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Relevant Documents  have been  Exchanged: 

 

Gustafson’s  book was published last year: 

 

 

 

THE END of ERROR — Un

 

 

 

u

 

 

 

m

 

 

 

Computing

 

  

 

(2015,  CRC Press,  433 pp.)

 

.

 

A slightly revised version with typos corrected may exist somewhere.

 

A Radical Approach to Computation with Real Numbers

 

  

 

introduces  SORNs  and is posted on his web page   

 

www.johngustafson.net/…

 

   at 
  

 

…presentations/Unums2.0slides.pptx

 

    and   

 

…pubs/RadicalApproach.pdf

 

  

 

 48 pages,  updated to 23 Apr. 2016  16 pages,  downloaded  18 May 2016

 

I think they greatly exaggerate the merits of schemes proposed therein.

 

My detailed critiques are posted at 
  

 

www.eecs.berkeley.edu/~wkahan/EndErErs.pdf

 

    and     

 

…/SORNers.pdf

 

 

 

 
and supply analyses to support criticisms presented herein.



 

File:  UnumSORN                                                               

 

vs

 

. Unums & SORNs  for  ARITH 23                                                Version dated July 10, 2016 1:29 pm

Prof. W. Kahan                                                                                                                                                                                                                                Page 3/26

 

Today’s two lessons:

 

A Moment’s Mistake

 

can take far longer — 

 

Months,  Years –

 

to Find and to Fix.

 

Arithmetic 

 

is a very small part of 

 

Mathematics & Computer Science.
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What are  

 

Unum

 

s

 

 

 

 (“

 

Un

 

iversal 

 

num

 

bers”) ?

 

Floating-point numbers each with width,  range and precision variable at run-time,

each tagged to show whether it is exact or uncertain by  

 

ulp

 

.

Likely to serve in pairs as endpoints of intervals for interval arithmetic.
Alleged to save storage space if each is no wider than a datum needs.

Ideally,  widths would vary automatically to yield final results of desired accuracies. 

 

What are  

 

SORN

 

s  (

 

S

 

ets 

 

O

 

f 

 

R

 

eal 

 

N

 

umbers) ?

 

Finite collections of  

 

Extended Real

 

  numbers  (including unsigned 

 

∞

 

 

 

)  and also 
open intervals between them,  referenced by  

 

pointers

 

  instead of their values.
Likely to serve in pairs as endpoints of intervals for interval arithmetic,

Save storage space if pointers are no wider than the data need.
Fastest arithmetic operations each achieved by a table-look-up.

Both schemes are intended for use with massive parallelism,  more than thousands-fold, 
and with  

 

Big Data

 

,  perhaps as  “a shortcut to achieving exascale computing”.

1
2
---
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Unum and SORN  Computation  would be  Worth their Price,

 

whatever it is,

 

IF

 

 

 

the Promises  Gustafson  has made for them
could  

 

ALWAYS

 

  be fulfilled.

 

But they can’t.
Not even  

 

USUALLY

 

.

 

The  Promises  are  Extravagant; 
the  Virtues  of  Unums  and  SORNs  have been exaggerated; 

and you can’t  

 

Always

 

  know whether they have betrayed you.

 

Offered here will be a few of many examples posted in  

 

…EndErErs.pdf

 

   &   

 

…SORNers.pdf
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Extravagant Claims  for  Unum  and  SORN  Computing ?

 

The book claims that … 
Unum Computation  needs no difficult mathematical analysis to prevent mishaps due to …

•  Discretization of the continuum,  as when solving differential equations 

 

?

 

•  Underestimating how uncertainties in the given data affect computed results 

 

?

 

•  Roundoff and over/underflow in  IEEE 754’s  floating-point arithmetic 

 

?

 

Unum  and SORN  computation are free from  Interval Arithmetic’s  failure modes 

 

?

 

•  The  

 

Dependency Problem

 

:  taking no account of correlations among variables 
•  The  

 

Wrapping Effect

 

:

 

  intervals grow exponentially too fast in long computations

The book claims that  

 

“Calculus is Evil”

 

,  or at least unnecessary 

 

?

 

 
•  No need to know it to solve differential equations; 

 

 

 

use massive parallelism instead

 

?

 

•  No need for modern numerical analysis nor difficult mathematical error-analyses? 

No use nor need for  IEEE 754’s  mostly still unsupported diagnostic aids like …
•  “A plethora of  NaNs” ?
•  Flags  inaccessible from most programming languages ?
•  Directed roundings  (since  Unums  and  SORNs  would eliminate roundoff) ?

These claims pander to  Ignorance  and  Wishful Thinking. 
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Wishful Thinking  :   We can be  Liberated  from  Error-Analysis ? 

Four steps to solve a computational problem …

1•  Choose  or invent an algorithm  α  ,  express it in the language of  Mathematics,  and 
prove  that it would work if performed in ideal arithmetic with infinite precision.

2•  Translate  α  faithfully into a program  P  in a computer’s programming language 
like  C  or  FORTRAN    or  MATLAB   or  PYTHON   or  … .

3•  Execute  P  to obtain a result  R .  Usually  R  is accurate enough,  sometimes not. 

How can we know  for sure  whether  R  is accurate enough ?

4•  If  P’s  arithmetic is  Floating-Point,  whatever its precision(s),  we need a  proof-like 

       Error-Analysis  to determine  for sure  if  P  implements  α  accurately enough.
If an  Error-Analysis  exists,  it may be obvious,  or it may be obscure.

If an  Error-Analysis  exists,  it could cost more than  R  is worth.

Wishful Thinking  :
Error-Analysis is unnecessary if  P  is executed in  SORN  or  Unum  arithmetic ?

William Kahan
Cost:  first to find,  then to
 compute an error bound.
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Disappointment: 
Like  Interval Arithmetic,  SORN  and  Unum Computation  can grossly overestimate,  
sometimes by many orders of magnitude,  the uncertainty in computed results.  How?

Let  f(x)  be the function to be computed;  let  ƒ(x)  be the algorithm or formula chosen to 
compute  f(x) ;  and let  F(x)  be  (the result from)  the program that implements  ƒ(x) .

When executed in floating-point arithmetic,  F(x)  could occasionally be arbitrarily wrong 
for all we know without an error-analysis.  What can be done about that?  (Later)

When executed in  SORN  or  Unum  or  Interval  arithmetic,  F(x)  is an  interval  that 
must enclose the ideal mathematical value of  ƒ(x) .  What if  F(x)  is far too big?

•  If big width is due to roundoff,  redo computation with  appropriately  higher precision.
Unum Computation  lets precision be increased by the program.  Often it works.

•  If big width of  F(X)  is due to uncertain data  X  but seems far too big,  partition  X  
into smaller subregions  X  and replace  F(X)  by the  Union  of all intervals  F(X) .

Often this union  ∪ X∈ XF(X)   is smaller than  F(X)  if every  X  is tiny enough.

BUT  NEITHER  RECOMPUTATION  ALWAYS   SUCCEEDS.

William Kahan
Dustinguish the  3  f's !
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Two  of the  Failure Modes:

•  How can increasing  Unums’  precision fail to overcome roundoff ? 
It happens to futile attempts to compute accurately an expression at its discontinuity. 

The program may fall into an infinite sequence of ever increasing precisions.
It’s unnecessary if discontinuity alters only the path to the program’s goal;

it can obstruct common matrix computations,  like eigenvalues. 
Examples:  see pp. 4 - 5  &  p. 8  of   …/EndErErs.pdf  .

•  How can the union  ∪ X ∈  XF(X)   fail to be smaller than over-size  F(X) ?

Example:  R(x, y) :=     and  S(x, y) :=   are two expressions 

for the same rational function.  In  IEEE 754  floating-point  R(x, y)  is the more 
accurate when  |x/y| ≈ 1 ;  but  S(x, y)  is not degraded by  over/underflow etc.

Let  Q  be the open square  ((0, 1), (0, 1))  =  { (x, y) :  0 < x < 1  &  0 < y < 1 } . 
It is representable in both  SORN  and  Unum  arithmetic as a pair of open intervals.
Subdivide  Q  into a union of smaller rectangles  Q .   BUT  however tiny they are,

 ∪ Q ∈  QR(Q) = (–∞, +∞)  stays far wider than the correct interval  S(Q) = [–1, +1] .

x y–( )· x y+( )

x
2

y
2

+
------------------------------------ 1 2

1 x y⁄( )2+
---------------------------–

William Kahan
S(Q) = (-1,  +1) .           
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 ∪ Q ∈  QR(Q) = (–∞, +∞)  stays far wider than the correct interval  S(Q) = [–1, +1] .

How often does misbehavior this bad occur ?
It is an instance of the  Dependency Problem  familiar in  Interval Arithmetic  circles.

The book’s  chs. 16 & 18.2  claim to overcome the  Problem;   p. 12 of … .pdf  & pp. 44-6 
of … .pptx  claim  SORN  arithmetic has  No Dependency Problem.  Claims are mistaken.

Recall:  f(x)  is to be computed using algorithm  ƒ(x)  implemented as program  F(x) .

•  F(x)  may work fairly well with floating-point but misbehave with  Interval Arithmetic, 
as does  R(Q) .  How could you know this in advance without knowing  S(Q) ?

•  ƒ(x)  may be a numerically precarious algorithm to compute  f(x)  at slightly uncertain 
data  x  no matter how  F  is programmed.  Does an algorithm better than  ƒ  exist? 

Example:  the  Incenter  of a tetrahedron;  as volume shrinks  F → ∞ ;  see 
p. 26 in  www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf.  

•  ƒ(x)  may be the solution of an equation  æ(x, ƒ) = o  whose coefficients depend on  x .
If  x  is uncertain so are they,  but correlated in a way all interval arithmetics ignore. 

The equation’s solution may react far worse to perturbations than does  f(x) .
E.g:  deflections of loaded elastic structures,  crash-tests,  least-squares, …

A remedy:  Use higher precision,  not  SORN/Interval  Arithmetic.
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A Third  Failure Mode:
The  Wrapping Effect  is familiar in the  Interval Arithmetic  community.  It can cause 

intervals to grow too fast exponentially with a computation’s length and dimension.

• Without mentioning it the book suggests that it does not afflict  Unum Computation;  see
p. 306  for the claim  “no exponential growth in the error,  only linear growth.”

• SORN arithmetic’s  “Uncertainty grows  linearly  in general”  [pp. 41-2 of ….pptx]

Actually  SORN/Unum/Interval  arithmetics  can  and do generate intervals that 
grow too fast exponentially with a computation’s length  n  and dimension  d .

Example:  simplified  Dynamical System’s Reachable Set:    xn := H·xn–1 = Hn·x0 ,   n > 6 

         H := 20-by-20  Hadamard matrix;  every element has magnitude  1/√20 ,  but  H2 = I .
Initialize interval  X0 := Unit HyperCube.   Compute  X1, X2, X3, …, X2n   in turn.

Dimension  d = 20 ;  Computation length = 2n .   True  X2n = X0 ;   no growth at all.
SORN/Unum/Interval Arithmetics  produce  X2n  excessively too big by  20n–1/2 . 

To reduce grossly excessive to moderately excessive,  say  400  times too big,  X0  has
to be subdivided into at least  2020n–50  tiny hypercubes  205/2–n  on a side,  well past
the capability of  “… mindless … large-scale parallel computing”. [book p. 219]

William Kahan
The Curse of Big Dimensions
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“Never Wrong”  ≠  “Always Right” 
A proponent of  SORN/Unum/Interval  arithmetic may claim that it is  Never Wrong 

since it delivers an interval that  Always  encloses the  True Result  (if one exists).

But we’ve seen delivered intervals vastly wider than the  True Result  deserves.

How bad is that ? 

No harm is done by intervals  known  to be much too wide;
these will be disregarded,  if computed at all.  (Interval arithmetic isn’t popular.)

Harm  is  done by vastly oversized intervals believed deserved by the data. 
•  A worthwhile project may be abandoned unnecessarily.
•  Extra work may be undertaken only because interval arithmetic was believed.

Without an  error-analysis  or an  alternative computation for comparison,
SORN/Unum/Interval  Computation’s failure modes are difficult to diagnose.

To make matters worse,  SORN  arithmetic  lacks  Algebraic Integrity,

thus undermining a programmer’s faith that   Arithmetic  ≈  Algebra.
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What is  Algebraic Integrity ?
IEEE 754 Floating-point  has it:

In the absence of roundoff,
if several different  rational expressions  for the same  function  

produce different values when evaluated numerically,
at most  two  different values can be produced, 

and either the two values are  ±∞  or else
at least one is  NaN,  which is easy to detect.

     SORN  arithmetic lacks  Algebraic Integrity,  and boasts that it has no  NaN ,   and …  
     “No rounding errors … .   No exceptions … .” [… .pptx p. 3,  … .pdf p. 2].   BUT …

      Different  SORN  expressions for a rational function can produce different  SORNs : 

Example:   As rational functions,    u(t) := 2t/(1 + t)   =   v(t) := 2 – (2/t)/(1 + 1/t) ;  

    x(t) := (1 + u(t)2)/(2 + u(t)2)   =   y(t) := (1 + v(t)2)/(2 + v(t)2)   =   z(t) := 1 – 1/(2 + v(t)2) ;

    SORN  arithmetic gets      x(0) = 1/2 ,      y(0) = (0,  ∞] ,      z(0) = [1/2,  1] ,   with
no roundoff  nor indication of anything amiss about  y(0)  or  z(0) .  
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As  functions,   x(t) = y(t) = z(t) ;  but when evaluated as arithmetic  expressions  
    SORN  arithmetic gets      x(0) = 1/2 ,      y(0) = (0,  ∞] ,      z(0) = [1/2,  1] ,   with

no indication of anything amiss about  y(0)  or  z(0) .   They have  “lost information”.

How?   Where other arithmetics would produce a  NaN  for  0/0 ,  ∞ – ∞ ,  0·∞ ,  ∞/∞,  etc.

 SORN  arithmetic produces  Ω ,  the set of all  Extended Reals.  Ω2  = [0,  ∞] .

Why would different expressions for the same function appear in a program?

Over different subdomains of the function’s domain,  different expressions may be 
less vulnerable to  “loss of information”,  or  have different costs of evaluation.

         On subdomains’ boundaries,   the different expressions should agree within roundoff.

If one expression malfunctions,  the program can try another, 
but only if it detects the malfunction.

An arithmetic system that hides malfunctions  
must produce misleading results occasionally.

We shall see it happen to SORN arithmetic.

William Kahan
Need  blue  ] .
Different expressions for 
the same function happen 
often in matrix software.
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Search for  all  solutions  z  of an equation  “ æ(z) = o ”  within a given  coffin  X0  

given an interval program  Æ(X)  for  æ(x)  satisfying   Æ(X) ⊇  æ(X)   and,  
except for roundoff,   width(Æ(X)) → 0  as  width(X) → 0 .  

( A  coffin ,  called a  ubox  in the book,  is a vector of intervals.)

Procedure:  Æ(X) excludes  o  ⇒   coffin  X  cannot contain a solution  z ,  so discard  X  .
Partition  X0  into small coffins  X ,  and discard all those that cannot contain any  z .

Partition all remaining small coffins into smaller coffins;  discard  " " " … " " .
Repeat until every remaining coffin is tiny enough,  or none are left.

The book calls the remaining coffin(s) a  C-Solution  of  “ æ(z) = o ”.

Example:   æ(x) := 3/(x + 1) – 2/(x – 1) + 1/(x – 1)2 .    Start search at  X0 := [0,  4] .
For  Æ(X0) ,  Unum & Interval arithmetic get  NaN ;  SORN  arithmetic gets  Ω .

Despite the  NaN  we must not discard  X0 .  Repeated subdivision converges to

tiny intervals around  z = 1 ,  z = 2  and  z = 3 .   But only  æ(2) = æ(3) = 0 .
Unum/Interval’s  Æ(1) is NaN .   SORN’s  Æ(1) = Ω  unexceptionally.

 C-Solutions  can include singularities of  æ  unless filtered out.

C-Solutions:
An important application of  Parallel  Interval Arithmetic : X0
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 C-Solutions  can include singularities of  æ  unless filtered out.
Never-exceptional  SORN  arithmetic renders singularities 
 difficult to distinguish from ordinary overly wide intervals.

Example:  Construct an equation  “ æ(z) = o ”  using   R(ξ, η) :=    thus:

 æ(x) :=   at  x =  .   Seek solution  z  using  SORN arithmetic for  Æ(X) .

Whenever  o ∈  X  so does  o ∈  Æ(X) =  .  And  o ∈  Æ(X)  whenever one corner of  X 

is much closer to  o  than the others.  Consequently the  C-Solution  process converges to 
tiny rectangles clustered closely around  o  plus,  in  SORN  arithmetic,  one enclosing  o .

But  z = o  is not a solution.

   –1 ≤ R(ξ, η) = –R(η, ξ) ≤ 1  except  SORN’s  R(0, 0) = R(∞, ∞) =   instead of  NaN ,

  so the equation  “ æ(z) = o ”  has no solution  z .

 In general,  C-Solutions  can  “solve”  equations that have no solution.

It would not have happened  here  if  Unum/Interval  arithmetic replaced  SORNs,  and
 also   S(ξ, η)  from  p. 9  above replaced  R(ξ, η)  to produce narrower intervals.

ξ η–( )· ξ η+( )

ξ2 η2
+

-------------------------------------

R ξ η,( ) 9 8⁄–

R η ξ,( ) 9 8⁄+
ξ
η

Ω
Ω

Ω
Ω
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The book disparages  Calculus  and  Modern Numerical Analysis
p. 181  Unums  should  work even when used in a naive way,                        [duty?  likely?] 

the way floats usually are used.

p. 216  This is the essence of the ubox approach.                        [Compensate for ignorance ?] 
Mindless,  brute-force application of large-scale parallel computing ...

p. 311  Calculus considered evil: Discrete physics  
Calculus deals with  infinitesimal  quantities;                            [ NO! … with limits ] 

computers do not calculate with infinitesimals.

p. 273  When physicists analyze pendulums,  they prefer to talk about  "small oscillations".

p. 316  Every physical effect can be modeled without rounding error or         [Not what 
sampling [discretization] error if the model is discrete.          he does] 

p. 277  Instead,  we treat  time  as a function of  location.         [… assuming conservation laws] 
     ...,  the time dependency of physical simulation has been misused                [ By whom?] 

as an excuse not to change existing serial software to run in parallel.
[ The book’s algorithms cannot cope with drag nor friction.]

[ cf.  EndErErs.pdf  pp. 25 -31.]



File:  UnumSORN                                                               vs. Unums & SORNs  for  ARITH 23                                                Version dated July 10, 2016 1:29 pm

Prof. W. Kahan                                                                                                                                                                                                                                Page 18/26

Book pp. 327-332   An arbitrarily precise solution method for 
 nonlinear ordinary differential equations that uses  no calculus,  

just elementary algebra,  geometry and  Newtonian physics.

Counterexample:   du/dτ = (1 – u)·v   and   dv/dτ = –(1 + u)·v       from Chemical Kinetics
requires calculus  to reveal  Conservation  of    u(τ) + 2·log(|u(τ) – 1|) – v(τ) ,

which simplifies the decay-time of  v(τ)  to numerical evaluation of an integral.
[cf. p. 13 of  EndErErs.pdf]

Numerical Quadrature  is the numerical evaluation of an integral   ∫ab
 f(x) dx  . 

About this topic,  the book has lots to say,  all obsolete,  misleading and irrelevant:

Book p. 198     error  ≤  (b - a)·|f" (ξ)|·h2/24                    [Midpoint Rule  vs.  ∫ab
 f(x) dx] 

… What the hell is that?  …  To compute the second derivative we  have to know 
calculus … then we have to somehow find the  maximum possible absolute value  …

This is why the classical error bounds that are still taught to this day are 
deeply profoundly unsatisfying.

Actually,  we don’t have to know calculus to invoke  Automatic Symbolic Differentiation 
software that transforms program  F  to a program that interleaves  F  with  F'  and F"  . 

And we don’t have to find  max |f" (ξ)|  to estimate an integral rigorously. 



File:  UnumSORN                                                               vs. Unums & SORNs  for  ARITH 23                                                Version dated July 10, 2016 1:29 pm

Prof. W. Kahan                                                                                                                                                                                                                                Page 19/26

In ch. 15,   the book’s crude numerical quadrature  ignores  modern numerical analysis 
and consequently costs too much work by orders of magnitude despite parallelism.

Here is how  Work  grows as  Error  is diminished by various algorithms:
Book’s algorithm Work = O(1/Error2)   Interval bounds     EndErErs.pdf  pp. 21-2 

1960-70’s algorithm Work = O(1/√Error)   Interval bounds     EndErErs.pdf  p. 23 

1970-80’s algorithm Work = O(–log(Error))    Asymptotically    EndErErs.pdf  pp. 23-4 

Book p. 281  “... it may be time to overthrow a century of numerical analysis.”       [Not yet.] 

And it’s all irrelevant.

The book   THE END of ERROR — Unum Computing   spends more pages advocating ill-
advised numerical methods than comparing equitably the costs and benefits of  

Unum Computing  vs.  Interval Arithmetic  
with precision roughly variable at run-time and supported by an appropriate programming 
language and  Math. library.



File:  UnumSORN                                                               vs. Unums & SORNs  for  ARITH 23                                                Version dated July 10, 2016 1:29 pm

Prof. W. Kahan                                                                                                                                                                                                                                Page 20/26

What does  Unum Computation  cost?   Too much! 
Unums’  widths can vary almost arbitrarily at run-time,  and 

they are intended to be packed tightly to minimize time & energy per  Unum  moved.

Consequently,  let’s compare  Unums  of diverse and varying widths  vs.  
interval arithmetics  of precisions  2, 4, 8, 16, … bytes wide: 

•  Arithmetic:   Larger latency because unpacking requires more pipeline stages  vs. 
interval arithmetic’s precisions declared upon entry to subprograms

whose local variables are then allocated on a stack at call-time.

•  Memory Management:  Its cost is overlooked in the book,  which says on  pp. 40-41
“… does the programmer have to manage the variable fraction and exponent sizes?

 No.  That can be done automatically by the computer.”               [For a price!] 

 Fetching Unums:  must cost at least one extra indirect address reference.

 Writing Unums:     must cost at least one extra indirect address reference    except,  
if width can change,  must cost more indirection writing to a  Heap 

and subsequent  Memory Defragmentation/Garbage Collection. 

Costs depend crucially upon how the programming language manages diverse widths.
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What does  SORN Arithmetic  cost?
Consider  SORN  pointers  N  bits wide,  roughly like floating-point’s precision.

     N  is small;  probably  8 ≤ N ≤ 16 .

Computed  SORN  intervals usually require pairs of pointers after  “information is lost”,
and may be  Exterior  intervals that include  ∞ :                                 cf. my  1968  lectures  

Example:   X = [6,  8]/[–1,  2] = [3,  –6] = { x ≥ 3  or  x = ∞  or  x ≤ –6 } 

Allowing for  Exterior  intervals greatly complicates  SORN  arithmetic; 
it complicates  Interval  arithmetic too.  Complicated  ⇒   Slower.

A (too) much faster arithmetic scheme allows  Arbitrary  collections of  SORNS ,  

each represented by a word  2N  bits wide.  If implemented on the  CPU  chip,

this faster arithmetic would need area  O(23N)  — better used for cache.

The slower scheme,  using pairs of  N-bit  pointers,  if implemented on the  CPU chip, 

needs area  O(N·22N)  to run faster than interval arithmetic software using

standard  N-sig.bit  floating-point occupying  O(N2)  area on-chip.

SORNs  could satisfy a demand,  if it exists,  for low-precision  Interval  arithmetic. … 
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How much  Precision  is  Enough ?
Much of the world’s data fits into short words.  Most computed results fit into a few digits.

For many a  short  floating-point computation of  low dimensionality, 
 arithmetic’s precision is adequate if it exceeds the accuracy desired in the result.

SORN  arithmetic  might satisfy that requirement well enough,  but 
SORN  arithmetic  should not be used for lengthy computations 

lest it produce intervals vastly too wide,  difficult to diagnose.

An old  Rule-of-Thumb  renders roundoff extremely unlikely to cause embarrassment:
In all  intermediate computation,  perform arithmetic carrying somewhat more than 

twice as many  sig.dec.  as are trusted in the data and desired in the final result.

This rule has long served statistics,  optimization,  root-finding,  geometry,  structural 
analysis and differential equations.  Rare exceptions exist,  of course.  Nothing is perfect.

SORN/Unum/Interval  arithmetic purports to insure against betrayal by that rule of thumb,
but runs the risk of betrayal by a failure mode of interval arithmetic,  as we have seen,

The only sure defence against embarrassment due to roundoff is an error-analysis,
but it might not exist.
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Unum and SORN  Computation  would be  Worth their Price,
whatever it is,

IF  
the Promises  Gustafson  has made for them

could  ALWAYS  be fulfilled.

But they can’t.
Not even  USUALLY.

The  Promises  are  Extravagant; 
the  Virtues  of  Unums  and  SORNs  have been exaggerated; 

and you can’t  Always  know whether they have betrayed you.

They can’t obviate error-analysis.  What can be done instead?
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As a scientist or engineer,  
I wish not to know how big my errors due to roundoff and discretization aren’t.

And I am unwilling to pay much for what I wish not to know.

I  dearly need to know  …
•…  that errors due to discretization are negligible
•…  that errors due to roundoff are negligible.
•…  how much uncertainty my results have inherited from uncertain data.

What I need to know is  almost always  revealed by some repeated recomputations:

•  Appraise discretization error by refining the discretization.

•  Appraise rounding errors by increasing precision,  or else       [cf. my  …/Boulder.pdf] 
by three recomputations with redirected roundings of all atomic operations.

•  Uncertainty Quantification,  the appraisal of uncertainty inherited from data, 
requires a difficult and often costly combination of several approaches:

»  Error analysis,  Perturbation analysis,  Partial Derivatives,  … .
»  Recomputation at many samples of intentionally perturbed input data.
»  Interval arithmetic used skillfully to avoid excessive pessimism. 



File:  UnumSORN                                                               vs. Unums & SORNs  for  ARITH 23                                                Version dated July 10, 2016 1:29 pm

Prof. W. Kahan                                                                                                                                                                                                                                Page 25/26

How shall we debug
long intricate scientific and engineering programs using 

SORN/Unum  Arithmetic ? 

•  Overly wide  SORNs  and their spurious  C-solutions  are difficult to diagnose or cure.

•  Overly wide  Unums  due to uncertain data  are difficult to diagnose,  tedious to cure.

SORN/Unum  arithmetics lack  IEEE 754’s  Flags ;  consequently …
Overly wide  SORNs/Unums  due to over/underflow are difficult to diagnose or cure; 

lack of flags that point to sites where exceptions first occurred obscures them.

SORNs  lack  NaNs,  lack  Algebraic Integrity;  cannot easily discover invalid operations.

Unums  have just one  NaN  instead of  IEEE 754’s  “plethora”  of them that can 
 serve as pointers to the program’s sites where they were created.

Alas,  IEEE 754’s  diagnostic capabilities are still supported poorly 
by programming languages and software development systems,  and 

by computer architectures that trap floating-point exceptions 
into the operating system instead of into the  Math. library.

  [ see my …/Boulder.pdf ]
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How Best to Enhance the Reliability of  Approximate Computation ?
Definitely not by pandering to ignorance.

Probably not by investing a lot of effort in radically different arithmetics.

We can accomplish more than what  Unums  would accomplish by investing in …

•  Software development systems that support  IEEE 754’s  diagnostic capabilities.

•  Programming languages liberated from  FORTRANnish  expression-evaluation and 
supporting …

»  2, 4, 8, 16, … byte wide precisions chosen when a subroutine is called 
»  tagged intervals including  Exterior,   and  Center ± Radius,   and Open-ended
»  coffins and parallelepipeds and ellipsoids 
»  better error-control for a library’s solvers  (equations,  quadrature, ODEs, … ) 

…  in that order of priority.
 • • • • • • • • • • • •

“Work expands to fill the time available for its completion.”  C. Northcote Parkinson’s Law [1958] 

The best gauge of newer faster computers’ worth is 
how much more they can do in the same time as before.     J.L. Gustafson’s Law [1988] 

How shall we gauge the reliability of a computing environment ? 


