abstrac-
tion in gpp (in standard mode). Understanding this example and why it can’t be made
much simpler is an exercise left to the curious reader.

#mode string "‘" "‘" "\\"

#define ASIS(x) x

#define SILENT(x) ASIS()

#define EVAL(x,f,v) SILENT(

#mode string QQQ "‘" "‘" "\\"

#defeval TEMP0 x

#defeval TEMP1 (

\#define \TEMP2(TEMP0) f

)

TEMP1

APPENDIX A. GPP - GENERIC PREPROCESSOR 430

)TEMP2(v)

#define LAMBDA(x,f,v) SILENT(

#ifneq (v) ()

#define TEMP3(a,b,c) EVAL(a,b,c)

#else

#define TEMP3(a,b,c) \LAMBDA(a,b)

#endif

)TEMP3(x,f,v)

#define EVALAMBDA(x,y) SILENT(

#defeval TEMP4 x

#defeval TEMP5 y

)

#define APPLY(f,v) SILENT(

#defeval TEMP6 ASIS(\EVA)f

TEMP6

)EVAL(TEMP4,TEMP5,v)

This yields the following results:

LAMBDA(z,z+z)

=> LAMBDA(z,z+z)

LAMBDA(z,z+z,2)

=> 2+2

#define f LAMBDA(y,y*y)

f

=> LAMBDA(y,y*y)

APPLY(f,blah)

=> blah*blah

APPLY(LAMBDA(t,t t),(t t))

=> (t t) (t t)

LAMBDA(x,APPLY(f,(x+x)),urf)

=> (urf+urf)*(urf+urf)

APPLY(APPLY(LAMBDA(x,LAMBDA(y,x*y)),foo),bar)

=> foo*bar

#define test LAMBDA(y,‘#ifeq y urf

y is urf#else

APPENDIX A. GPP - GENERIC PREPROCESSOR 431

y is not urf#endif

‘)

APPLY(test,urf)

=> urf is urf

APPLY(test,foo)

=> foo is not urf

A.9 Author

Denis Auroux, e-mail: auroux@math.polytechnique.fr.

Please send me e-mail for any comments, questions or suggestions.

Many thanks to Michael Kifer for valuable feedback and for prompting me to go beyond
version 1.0.

Bibliography

[1] H. Ait-Kaci. The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research
Report, 1990.

[2] J. Alferes, C. Damasio, and L. Pereira. SLX: a top-down derivation procedure for
programs with explicit negation. In M. Bruynooghe, editor, International Logic Pro-
gramming Symp, pages 424–439, 1994.

[3] J. Alferes, C. Damasio, and L. Pereira. A logic programming system for non-monotonic
reasoning. Journal of Automated Reasoning, 1995.

[4] F. Banchilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways
to implement logic programs. In PODS. ACM, 1986.

[5] C. Beeri and R. Ramakrishnan. On the power of magic. J. Logic Programming,
10(3):255–299, 1991.

[6] A. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133:205–265, October 1994.

[7] D. Boulanger. Fine-grained goal-directed declarative analysis of logic programs. Pro-
ceedings of the International Workshop on Verification, Model Checking and Abstract
Interpretation, 1997. Available through http://www.dsi.unive.it/ bossi/VMCAI.html.

[8] D. Butenhof. Programming with POSIX Threads. Prentice-Hall, 1997.

[9] M. Calejo. Interprolog: A declarative java-prolog interface. In EPIA. Springer-Verlag,
2001. See XSB’s home page for downloading instructions.

[10] L. Castro and V. S. Costa. Understanding memory management in prolog systems. In
International Conference on Logic Programming, number 2237 in LNCS, pages 11–26.
Springer, 2001.

[11] L. Castro, T. Swift, and D. Warren. Suspending and resuming computations in engines
for SLG evaluation. In Practical Applications of Declarative Languages, 2002. To
appear.

432

BIBLIOGRAPHY 433

[12] L. Castro, T. Swift, and D. Warren. XASP: Answer Set Programming in XSB. Manual
to Open-source software availible at xsb.sourceforge.net, 2002.

[13] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order logic
programming. J. Logic Programming, 15(3):187–230, 1993.

[14] W. Chen, T. Swift, and D. S. Warren. Efficient top-down computation of queries under
the well-founded semantics. J. Logic Programming, 24(3):161–199, September 1995.

[15] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM, 43(1):20–74, January 1996.

[16] M. Codish, B. Demoen, and K. Sagonas. Semantics-based program analysis for logic-
based languages using XSB. Springer International Journal of Software Tools for
Technology Transfer, 2(1):29–45, Nov. 1998.

[17] B. Cui and T. Swift. Preference logic grammars: Fixed-point semantics and application
to data standardization. Artificial Intelligence, 138:117–147, 2002.

[18] B. Cui, T. Swift, and D. S. Warren. From tabling to transformation: Implement-
ing non-ground residual programs. In International Workshop on Implementations of
Declarative Languages, 1999.

[19] B. Cui and D. S. Warren. A system for tabled constraint logic programming. In
Computational Logic, page 478ÃćÂĂÂŞ492, 2000.

[20] S. Dawson, C. R. Ramakrishnan, S. Skiena, and T. Swift. Principles and practice
of unification factoring. ACM Transactions on Programming Languages and Systems,
September 1996.

[21] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using
general purpose logic programming systems — a case study. In ACM PLDI, pages
117–126, May 1996.

[22] B. Demoen and K. Sagonas. CAT: the Copying Approach to Tabling. In Priniclpes
of Declarative Programming, 10th International Symposium, pages 21–35. Springer-
Verlag, 1998. LNCS 1490.

[23] B. Demoen and K. Sagonas. Memory Management for Prolog with Tabling. In Proceed-
ings of ISMM’98: ACM SIGPLAN International Symposium on Memory Management,
pages 97–106. ACM Press, 1998.

[24] J. Desel and W. Reisig. Place/transition Petri nets. In Lectures on Petri Nets I: Basic
Models, pages 122–174. Springer LNCS 1491, 1998.

[25] S. Dietrich. Extension Tables for Recursive Query Evaluation. PhD thesis, SUNY at
Stony Brook, 1987.

BIBLIOGRAPHY 434

[26] J. Freire, R. Hu, T. Swift, and D. S. Warren. Parallelizing tabled evaluation. In 7th
International PLILP Symposium, pages 115–132. Springer-Verlag, 1995.

[27] J. Freire, T. Swift, and D. Warren. Beyond depth-first: Improving tabled logic pro-
grams through alternative scheduling strategies. Journal of Functional and Logic Pro-
gramming, 1998.

[28] J. Freire, T. Swift, and D. Warren. A formal framework for scheduling in SLG. In
International Workshop on Tabling in Parsing and Deduction, 1998.

[29] J. Freire, T. Swift, and D. S. Warren. Treating I/O seriously: Resolution reconsidered
for disk. In 14th International Conferene on Logic Programming, 1997. To Appear.

[30] T. Fruhwirth. Constraint handling rules. Journal of Logic Programming, 1998.

[31] J. Gartner, T. Swift, A. Tien, L. M. Pereira, and C. Damásio. Psychiatric diagnosis
from the viewpoint of computational logic. In International Conference on Computa-
tional Logic, pages 1362–1376. Springer-Verlag, 2000. LNAI 1861.

[32] B. Grosof and T. Swift. Radial restraint: A semantically clean approach to bounded
rationality for logic programs. 2013.

[33] H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative beats conserva-
tive justification. In International Conference on Logic Programming, volume 2237 of
Lecture Notes in Computer Science, pages 150–165. Springer, 2001.

[34] ISO working group JTC1/SC22. Prolog international standard iso-iec 13211-1. Tech-
nical report, International Standards Organization, 1995.

[35] New built-in flags, predicates and functions proposal. Technical report, International
Standards Organization, 2006. Edited by P. Moura, ISO/IEC DTR 13211-1:2006.

[36] Prolog multi-threaded support. Technical report, International Standards Organiza-
tion, 2007. Edited by P. Moura, ISO/IEC DTR 13211-5:2007.

[37] E. Johnson, C. R. Ramakrishnan, I. V. Ramakrishnan, and P. Rao. A space effi-
cient engine for subsumption-based tabled evaluation of logic programs. In A. Middel-
dorp and T. Sato, editors, 4th Fuji International Symposium on Functional and Logic
Programming, number 1722 in Lecture Notes in Computer Science, pages 284–299.
Springer-Verlag, Nov. 1999.

[38] T. Kanamori and T. Kawamura. Abstract interpretation based on oldt resolution.
Journal of Logic Programming, 15:1–30, 1993.

[39] D. Kemp and R. Topor. Completeness of a top-down query evaluation procedure for
stratified databases. In Logic Programming: Proc. of the Fifth International Conference
and Symposium, pages 178–194, 1988.

BIBLIOGRAPHY 435

[40] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42:741–843, July 1995.

[41] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming
and its applications. J. Logic Programming, 12(4):335–368, 1992.

[42] R. Larson, D. S. Warren, J. Freire, and K. Sagonas. Syntactica. MIT Press, 1995.

[43] R. Larson, D. S. Warren, J. Freire, K. Sagonas, and P. Gomez. Semantica. MIT Press,
1996.

[44] J. Leite and L. M. Pereira. Iterated logic programming updates. In International
Conference on Logic Programming, pages 265–278. MIT Press, 1998.

[45] B. Lewis and D. Berg. Multithreaded Programming with Pthreads. Prentice-Hall, 1998.

[46] T. Lindholm and R. O’Keefe. Efficient implementation of a defensible semantics for
dynamic PROLOG code. In Proceedings of the International Conference on Logic
Programming, pages 21–39, 1987.

[47] X. Liu, C. R. Ramakrishnan, and S. Smolka. Fully local and efficient evaluation of
alternating fixed points. In TACAS 98: Tools and Algorithms for Construction and
Analysis of Systems, pages 5–19. Springer-Verlag, 1998.

[48] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[49] R. Marques. Concurrent Tabling: Algorithms and Implementation. PhD thesis, Uni-
versidade Nova de Lisboa, 2007.

[50] R. Marques and T. Swift. Concurrent and local evaluation of normal programs. In
International Conference on Logic Programming, pages 206–222, 2008.

[51] R. Marques, T. Swift, and J. Cunha. Extending tabled logic programming with multi-
threading: A systems perspective. In CICLOPS, pages 91–107, 2008.

[52] R. Marques, T. Swift, and J. Cunha. A simple and efficient implementation of concur-
rent local tabling. In Practical Applications of Declarative Languages, pages 264–278,
2010.

[53] P. Moura. Logtalk User Manual. Available online from http://logtalk.org.

[54] I. Niemelä and P. Simons. SModels — An implementation of the stable model and well-
founded semantics for normal LP. In International Conference on Logic Programming
and Non-Monotonic Reasoning, pages 420–429. Springer-Verlag, 1997.

[55] G. Pemmasani, H. Guo, Y. Dong, C. R. Ramakrishnan, and I. V. Ramakrishnan.
Online justification for tabled logic programs. In Fuji International Symposium on
Functional and Logic Programming, pages 24–38, 2004.

BIBLIOGRAPHY 436

[56] T. Przymusinski. Every logic program has a natural stratification and an iterated least
fixed point model. In PODS, pages 11–21, 1989.

[57] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. Smolka, T. Swift,
and D. S. Warren. Efficient model checking using tabled resolution. In Proceedings of
CAV 97, 1997.

[58] P. Rao, I. V. Ramakrishnan, K. Sagonas, T. Swift, and D. S. Warren. Efficient table
access mechanisms for logic programs. Journal of Logic Programming, 38(1):31–54,
Jan. 1999.

[59] F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on logic pro-
grams with annotated disjunctions. In International Conference on Logic Programming,
2010.

[60] F. Riguzzi and T. Swift. Well-definedness and efficient inference for probabilistic logic
programming under the distribution semantics. Theory and Practice of Logic Program-
ming, 2012. To appear. Available at www.cs.sunysb.edu/˜tswift/papers.

[61] F. Riguzzi and T. Swift. Termination of strongly bounded term-size programs, 2013.

[62] K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order
stratified logic programs. ACM TOPLAS, 20(3):586 – 635, May 1998.

[63] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database engine.
In Proc. of SIGMOD 1994 Conference. ACM, 1994.

[64] K. Sagonas, T. Swift, and D. S. Warren. An abstract machine for efficiently computing
queries to well-founded models. Journal of Logic Programming, 45(1-3):1–41, 2000.

[65] K. Sagonas, T. Swift, and D. S. Warren. The limits of fixed-order computation. The-
oretical Computer Science, 254(1-2):465–499, 2000.

[66] K. Sagonas and D. S. Warren. Efficient execution of HiLog in WAM-based Prolog im-
plementations. In L. Sterling, editor, Proceedings of the 12th International Conference
on Logic Programming, pages 349–363. MIT Press, June 1995.

[67] D. Saha. Incremental Evaluation of Tabled Logic Programs. PhD thesis, SUNY Stony
Brook, 2006.

[68] D. Saha and C. Ramakrishnan. Incemental and demand-driven points-to analysis using
logic programming. In ACM Principles and Practice of Declarative Programming, 2005.

[69] H. Seki. On the power of Alexandrer templates. In Proc. of 8th PODS, pages 150–159.
ACM, 1989.

[70] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

BIBLIOGRAPHY 437

[71] T. Swift. A new formulation of tabled resolution with delay. In Re-
cent Advances in Artifiial Intelligence. Springer-Verlag, 1999. Available at
http://www.cs.sunysb.edu/̃ tswift.

[72] T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif. Intell., 25(3-
4):201–240, 1999.

[73] T. Swift. Deduction in ontologies via answer set programming. In International Con-
ference on Logic Programming and Non-Monotonic Reasoning, number 2923 in LNAI,
pages 275–289, 2004.

[74] T. Swift. An engine for efficiently computing (sub-)models. In International Conference
on Logic Programming, pages 514–518, 2009.

[75] T. Swift. Profiling large tabled computations using forest logging. In CICLOPS, 2012.
Available at http://www.cs.sunysb.edu/˜tswift.

[76] T. Swift and D. Warren. Tabling with answer subsumption: Implemen-
tation, applications and performance. In JELIA, 2010. Available at
http://www.cs.sunysb.edu/˜tswift.

[77] T. Swift and D. Warren. XSB: Extending the power of Prolog using tabling. Theory
and Practice of Logic Programming, 12(1-2):157–187, 2012.

[78] H. Tamaki and T. Sato. OLDT resolution with tabulation. In Third International
Conference on Logic Programming, pages 84–98, 1986.

[79] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Comput-
ing, 1:146–160, 1972.

[80] A. van Gelder, K. Ross, and J. Schlipf. Unfounded sets and well-founded semantics for
general logic programs. JACM, 38(3):620–650, 1991.

[81] L. Vieille. Recursive query processing: The power of logic. Theoretical Computer
Science, 69:1–53, 1989.

[82] A. Walker. Backchain iteration: Towards a practical inference method that is simple
enough to be proved terminating, sound, and complete. J. Automated Reasoning,
11(1):1–23, 1993. Originally formulated in New York University TR 34, 1981.

[83] H. Wan, B. Grossof, M. Kifer, P. Fodor, and S. Liang. Logic programming with defaults
and argumentation theories. In International Conference on Logic Programming, pages
432–448, 2009.

[84] D. H. D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI, 1983.

[85] G. Yang, M. Kifer, and C. Zhao. FLORA-2: User’s Manual Version 0.94, 2005.
Avaliable via flora.sourceforge.net.

Index

\+/1, 160
\=/2, 165
\==/2, 165
,̂ 197
ˆ /2, 159
!/0, 160, 202, 334, 335, 341
\+/1, 86
’∨’/2, 157
’∧’/2, 157
’/’/2, 156
’//’/2, 156
’«’/2, 157
’><’/2, 157
’»’/2, 157
**/2, 159
*/2, 156
+/2, 156
-/1, 157
-/2, 156
->/2, 163
=../2, 180
=/2, 165
==/2, 165
?=/2, 165
@</2, 166
@= /2, 166
@=< /2, 166
@>/2, 166
@>= /2, 166
ISO, 171, 208, 223
[]/1 (consult), 37
$trace/0, 319
ˆ /2, 201

ˆ=../2, 181
‘C’/3, 341
abolish/1, 233
abolish_all_private_tables/0, 270
abolish_all_shared_tables/0, 270
abolish_all_tables/0, 269
abolish_module_tables/1, 271
abolish_table_call/1, 268
abolish_table_call/2, 269
abolish_table_pred/1, 266
abolish_table_pred/2, 268
abstract_modes/2, 333
acos/1, 159
acyclic_term/1, 185
add_xsb_hook/1, 313
analyze_an_scc/2, 332
analyze_an_scc/3, 332
arg/3, 178
arg0/3, 179
asin/1, 159
assert/1, 232
assert/3, 232
asserta/1, 231
assertz/1, 231
at_end_of_stream/0, 129
at_end_of_stream/1, 129
atan/1, 159
atan/2, 159
atan2/2, 159
atom/1, 171
atom_chars/2, 189
atom_codes/2, 185
atom_concat/3, 191

438

INDEX 439

atom_length/2, 190
atomic/1, 172
bagof/3, 198
between/3, 163
bounded_call/3, 204
bounded_call/4, 37, 204
break/0, 223
c2p_float, 366
c2p_functor, 367
c2p_int, 366
c2p_list, 367
c2p_nil, 367
c2p_string, 366
call/1, 202
call/[2,10], 202
call_cleanup/2, 205
call_tv/2, 202
callable/1, 174
catch/3, 353
ceiling/1, 158
char_code/2, 190
check_acyclic/3, 354
check_atom/3, 354
check_callable/3, 354
check_ground/3, 354
check_integern/3, 354
check_nonvar/3, 354
check_nonvar_list/3, 355
check_one_thread/3, 355
check_stream/3, 355
check_var/3, 355
check_variant/1, 168
check_variant/2, 168
clause/2, 234
close/1, 126
close/2, 126
close_open_tables/0, 354
compare/3, 166
compile/1, 37, 40
compile/2, 37, 40
compound/1, 172
concat_atom/2, 190

concat_atom/3, 191
console_write/1, 145
console_writeln/1, 145
copy_term/2, 182
cos/1, 159
current_atom/1, 216
current_functor/1, 216
current_index/2, 216
current_input/1, 208
current_module/1, 215
current_module/2, 216
current_op/3, 222
current_predicate/1, 215
current_prolog_flag/2, 209
cvt_canonical/2, 243
datime/1, 153
dcg/2, 342
debug/0, 318
debug_ctl/2, 318
debugging/0, 318
default_user_error_handler/1, 353
delete_returns/2, 271
delete_trie/1, 312
div/2, 156
domain_error/4, 352
dynamic/1, 114, 237
e/0, 159
ensure_loaded/1, 38
ensure_loaded/2, 243
epsilon/0, 159
error_write/1, 145, 354
error_writeln/1, 145, 354
evaluation_error/3, 352
excess_vars/4, 201
existence_error/4, 352
expand_term/2, 340
explain_u_val/3, 105, 212, 264
explain_u_val/6, 212, 264
fail/0, 160
fail_if/1, 160
false/0, 160
file_clone/3, 129

INDEX 440

file_exists/1, 132
file_file_getbuf_atom/4, 150
file_getbuf_atom/3, 150
file_getbuf_list/3, 150
file_getbuf_list/4, 149
file_putbuf/4, 151
file_putbuf/5, 150
file_read_line_atom/1, 149
file_read_line_atom/2, 149
file_read_line_list/1, 148
file_read_line_list/2, 148
file_reopen/3, 129
file_truncate/3, 130
file_write_line/2, 149
file_write_line/3, 149
find_n/4, 201
findall/3, 199
findall/4, 199
float/1, 158
floor/1, 158
flush_all_output_streams/0, 130
flush_output/0, 128
flush_output/1, 128
fmt_read/3, 145
fmt_read/4, 145
fmt_write/2, 146
fmt_write/3, 146
fmt_write_string/3, 148
forall/2, 205
forest_log_overview/0, 332
functor/3, 175
gc_atoms/0, 196
gc_dynamic/1, 235
gc_heap/0, 224
gc_tables/1, 271
get/1, 134
get0/1, 134
get_backtrace_list/2, 356
get_byte/1, 137
get_byte/2, 137
get_call/3, 250
get_calls/3, 251

get_calls_for_table/2, 252
get_char/1, 133
get_char/2, 133
get_code/1, 134
get_code/2, 134
get_incr_sccs/1, 118
get_incr_sccs/2, 118
get_incr_sccs_with_deps/2, 118
get_incr_sccs_with_deps/3, 118
get_residual/2, 255, 262
get_residual_sccs/3, 105, 212, 262
get_residual_sccs/5, 105, 212, 264
get_returns/2, 253
get_returns/3, 254
get_returns_and_tvs/3, 254
get_returns_for_call/2, 254
get_scc_dumpfile/0, 213
get_scc_dumpfile/1, 261
get_scc_size/3, 332
ground/1, 166
ground_and_acyclic/1, 166
ground_or_cyclic/1, 166
hilog_arg/3, 179
hilog_functor/3, 176
hilog_op/3, 223
hilog_symbol/1, 222
include/1, 50
incr_assert/1, 115
incr_assert_inval/1, 115
incr_asserta/1, 115
incr_asserta_inval/1, 115
incr_assertz/1, 115
incr_assertz_inval/1, 115
incr_directly_depends/2, 117
incr_invalidate_call/1, 116
incr_retract/1, 115
incr_retract_inval/1, 115
incr_retractall/1, 115
incr_retractall_inval/1, 115
incr_table_update/0, 115
incr_table_update/1, 116
incr_table_update/2, 116

INDEX 441

incr_trans_depends/2, 118
incr_trie_intern/2, 116
incr_trie_intern_inval/2, 117
incr_trie_uninternall/2, 116
incr_trie_uninternall_inval/2, 117
index/2, 235
instantiation_error/4, 352
integer/1, 171
invalidate_tables_for/2, 271
is/2, 155
is_acyclic/1, 185
is_attv/1, 173
is_attv, 365
is_charlist/1, 173
is_charlist/2, 173
is_cyclic/1, 185
is_float, 365
is_functor, 365
is_incremental_subgoal/1, 117
is_int, 365
is_list/1, 173
is_list, 365
is_most_general_term/1, 173
is_nil, 365
is_number_atom/1, 173
is_string, 365
is_var, 365
keysort/2, 169
library_directory/1, 28
listing/0, 219
listing/1, 220
load_dyn/1, 240
load_dyn/2, 241
load_dync/1, 241
load_dync/2, 242
load_forest_log/1, 325
log/1, 159
log10/1, 159
log_forest/2, 325
max/2, 157
message/1, 145
message_queue_create/2, 293

message_queue_destroy/1, 294
messageln/1, 145
min/2, 157
misc_error/3, 353
mod/2, 158
module_property/2, 219
mutex_create/1, 297
mutex_destroy/1, 297
mutex_lock/1, 298
mutex_property/2, 299
mutex_trylock/1, 298
mutex_unlock/1, 298
mutex_unlock_all/0, 299
name/2, 187
new_trie/1, 310
nl/0, 133
nl/1, 133
nodebug/0, 318
nonvar/1, 171
nospy/1, 318
not/1, 160
not_exists/1, 161
notrace/0, 315
number/1, 172
number_chars/2, 189
number_codes/2, 187
number_digits/2, 190
numbervars/1, 144
numbervars/3, 144
numbervars/4, 144
once/1, 205
op/3, 67
open/3, 124
open/4, 125
otherwise/0, 160
p2c_arity, 366
p2c_float, 366
p2c_functor, 366
p2c_int, 366
p2c_string, 366
p2p_arg, 367
p2p_car, 367

INDEX 442

p2p_cdr, 367
p2p_new, 367
p2p_unify, 368
parsort/4, 170
path_sysop/2, 153–155
path_sysop/3, 153–155
peek_byte/1, 137
peek_byte/2, 137
peek_char/1, 135
peek_char/2, 134
peek_code/1, 135
peek_code/2, 135
permission_error/4, 352
phrase/2, 339
phrase/3, 339
pi/0, 159
predicate_property/2, 217
print_backtrace/1, 356
print_incomplete_tables/0, 213, 261, 349
prompt/2, 224
proper_hilog/1, 174
put/1, 136
put_byte/1, 137
put_byte/2, 137
put_char/1, 136
put_char/2, 135
put_code/1, 136
put_code/2, 136
read/1, 137
read/2, 137
read_canonical/1, 138
read_canonical/2, 138
read_term/2, 138
read_term/3, 139
real/1, 171
reclaim_uninterned_rn/1, 312
reg_term, 368
rem/2, 158
remove_xsb_hook/1, 314
repeat/0, 163
representation_error/3, 352
resource_error/3, 353

retract/1, 232
retractall/1, 233
round/1, 159
runtime_loader_flag/2, 376
see/1, 131
seeing/1, 131
seen/0, 131
set_dcg_style/1, 342
set_dcg_supported_table/1, 341
set_global_compiler_options/1, 42
set_input/1, 127
set_output/1, 127
set_prolog_flag/2, 214
set_stream_position/2, 128
setof/3, 197
shell/1, 151
shell/2, 152
shell_to_list/3, 152
shell_to_list/4, 152
sign/1, 159
sin/1, 159
sort/2, 169
spy/1, 317
sqrt/1, 159
statistics/0, 213, 224
statistics/1, 213, 227
statistics/2, 228
storage_commit/1, 245
storage_delete_fact/3, 244
storage_delete_fact_bt/2, 245
storage_delete_keypair/3, 244
storage_delete_keypair_bt/3, 245
storage_find_fact/2, 244
storage_find_keypair/3, 244
storage_insert_fact/3, 244
storage_insert_fact_bt/2, 245
storage_insert_keypair/4, 244
storage_insert_keypair_bt/4, 245
storage_reclaim_space/1, 245
stream_property/2, 127
string_substitute/4, 194
structure/1, 172

INDEX 443

sub_atom/5 , 192
subsumes/2, 167
subsumes_chk/2, 167
subsumes_term/2, 167
tab/1, 137
table/1, 72, 114, 247
table_dump/2, 257, 327
table_dump/3, 257, 327
table_once/1, 205
table_state/1, 257
table_state/4, 257
tan/1, 159
tell/1, 131
telling/1, 132
term_depth/2, 182
term_expansion/2, 335, 340
term_size/2, 183
term_to_atom/2, 196
term_to_atom/3, 195
term_to_codes/2, 196
term_to_codes/3 , 196
tfindall/3, 199
thread_cancel/1, 290
thread_create/1, 288
thread_create/2, 288
thread_create/3, 287
thread_detach/1, 289
thread_disable_cancel/0, 291
thread_enable_cancel/0, 291
thread_exit/1, 289
thread_get_message/1, 295
thread_get_message/2, 295
thread_join/2, 289
thread_peek_message/1, 295
thread_peek_message/2, 295
thread_property/2, 292
thread_self/1, 289
thread_send_message/2, 294
thread_signal/2, 291
thread_sleep/1, 292
thread_yield/0, 292
three_valued_scc/1, 332

throw/1, 351
time/1, 230
timed_call/3, 203
timed_call/4, 203
tmpfile_open/1, 130
tnot/1, 86, 160
told/0, 132
tphrase/1, 339
tphrase_set_string/1, 341
tphrase_set_string_auto_abolish/1, 341
tphrase_set_string_keeping_tables/1,

341
trace/0, 315
trace/2, 316
trie_bulk_delete/2, 308
trie_bulk_insert/2, 307
trie_bulk_unify/3, 309
trie_create/2, 304
trie_delete/2, 306
trie_drop/1, 307
trie_insert/2, 305
trie_intern/2, 310
trie_intern/5, 310
trie_interned/2, 311
trie_interned/4, 311
trie_property/2, 309
trie_truncate/1, 307
trie_unify/2, 306
trie_unintern2, 311
trie_unintern_nr/2, 311
trimcore/0, 224
true/0, 160
truncate/1, 159
type_error/4, 353
u_not/1, 161, 263, 264
unifiable/3, 166
unify_with_occurs_check/2, 165
unmark_uninterned_nr/2, 312
unnumbervars/3, 144
url_decode/2, 133
url_encode/2, 132
var/1, 170

INDEX 444

variant/2, 167
variant_get_residual/2, 255, 262
warning/1, 145
with_mutex/2, 296
word/3, 338
write/1, 141
write/2, 141
write_canonical/1, 142
write_canonical/2, 143
write_prolog/1, 143
write_term/2, 139
write_term/3, 140
writeln/1, 143
writeln/2, 143
writeq/1, 142
writeq/2, 142
xor/2, 157
xsb_assert_hook/1, 314
xsb_backtrace/1, 355
xsb_ccall_thread_create, 403
xsb_close_query, 402
xsb_close, 396
xsb_command_string, 397
xsb_command, 397
xsb_configuration/2, 220
xsb_domain_error(), 380
xsb_existence_error(), 380
xsb_exit_hook/1, 314
xsb_get_error_message, 402, 403
xsb_get_error_type, 402
xsb_get_last_answer_string_b, 400
xsb_get_main_thread, 403
xsb_init_string, 394
xsb_init, 396
xsb_instantiation_error(), 381
xsb_make_vars, 405
xsb_misc_error(), 381
xsb_next_string, 401
xsb_next, 402
xsb_permission_error(), 381
xsb_query_restore, 375
xsb_query_save, 375

xsb_query_string_string_b, 399
xsb_query_string_string, 398
xsb_query_string, 400
xsb_query, 399
xsb_resource_error(), 381
xsb_retract_hook/1, 314
xsb_set_var_float, 406
xsb_set_var_int, 405
xsb_set_var_string, 406
xsb_thread_context_to_id, 403
xsb_thread_id_to_context, 403
xsb_throw(), 382
xsb_type_error(), 382
xsb_var_float, 406
xsb_var_int, 406
xsb_var_string, 406
64-bit architectures, 11, 358, 407

abort
trace facility, 316

abstraction
answer, 101
subgoal, 101

acc, 9
aggregate predicates

prolog, 197
aliases

message queues, 293
mutexes, 297
streams, 123

user_error, 123
user_input, 123
user_message, 123
user_output, 123
user_warning, 123

threads, 287
tries, 304

answer abstraction, 95
answer substitution, 246
attributed variables, 3, 76, 120, 141, 142,

144, 173, 182, 183, 210, 324

backtrackable updates, 243–245

INDEX 445

base file name, 20
bounded rationality, 101
byte code

files
compiler, 40

canonical format, 38, 142, 241
cc, 9
Compiler, 40

cmplib, 40
directives, 50
inlines, 56
invoking, 40
options, 42
specialization, 48

compiler options
mi_warn, 47
modeinfer, 47
optimize, 42
spec_dump, 47
spec_off, 46
spec_repr, 46
ti_dump, 47
ti_long_names, 47
unfold_off, 46
xpp_on, 43

configuration, 7
Constraint Handling Rules, 3
control, 160
cut, 160, 202, 334, 335, 341

debugger, 315
ports, 315

declarations
auto_table, 46, 52, 74
document_export/1, 27
document_import/1, 27
export/1, 22
import/1, 31
import/2, 22
index/2, 54
local/1, 22
module/2, 22

multifile/2, 39
suppl_table, 46, 54, 74
table as, 77
use_module/2, 22

definite clause grammars, 334
datalog mode, 338
list mode, 337
style, 342

directives
Compiler, 50
indexing, 54
modes, 51
tabling, 52

dynamic loading of files, 38

emulator
command line options, 31

exceptions, 344–356

Flora-2, 5, 184
floundering, 161

garbage collection, 35, 36, 210
atoms, 196
dynamic clauses, 235
heap, 224
tables, 271

gcc, 9
GPP, 40, 43

gpp_include_dir, 43
gpp_options, 43
quit_on_error, 46
xpp_dump/N, 44
xpp_dump, 44
xpp_on/N, 44

grammars
definite clause, 334

high-level tracing, 315

incremental dependency graph, 117, 262
indexing, 230–232, 235, 325

composite, 236
directives, 54

INDEX 446

dynamic predicates, 235
hash-based, 235
multiple-argument, 236
star, 4, 236
transformational, 55
trie-based, 236, 300

inlines
Compiler, 56

installation into shared directories, 7
InterProlog, 4
InterProlog Interface, 10
invoking the Compiler, 40
ISO

errors, 350
ISO Compatability, 57

LD_LIBRARY_PATH, 375
LIBPATH, 375
load search path, 28
low-level tracing, 319

memory management, 36
message queues, 279
mode analysis

compiler options, 47
modes

directives, 51
modules

compatability syntax, 22
name, 21
XSB syntax, 22

multi-threading, 3, 273–299
mutexes

user defined, 295

negation
stable models, 92
stratified, 84
unstratified, 87

notational conventions, 6

occurs check, 163, 183, 212
ODBC Interface, 4, 10
options

command line arguments, 31
compiler, 42

Oracle Interface, 10

packages, 29
bootstrap_userpackage/3, 29
package_configuration/2, 30
unload_package/1, 30

permanent variables, 355
predicate indicator, 208
preprocessing, 40
Prolog flags, 209

atom_garbage_collection, 196, 209
backtrace_on_error, 209, 355
bounded, 209
clause_garbage_collection, 209
dcg_style, 209
debug, 209
dialect, 209
double_quotes, 209
exception_action, 155, 212
exception_pre_action, 213, 261, 349
goal, 209
heap_garbage_collection, 209, 224
heap_margin, 209
integer_rounding_function, 209
max_answer_list_action, 183, 211
max_answer_list_depth, 183, 211
max_answer_term_action, 183, 211
max_answer_term_depth, 183, 211
max_integer, 209
max_memory, 37, 212
max_queue_size, 214
max_tab_usage, 213
max_table_answer_action, 105
max_table_answer_depth, 105
max_table_subgoal_action, 103, 183,

211
max_table_subgoal_depth, 103, 183,

211
max_threads, 214, 275
min_integer, 209
shared_predicates, 214

INDEX 447

table_gc_action, 209, 266–269
thread_complsize, 213, 287
thread_detached, 214, 287
thread_glsize, 213, 287
thread_pdlsize, 213, 287
thread_tcpsize, 213, 287
tracing, 210
unify_with_occurs_check, 163, 183,

212
unknown, 26, 209
version_data, 209
warning_action, 145, 210
write_attributes, 141, 210
write_depth, 210

Prolog-commons, 209
Prologs

SWI, 230
YAP, 230

radial restraint, 105, 264
residual dependency graph, 105, 117, 262
residual program, 91, 256, 262

scheduling strategy, 10
sets, bags, 197
shared_predicates, 35, 214, 276
Silk, 184
skeleton, 247
SModels Interface, 10
source file designator, 20
specialization

Compiler, 48
compiler options, 46

stable models, 91
stacks

default sizes, 31
expanding, 31

standard predicates, 31, 42, 47
state of the system, 207
streams, 122

STDDBG, 124
STDERR, 124, 145, 209, 353
STDFDBK, 124, 145

STDIN, 124
STDMSG, 124, 145
STDOUT, 124, 144
STDWARN, 124, 145
system, 124, 130

strongly connected components (SCCs), 78,
261, 347, 349

strongly donnected components (SCCs),
324

substitution factor, 246
system, state of, 207

tabled subgoals
complete, 85
incomplete, 85

tabling
and exceptions, 213, 261, 347
answer completion, 90
answer subsumption, 75, 93–95, 97,

119, 216, 247
automatic, 46
call subsumption, 31, 34, 75–77, 119,

216, 224, 247, 250
interaction with meta-logical predi-

cates, 82
call variance, 75, 119, 216, 224, 247,

250
compiler options, 46
complete evaluation, 85, 328
conditional answers, 87
consumer, 72
cuts, 79
declarations, 114
directives, 52, 247
dynamic predicates, 247
early completion of subgoals, 85, 324,

328
incremental, 106, 114, 119, 216, 224,

247, 266, 305
negation, 84
opaque, 114, 247
private, 247
producer, generator, 72

INDEX 448

scheduling strategies, 77
shared, 34, 247
similarity measures, 75
strategy selection, 247
supplemental, 46
table deletion, 265
table inspection, 250

Tck/Tk, 10
term depth, 211

definition, 182
term indicator, 208
term size

definition, 183
termination, 53, 74

answer subsumption, 94
radial restraint, 101, 211, 263, 264
subgoal abstraction, 101, 211

terms
comparison of, 163
cyclic, 163, 166, 182, 183, 212, 305,

308, 408
unification of, 163

thread
thread status, 279
valid, 278

trace
logging, 316
options, 316

tracing, 315–325
low-level, 319
Prolog Programs, 315

transaction logic, 243
tries

and incremental tabling, 111
asserted, 235

indexing, 236
depth limit, 184
interned, 300–312

unification factoring
compiler options, 47

VarString, 403

well-founded semantics, 90

XASP, 5, 10
xsbdoc, 5, 27
xsbrc.P initialization file, 28

Index of Predicates Standard in
XSB

\+/1, 160
\=/2, 165
\==/2, 165
ˆ /2, 159
!/0, 160
’∨’/2, 157
’∧’/2, 157
’/’/2, 156
’//’/2, 156
’«’/2, 157
’><’/2, 157
’»’/2, 157
**/2, 159
*/2, 156
+/2, 156
-/1, 157
-/2, 156
=../2, 180
=/2, 165
==/2, 165
?=/2, 165
@</2, 166
@= /2, 166
@=< /2, 166
@>/2, 166
@>= /2, 166
ISO, 171, 208, 223
[]/1 (consult), 37
$trace/0, 319
ˆ /2, 201
ˆ=../2, 181

‘C’/3, 341
abolish/1, 233
abolish_all_private_tables/0, 270
abolish_all_shared_tables/0, 270
abolish_all_tables/0, 269
abolish_module_tables/1, 271
abolish_table_call/1, 268
abolish_table_call/2, 269
abolish_table_pred/1, 266
abolish_table_pred/2, 268
acos/1, 159
acyclic_term/1, 185
arg/3, 178
arg0/3, 179
asin/1, 159
assert/1, 232
assert/3, 232
asserta/1, 231
assertz/1, 231
at_end_of_stream/0, 129
at_end_of_stream/1, 129
atan/1, 159
atan/2, 159
atan2/2, 159
atom/1, 171
atom_chars/2, 189
atom_codes/2, 185
atom_concat/3, 191
atom_length/2, 190
atomic/1, 172
bagof/3, 198

449

INDEX OF PREDICATES STANDARD IN XSB 450

break/0, 223
call/1, 202
call/[2,10], 202
call_cleanup/2, 205
call_tv/2, 202
callable/1, 174
catch/3, 353
ceiling/1, 158
char_code/2, 190
clause/2, 234
close/1, 126
close/2, 126
compare/3, 166
compile/1, 37, 40
compile/2, 37, 40
compound/1, 172
copy_term/2, 182
cos/1, 159
current_atom/1, 216
current_functor/1, 216
current_index/2, 216
current_input/1, 208
current_module/1, 215
current_module/2, 216
current_op/3, 222
current_predicate/1, 215
current_prolog_flag/2, 209
debug/0, 318
debug_ctl/2, 318
debugging/0, 318
default_user_error_handler/1, 353
delete_returns/2, 271
div/2, 156
dynamic/1, 114, 237
e/0, 159
ensure_loaded/1, 38
ensure_loaded/2, 243
epsilon/0, 159
expand_term/2, 340
fail/0, 160
fail_if/1, 160
false/0, 160

file_clone/3, 129
file_exists/1, 132
file_read_line_atom/1, 149
file_read_line_atom/2, 149
file_read_line_list/1, 148
file_read_line_list/2, 148
file_reopen/3, 129
findall/3, 199
findall/4, 199
float/1, 158
floor/1, 158
flush_output/0, 128
flush_output/1, 128
fmt_read/3, 145
fmt_read/4, 145
fmt_write/2, 146
fmt_write/3, 146
fmt_write_string/3, 148
forall/2, 205
functor/3, 175
gc_atoms/0, 196
gc_dynamic/1, 235
gc_heap/0, 224
gc_tables/1, 271
get/1, 134
get0/1, 134
get_byte/1, 137
get_byte/2, 137
get_call/3, 250
get_calls/3, 251
get_calls_for_table/2, 252
get_char/1, 133
get_char/2, 133
get_code/1, 134
get_code/2, 134
get_residual/2, 255
get_returns/2, 253
get_returns/3, 254
get_returns_and_tvs/3, 254
get_returns_for_call/2, 254
ground/1, 166
ground_and_acyclic/1, 166

INDEX OF PREDICATES STANDARD IN XSB 451

ground_or_cyclic/1, 166
hilog_arg/3, 179
hilog_functor/3, 176
hilog_op/3, 223
hilog_symbol/1, 222
include/1, 50
index/2, 235
integer/1, 171
invalidate_tables_for/2, 271
is/2, 155
is_acyclic/1, 185
is_attv/1, 173
is_charlist/1, 173
is_charlist/2, 173
is_cyclic/1, 185
is_list/1, 173
is_most_general_term/1, 173
is_number_atom/1, 173
keysort/2, 169
library_directory/1, 28
listing/0, 219
listing/1, 220
load_dyn/1, 240
load_dyn/2, 241
load_dync/1, 241
load_dync/2, 242
log/1, 159
log10/1, 159
max/2, 157
message_queue_create/2, 293
message_queue_destroy/1, 294
min/2, 157
mod/2, 158
module_property/2, 219
mutex_create/1, 297
mutex_destroy/1, 297
mutex_lock/1, 298
mutex_property/2, 299
mutex_trylock/1, 298
mutex_unlock/1, 298
mutex_unlock_all/0, 299
name/2, 187

nl/0, 133
nl/1, 133
nodebug/0, 318
nonvar/1, 171
nospy/1, 318
not/1, 160
not_exists/1, 161
notrace/0, 315
number/1, 172
number_chars/2, 189
number_codes/2, 187
number_digits/2, 190
once/1, 205
op/3, 67
open/3, 124
open/4, 125
otherwise/0, 160
path_sysop/2, 153–155
path_sysop/3, 153–155
peek_byte/1, 137
peek_byte/2, 137
peek_char/1, 135
peek_char/2, 134
peek_code/1, 135
peek_code/2, 135
phrase/2, 339
phrase/3, 339
pi/0, 159
predicate_property/2, 217
prompt/2, 224
proper_hilog/1, 174
put/1, 136
put_byte/1, 137
put_byte/2, 137
put_char/1, 136
put_char/2, 135
put_code/1, 136
put_code/2, 136
read/1, 137
read/2, 137
read_canonical/1, 138
read_canonical/2, 138

INDEX OF PREDICATES STANDARD IN XSB 452

read_term/2, 138
read_term/3, 139
real/1, 171
rem/2, 158
repeat/0, 163
retract/1, 232
retractall/1, 233
round/1, 159
see/1, 131
seeing/1, 131
seen/0, 131
set_dcg_style/1, 342
set_global_compiler_options/1, 42
set_input/1, 127
set_output/1, 127
set_prolog_flag/2, 214
set_stream_position/2, 128
setof/3, 197
shell/1, 151
shell/2, 152
shell_to_list/3, 152
shell_to_list/4, 152
sign/1, 159
sin/1, 159
sort/2, 169
spy/1, 317
sqrt/1, 159
statistics/0, 224
statistics/1, 227
statistics/2, 228
storage_commit/1, 245
storage_delete_fact/3, 244
storage_delete_fact_bt/2, 245
storage_delete_keypair/3, 244
storage_delete_keypair_bt/3, 245
storage_find_fact/2, 244
storage_find_keypair/3, 244
storage_insert_fact/3, 244
storage_insert_fact_bt/2, 245
storage_insert_keypair/4, 244
storage_insert_keypair_bt/4, 245
storage_reclaim_space/1, 245

stream_property/2, 127
structure/1, 172
sub_atom/5 , 192
subsumes_term/2, 167
tab/1, 137
table/1, 72, 114, 247
table_once/1, 205
table_state/1, 257
table_state/4, 257
tan/1, 159
tell/1, 131
telling/1, 132
term_depth/2, 182
term_expansion/2, 335, 340
term_size/2, 183
tfindall/3, 199
thread_cancel/1, 290
thread_create/1, 288
thread_create/2, 288
thread_create/3, 287
thread_detach/1, 289
thread_exit/1, 289
thread_get_message/1, 295
thread_get_message/2, 295
thread_join/2, 289
thread_peek_message/1, 295
thread_peek_message/2, 295
thread_property/2, 292
thread_self/1, 289
thread_send_message/2, 294
thread_signal/2, 291
thread_sleep/1, 292
thread_yield/0, 292
throw/1, 351
time/1, 230
timed_call/3, 203
timed_call/4, 203
tmpfile_open/1, 130
tnot/1, 160
told/0, 132
tphrase/1, 339
tphrase_set_string/1, 341

INDEX OF PREDICATES STANDARD IN XSB 453

trace/0, 315
trace/2, 316
true/0, 160
truncate/1, 159
unify_with_occurs_check/2, 165
url_decode/2, 133
url_encode/2, 132
var/1, 170
variant_get_residual/2, 255
with_mutex/2, 296
word/3, 338
write/1, 141
write/2, 141
write_canonical/1, 142
write_canonical/2, 143
write_prolog/1, 143
write_term/2, 139
write_term/3, 140
writeln/1, 143
writeln/2, 143
writeq/1, 142
writeq/2, 142
xor/2, 157
xsb_configuration/2, 220

	Introduction
	Using This Manual

	Getting Started with XSB
	Installing XSB under UNIX
	Possible Installation Problems

	Installing XSB under Windows
	Using Cygnus Software's CygWin32
	Using Microsoft Visual C++

	Invoking XSB
	Compiling XSB programs
	Sample XSB Programs
	Exiting XSB

	System Description
	Entering and Exiting XSB from the Command Line
	The System and its Directories
	How XSB Finds Files: Source File Designators
	The Module System of XSB
	Standard Predicates in XSB
	The Dynamic Loader and its Search Path
	Changing the Default Search Path and the Packaging System
	Dynamically loading predicates in the interpreter

	Command Line Arguments
	Memory Management
	Compiling, Consulting, and Loading
	Static Code
	Dynamic Code
	The multifile directive

	The Compiler
	Invoking the Compiler
	Compiler Options
	Specialization
	Compiler Directives
	Inline Predicates

	A Note on ISO Compatibility

	Syntax
	Terms
	Integers
	Floating-point Numbers
	Atoms
	Variables
	Compound Terms
	Lists

	From HiLog to Prolog
	Operators

	Using Tabling in XSB: A Tutorial Introduction
	Tabling in the Context of a Prolog System
	Definite Programs
	Call Variance vs. Call Subsumption
	Table Scheduling Strategies
	Interaction Between Prolog Constructs and Tabling
	Potential Pitfalls in Tabling

	Normal Programs
	Stratified Normal Programs
	Non-stratified Programs
	On Beyond Zebra: Implementing Other Semantics for Non-stratified Programs

	Answer Subsumption
	Types of Answer Subsumption
	Examples of Answer Subsumption
	Term-Sets

	Tabling for Termination
	Subgoal Abstraction
	Bounded Rationality through Radial Restraint

	Incremental Table Maintenance
	Examples
	Incremental Tabling using Interned Tries
	View Consistency
	Summary and Implementation Status
	Predicates for Incremental Table Maintenance

	Compatability of Tabling Modes and Predicate Attributes

	Standard and General Predicates
	Input and Output
	I/O Stream Implementation
	ISO Streams
	DEC-IO Style File Handling
	Character I/O
	Term I/O
	Special I/O

	Interactions with the Operating System
	The path_sysop/2 interface

	Evaluating Arithmetic Expressions through is/2
	Evaluable Functors for Arithmetic Expressions

	Convenience
	Negation and Control
	Unification and Comparison of Terms
	Sorting of Terms

	Meta-Logical
	Cyclic Terms
	Unification with and without Occurs Check
	Cyclic Terms

	Manipulation of Atomic Terms
	All Solutions and Aggregate Predicates
	Meta-Predicates
	Information about the System State
	Execution State
	Asserting, Retracting, and Other Database Modifications
	Reading Dynamic Code from Files
	The storage Module: Associative Arrays and Backtrackable Updates

	Tabling Declarations and Builtins
	Declaring and Modifying Tabled Predicates
	Predicates for Table Inspection
	Deleting Tables and Table Components

	Multi-Threaded Programming in XSB
	Getting Started with Multi-Threading
	Communication among Threads
	Thread Statuses: Joinable and Detached Threads
	Prolog Message Queues
	Thread Cancellation and Signalling
	Performance and other Considerations
	Examples of Multi-Threaded Programs in XSB
	Configuring the Multi-threaded Engine under Windows
	Predicates for Multi-Threading
	Predicates for Thread Synchronization and Communication

	Storing Facts in Tries
	Examples of Using Tries
	Space Management for Tries
	Predicates for Tries
	Low-level Trie Manipulation Utilities
	A Low-Level API for Interned Tries

	Hooks
	Adding and Removing Hooks
	Hooks Supported by XSB

	Debugging and Profiling
	Prolog-style Tracing and Debugging
	Low-Level Tracing
	Analyzing the Execution of Tabled Programs
	Tracing a tabled evaluation through forest logging
	Analyzing the log; seeing the forest through the trees
	Discussion
	Predicates for Forest Logging

	Definite Clause Grammars
	General Description
	Translation of Definite Clause Grammar rules
	Definite Clause Grammars and Tabling

	Definite Clause Grammar predicates
	Two differences with other Prologs

	Exception Handling
	The Mechanics of Exception Handling
	Exception Handling in Non-Tabled Evaluations
	Exception Handling in Tabled Evaluation

	Representation of ISO Errors
	Predicates to Throw and Handle Errors
	Predicates to Throw Errors
	Predicates to Handle Errors

	Convenience Predicates
	Backtraces

	Foreign Language Interface
	Foreign Language Modules
	Lower-Level Foreign Language Interface
	Context Parameters
	Exchanging Basic Data Types
	Exchanging Complex Data Types

	Foreign Modules That Call XSB Predicates
	Foreign Modules That Link Dynamically with Other Libraries
	Higher-Level Foreign Language Interface
	Declaration of high level foreign predicates

	Compiling Foreign Modules on Windows and under Cygwin
	Functions for Use in Foreign Code

	Embedding XSB in a Process
	Calling XSB from C
	Examples of Calling XSB
	The XSB API for the Sequential Engine Only
	The General XSB API
	Managing Multiple XSB Threads through the API
	Calling Multiple XSB Threads using Multiple C Threads

	A C API for XSB
	Initializing and Closing XSB
	Passing Commands to XSB
	Querying XSB
	Obtaining Information about Errors
	Thread Management from Calling Programs

	The Variable-length String Data Type
	Passing Data into an XSB Module
	Creating an XSB Module that Can be Called from C

	Restrictions and Current Known Bugs
	Current Restrictions
	Known Bugs

	GPP - Generic Preprocessor
	Description
	Syntax
	Options
	Syntax Specification
	Evaluation Rules
	Meta-macros
	Examples
	Advanced Examples
	Author

