

File: UnumSORN

vs

. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 1/26

A Critique of John L. Gustafson’s

THE END of ERROR — Unum Computation

and his

A Radical Approach to Computation with Real Numbers

Prepared for an IEEE Symposium on Computer Arithmetic

ARITH 23

July 10-13, 2016, at the Hyatt Regency in Santa Clara CA

by W. Kahan, Prof. Emeritus (

i.e

., retired)
Mathematics Dept., and E.E. & Computer Science Dept.

University of California @ Berkeley

This document, formatted for leisurely reading, is posted at

 <www.eecs.berkeley.edu/~wkahan/UnumSORN.pdf>

File: UnumSORN

vs

. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 2/26

Relevant Documents have been Exchanged:

Gustafson’s book was published last year:

THE END of ERROR — Un

u

m

Computing

(2015, CRC Press, 433 pp.)

.

A slightly revised version with typos corrected may exist somewhere.

A Radical Approach to Computation with Real Numbers

introduces SORNs and is posted on his web page

www.johngustafson.net/…

 at

…presentations/Unums2.0slides.pptx

 and

…pubs/RadicalApproach.pdf

 48 pages, updated to 23 Apr. 2016 16 pages, downloaded 18 May 2016

I think they greatly exaggerate the merits of schemes proposed therein.

My detailed critiques are posted at

www.eecs.berkeley.edu/~wkahan/EndErErs.pdf

 and

…/SORNers.pdf

and supply analyses to support criticisms presented herein.

File: UnumSORN

vs

. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 3/26

Today’s two lessons:

A Moment’s Mistake

can take far longer —

Months, Years –

to Find and to Fix.

Arithmetic

is a very small part of

Mathematics & Computer Science.

File: UnumSORN

vs

. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 4/26

What are

Unum

s

 (“

Un

iversal

num

bers”) ?

Floating-point numbers each with width, range and precision variable at run-time,

each tagged to show whether it is exact or uncertain by

ulp

.

Likely to serve in pairs as endpoints of intervals for interval arithmetic.
Alleged to save storage space if each is no wider than a datum needs.

Ideally, widths would vary automatically to yield final results of desired accuracies.

What are

SORN

s (

S

ets

O

f

R

eal

N

umbers) ?

Finite collections of

Extended Real

 numbers (including unsigned

∞

) and also
open intervals between them, referenced by

pointers

 instead of their values.
Likely to serve in pairs as endpoints of intervals for interval arithmetic,

Save storage space if pointers are no wider than the data need.
Fastest arithmetic operations each achieved by a table-look-up.

Both schemes are intended for use with massive parallelism, more than thousands-fold,
and with

Big Data

, perhaps as “a shortcut to achieving exascale computing”.

1
2

File: UnumSORN

vs

. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 5/26

Unum and SORN Computation would be Worth their Price,

whatever it is,

IF

the Promises Gustafson has made for them
could

ALWAYS

 be fulfilled.

But they can’t.
Not even

USUALLY

.

The Promises are Extravagant;
the Virtues of Unums and SORNs have been exaggerated;

and you can’t

Always

 know whether they have betrayed you.

Offered here will be a few of many examples posted in

…EndErErs.pdf

 &

…SORNers.pdf

File: UnumSORN

vs

. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 6/26

Extravagant Claims for Unum and SORN Computing ?

The book claims that …
Unum Computation needs no difficult mathematical analysis to prevent mishaps due to …

• Discretization of the continuum, as when solving differential equations

?

• Underestimating how uncertainties in the given data affect computed results

?

• Roundoff and over/underflow in IEEE 754’s floating-point arithmetic

?

Unum and SORN computation are free from Interval Arithmetic’s failure modes

?

• The

Dependency Problem

: taking no account of correlations among variables
• The

Wrapping Effect

:

 intervals grow exponentially too fast in long computations

The book claims that

“Calculus is Evil”

, or at least unnecessary

?

• No need to know it to solve differential equations;

use massive parallelism instead

?

• No need for modern numerical analysis nor difficult mathematical error-analyses?

No use nor need for IEEE 754’s mostly still unsupported diagnostic aids like …
• “A plethora of NaNs” ?
• Flags inaccessible from most programming languages ?
• Directed roundings (since Unums and SORNs would eliminate roundoff) ?

These claims pander to Ignorance and Wishful Thinking.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 7/26

Wishful Thinking : We can be Liberated from Error-Analysis ?

Four steps to solve a computational problem …

1• Choose or invent an algorithm α , express it in the language of Mathematics, and
prove that it would work if performed in ideal arithmetic with infinite precision.

2• Translate α faithfully into a program P in a computer’s programming language
like C or FORTRAN or MATLAB or PYTHON or … .

3• Execute P to obtain a result R . Usually R is accurate enough, sometimes not.

How can we know for sure whether R is accurate enough ?

4• If P’s arithmetic is Floating-Point, whatever its precision(s), we need a proof-like

 Error-Analysis to determine for sure if P implements α accurately enough.
If an Error-Analysis exists, it may be obvious, or it may be obscure.

If an Error-Analysis exists, it could cost more than R is worth.

Wishful Thinking :
Error-Analysis is unnecessary if P is executed in SORN or Unum arithmetic ?

William Kahan
Cost: first to find, then to
 compute an error bound.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 8/26

Disappointment:
Like Interval Arithmetic, SORN and Unum Computation can grossly overestimate,
sometimes by many orders of magnitude, the uncertainty in computed results. How?

Let f(x) be the function to be computed; let ƒ(x) be the algorithm or formula chosen to
compute f(x) ; and let F(x) be (the result from) the program that implements ƒ(x) .

When executed in floating-point arithmetic, F(x) could occasionally be arbitrarily wrong
for all we know without an error-analysis. What can be done about that? (Later)

When executed in SORN or Unum or Interval arithmetic, F(x) is an interval that
must enclose the ideal mathematical value of ƒ(x) . What if F(x) is far too big?

• If big width is due to roundoff, redo computation with appropriately higher precision.
Unum Computation lets precision be increased by the program. Often it works.

• If big width of F(X) is due to uncertain data X but seems far too big, partition X
into smaller subregions X and replace F(X) by the Union of all intervals F(X) .

Often this union ∪ X∈ XF(X) is smaller than F(X) if every X is tiny enough.

BUT NEITHER RECOMPUTATION ALWAYS SUCCEEDS.

William Kahan
Dustinguish the 3 f's !

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 9/26

Two of the Failure Modes:

• How can increasing Unums’ precision fail to overcome roundoff ?
It happens to futile attempts to compute accurately an expression at its discontinuity.

The program may fall into an infinite sequence of ever increasing precisions.
It’s unnecessary if discontinuity alters only the path to the program’s goal;

it can obstruct common matrix computations, like eigenvalues.
Examples: see pp. 4 - 5 & p. 8 of …/EndErErs.pdf .

• How can the union ∪ X ∈ XF(X) fail to be smaller than over-size F(X) ?

Example: R(x, y) := and S(x, y) := are two expressions

for the same rational function. In IEEE 754 floating-point R(x, y) is the more
accurate when |x/y| ≈ 1 ; but S(x, y) is not degraded by over/underflow etc.

Let Q be the open square ((0, 1), (0, 1)) = { (x, y) : 0 < x < 1 & 0 < y < 1 } .
It is representable in both SORN and Unum arithmetic as a pair of open intervals.
Subdivide Q into a union of smaller rectangles Q . BUT however tiny they are,

 ∪ Q ∈ QR(Q) = (–∞, +∞) stays far wider than the correct interval S(Q) = [–1, +1] .

x y–()· x y+()

x
2

y
2

+
------------------------------------ 1 2

1 x y⁄()2+
---------------------------–

William Kahan
S(Q) = (-1, +1) .

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 10/26

 ∪ Q ∈ QR(Q) = (–∞, +∞) stays far wider than the correct interval S(Q) = [–1, +1] .

How often does misbehavior this bad occur ?
It is an instance of the Dependency Problem familiar in Interval Arithmetic circles.

The book’s chs. 16 & 18.2 claim to overcome the Problem; p. 12 of … .pdf & pp. 44-6
of … .pptx claim SORN arithmetic has No Dependency Problem. Claims are mistaken.

Recall: f(x) is to be computed using algorithm ƒ(x) implemented as program F(x) .

• F(x) may work fairly well with floating-point but misbehave with Interval Arithmetic,
as does R(Q) . How could you know this in advance without knowing S(Q) ?

• ƒ(x) may be a numerically precarious algorithm to compute f(x) at slightly uncertain
data x no matter how F is programmed. Does an algorithm better than ƒ exist?

Example: the Incenter of a tetrahedron; as volume shrinks F → ∞ ; see
p. 26 in www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf.

• ƒ(x) may be the solution of an equation æ(x, ƒ) = o whose coefficients depend on x .
If x is uncertain so are they, but correlated in a way all interval arithmetics ignore.

The equation’s solution may react far worse to perturbations than does f(x) .
E.g: deflections of loaded elastic structures, crash-tests, least-squares, …

A remedy: Use higher precision, not SORN/Interval Arithmetic.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 11/26

A Third Failure Mode:
The Wrapping Effect is familiar in the Interval Arithmetic community. It can cause

intervals to grow too fast exponentially with a computation’s length and dimension.

• Without mentioning it the book suggests that it does not afflict Unum Computation; see
p. 306 for the claim “no exponential growth in the error, only linear growth.”

• SORN arithmetic’s “Uncertainty grows linearly in general” [pp. 41-2 of ….pptx]

Actually SORN/Unum/Interval arithmetics can and do generate intervals that
grow too fast exponentially with a computation’s length n and dimension d .

Example: simplified Dynamical System’s Reachable Set: xn := H·xn–1 = Hn·x0 , n > 6

 H := 20-by-20 Hadamard matrix; every element has magnitude 1/√20 , but H2 = I .
Initialize interval X0 := Unit HyperCube. Compute X1, X2, X3, …, X2n in turn.

Dimension d = 20 ; Computation length = 2n . True X2n = X0 ; no growth at all.
SORN/Unum/Interval Arithmetics produce X2n excessively too big by 20n–1/2 .

To reduce grossly excessive to moderately excessive, say 400 times too big, X0 has
to be subdivided into at least 2020n–50 tiny hypercubes 205/2–n on a side, well past
the capability of “… mindless … large-scale parallel computing”. [book p. 219]

William Kahan
The Curse of Big Dimensions

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 12/26

“Never Wrong” ≠ “Always Right”
A proponent of SORN/Unum/Interval arithmetic may claim that it is Never Wrong

since it delivers an interval that Always encloses the True Result (if one exists).

But we’ve seen delivered intervals vastly wider than the True Result deserves.

How bad is that ?

No harm is done by intervals known to be much too wide;
these will be disregarded, if computed at all. (Interval arithmetic isn’t popular.)

Harm is done by vastly oversized intervals believed deserved by the data.
• A worthwhile project may be abandoned unnecessarily.
• Extra work may be undertaken only because interval arithmetic was believed.

Without an error-analysis or an alternative computation for comparison,
SORN/Unum/Interval Computation’s failure modes are difficult to diagnose.

To make matters worse, SORN arithmetic lacks Algebraic Integrity,

thus undermining a programmer’s faith that Arithmetic ≈ Algebra.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 13/26

What is Algebraic Integrity ?
IEEE 754 Floating-point has it:

In the absence of roundoff,
if several different rational expressions for the same function

produce different values when evaluated numerically,
at most two different values can be produced,

and either the two values are ±∞ or else
at least one is NaN, which is easy to detect.

 SORN arithmetic lacks Algebraic Integrity, and boasts that it has no NaN , and …
 “No rounding errors … . No exceptions … .” [… .pptx p. 3, … .pdf p. 2]. BUT …

 Different SORN expressions for a rational function can produce different SORNs :

Example: As rational functions, u(t) := 2t/(1 + t) = v(t) := 2 – (2/t)/(1 + 1/t) ;

 x(t) := (1 + u(t)2)/(2 + u(t)2) = y(t) := (1 + v(t)2)/(2 + v(t)2) = z(t) := 1 – 1/(2 + v(t)2) ;

 SORN arithmetic gets x(0) = 1/2 , y(0) = (0, ∞] , z(0) = [1/2, 1] , with
no roundoff nor indication of anything amiss about y(0) or z(0) .

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 14/26

As functions, x(t) = y(t) = z(t) ; but when evaluated as arithmetic expressions
 SORN arithmetic gets x(0) = 1/2 , y(0) = (0, ∞] , z(0) = [1/2, 1] , with

no indication of anything amiss about y(0) or z(0) . They have “lost information”.

How? Where other arithmetics would produce a NaN for 0/0 , ∞ – ∞ , 0·∞ , ∞/∞, etc.

 SORN arithmetic produces Ω , the set of all Extended Reals. Ω2 = [0, ∞] .

Why would different expressions for the same function appear in a program?

Over different subdomains of the function’s domain, different expressions may be
less vulnerable to “loss of information”, or have different costs of evaluation.

 On subdomains’ boundaries, the different expressions should agree within roundoff.

If one expression malfunctions, the program can try another,
but only if it detects the malfunction.

An arithmetic system that hides malfunctions
must produce misleading results occasionally.

We shall see it happen to SORN arithmetic.

William Kahan
Need blue] .
Different expressions for
the same function happen
often in matrix software.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 15/26

Search for all solutions z of an equation “ æ(z) = o ” within a given coffin X0

given an interval program Æ(X) for æ(x) satisfying Æ(X) ⊇ æ(X) and,
except for roundoff, width(Æ(X)) → 0 as width(X) → 0 .

(A coffin , called a ubox in the book, is a vector of intervals.)

Procedure: Æ(X) excludes o ⇒ coffin X cannot contain a solution z , so discard X .
Partition X0 into small coffins X , and discard all those that cannot contain any z .

Partition all remaining small coffins into smaller coffins; discard " " " … " " .
Repeat until every remaining coffin is tiny enough, or none are left.

The book calls the remaining coffin(s) a C-Solution of “ æ(z) = o ”.

Example: æ(x) := 3/(x + 1) – 2/(x – 1) + 1/(x – 1)2 . Start search at X0 := [0, 4] .
For Æ(X0) , Unum & Interval arithmetic get NaN ; SORN arithmetic gets Ω .

Despite the NaN we must not discard X0 . Repeated subdivision converges to

tiny intervals around z = 1 , z = 2 and z = 3 . But only æ(2) = æ(3) = 0 .
Unum/Interval’s Æ(1) is NaN . SORN’s Æ(1) = Ω unexceptionally.

 C-Solutions can include singularities of æ unless filtered out.

C-Solutions:
An important application of Parallel Interval Arithmetic : X0

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 16/26

 C-Solutions can include singularities of æ unless filtered out.
Never-exceptional SORN arithmetic renders singularities
 difficult to distinguish from ordinary overly wide intervals.

Example: Construct an equation “ æ(z) = o ” using R(ξ, η) := thus:

 æ(x) := at x = . Seek solution z using SORN arithmetic for Æ(X) .

Whenever o ∈ X so does o ∈ Æ(X) = . And o ∈ Æ(X) whenever one corner of X

is much closer to o than the others. Consequently the C-Solution process converges to
tiny rectangles clustered closely around o plus, in SORN arithmetic, one enclosing o .

But z = o is not a solution.

 –1 ≤ R(ξ, η) = –R(η, ξ) ≤ 1 except SORN’s R(0, 0) = R(∞, ∞) = instead of NaN ,

 so the equation “ æ(z) = o ” has no solution z .

 In general, C-Solutions can “solve” equations that have no solution.

It would not have happened here if Unum/Interval arithmetic replaced SORNs, and
 also S(ξ, η) from p. 9 above replaced R(ξ, η) to produce narrower intervals.

ξ η–()· ξ η+()

ξ2 η2
+

R ξ η,() 9 8⁄–

R η ξ,() 9 8⁄+
ξ
η

Ω
Ω

Ω
Ω

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 17/26

The book disparages Calculus and Modern Numerical Analysis
p. 181 Unums should work even when used in a naive way, [duty? likely?]

the way floats usually are used.

p. 216 This is the essence of the ubox approach. [Compensate for ignorance ?]
Mindless, brute-force application of large-scale parallel computing ...

p. 311 Calculus considered evil: Discrete physics
Calculus deals with infinitesimal quantities; [NO! … with limits]

computers do not calculate with infinitesimals.

p. 273 When physicists analyze pendulums, they prefer to talk about "small oscillations".

p. 316 Every physical effect can be modeled without rounding error or [Not what
sampling [discretization] error if the model is discrete. he does]

p. 277 Instead, we treat time as a function of location. [… assuming conservation laws]
 ..., the time dependency of physical simulation has been misused [By whom?]

as an excuse not to change existing serial software to run in parallel.
[The book’s algorithms cannot cope with drag nor friction.]

[cf. EndErErs.pdf pp. 25 -31.]

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 18/26

Book pp. 327-332 An arbitrarily precise solution method for
 nonlinear ordinary differential equations that uses no calculus,

just elementary algebra, geometry and Newtonian physics.

Counterexample: du/dτ = (1 – u)·v and dv/dτ = –(1 + u)·v from Chemical Kinetics
requires calculus to reveal Conservation of u(τ) + 2·log(|u(τ) – 1|) – v(τ) ,

which simplifies the decay-time of v(τ) to numerical evaluation of an integral.
[cf. p. 13 of EndErErs.pdf]

Numerical Quadrature is the numerical evaluation of an integral ∫ab
 f(x) dx .

About this topic, the book has lots to say, all obsolete, misleading and irrelevant:

Book p. 198 error ≤ (b - a)·|f" (ξ)|·h2/24 [Midpoint Rule vs. ∫ab
 f(x) dx]

… What the hell is that? … To compute the second derivative we have to know
calculus … then we have to somehow find the maximum possible absolute value …

This is why the classical error bounds that are still taught to this day are
deeply profoundly unsatisfying.

Actually, we don’t have to know calculus to invoke Automatic Symbolic Differentiation
software that transforms program F to a program that interleaves F with F' and F" .

And we don’t have to find max |f" (ξ)| to estimate an integral rigorously.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 19/26

In ch. 15, the book’s crude numerical quadrature ignores modern numerical analysis
and consequently costs too much work by orders of magnitude despite parallelism.

Here is how Work grows as Error is diminished by various algorithms:
Book’s algorithm Work = O(1/Error2) Interval bounds EndErErs.pdf pp. 21-2

1960-70’s algorithm Work = O(1/√Error) Interval bounds EndErErs.pdf p. 23

1970-80’s algorithm Work = O(–log(Error)) Asymptotically EndErErs.pdf pp. 23-4

Book p. 281 “... it may be time to overthrow a century of numerical analysis.” [Not yet.]

And it’s all irrelevant.

The book THE END of ERROR — Unum Computing spends more pages advocating ill-
advised numerical methods than comparing equitably the costs and benefits of

Unum Computing vs. Interval Arithmetic
with precision roughly variable at run-time and supported by an appropriate programming
language and Math. library.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 20/26

What does Unum Computation cost? Too much!
Unums’ widths can vary almost arbitrarily at run-time, and

they are intended to be packed tightly to minimize time & energy per Unum moved.

Consequently, let’s compare Unums of diverse and varying widths vs.
interval arithmetics of precisions 2, 4, 8, 16, … bytes wide:

• Arithmetic: Larger latency because unpacking requires more pipeline stages vs.
interval arithmetic’s precisions declared upon entry to subprograms

whose local variables are then allocated on a stack at call-time.

• Memory Management: Its cost is overlooked in the book, which says on pp. 40-41
“… does the programmer have to manage the variable fraction and exponent sizes?

 No. That can be done automatically by the computer.” [For a price!]

 Fetching Unums: must cost at least one extra indirect address reference.

 Writing Unums: must cost at least one extra indirect address reference except,
if width can change, must cost more indirection writing to a Heap

and subsequent Memory Defragmentation/Garbage Collection.

Costs depend crucially upon how the programming language manages diverse widths.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 21/26

What does SORN Arithmetic cost?
Consider SORN pointers N bits wide, roughly like floating-point’s precision.

 N is small; probably 8 ≤ N ≤ 16 .

Computed SORN intervals usually require pairs of pointers after “information is lost”,
and may be Exterior intervals that include ∞ : cf. my 1968 lectures

Example: X = [6, 8]/[–1, 2] = [3, –6] = { x ≥ 3 or x = ∞ or x ≤ –6 }

Allowing for Exterior intervals greatly complicates SORN arithmetic;
it complicates Interval arithmetic too. Complicated ⇒ Slower.

A (too) much faster arithmetic scheme allows Arbitrary collections of SORNS ,

each represented by a word 2N bits wide. If implemented on the CPU chip,

this faster arithmetic would need area O(23N) — better used for cache.

The slower scheme, using pairs of N-bit pointers, if implemented on the CPU chip,

needs area O(N·22N) to run faster than interval arithmetic software using

standard N-sig.bit floating-point occupying O(N2) area on-chip.

SORNs could satisfy a demand, if it exists, for low-precision Interval arithmetic. …

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 22/26

How much Precision is Enough ?
Much of the world’s data fits into short words. Most computed results fit into a few digits.

For many a short floating-point computation of low dimensionality,
 arithmetic’s precision is adequate if it exceeds the accuracy desired in the result.

SORN arithmetic might satisfy that requirement well enough, but
SORN arithmetic should not be used for lengthy computations

lest it produce intervals vastly too wide, difficult to diagnose.

An old Rule-of-Thumb renders roundoff extremely unlikely to cause embarrassment:
In all intermediate computation, perform arithmetic carrying somewhat more than

twice as many sig.dec. as are trusted in the data and desired in the final result.

This rule has long served statistics, optimization, root-finding, geometry, structural
analysis and differential equations. Rare exceptions exist, of course. Nothing is perfect.

SORN/Unum/Interval arithmetic purports to insure against betrayal by that rule of thumb,
but runs the risk of betrayal by a failure mode of interval arithmetic, as we have seen,

The only sure defence against embarrassment due to roundoff is an error-analysis,
but it might not exist.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 23/26

Unum and SORN Computation would be Worth their Price,
whatever it is,

IF
the Promises Gustafson has made for them

could ALWAYS be fulfilled.

But they can’t.
Not even USUALLY.

The Promises are Extravagant;
the Virtues of Unums and SORNs have been exaggerated;

and you can’t Always know whether they have betrayed you.

They can’t obviate error-analysis. What can be done instead?

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 24/26

As a scientist or engineer,
I wish not to know how big my errors due to roundoff and discretization aren’t.

And I am unwilling to pay much for what I wish not to know.

I dearly need to know …
•… that errors due to discretization are negligible
•… that errors due to roundoff are negligible.
•… how much uncertainty my results have inherited from uncertain data.

What I need to know is almost always revealed by some repeated recomputations:

• Appraise discretization error by refining the discretization.

• Appraise rounding errors by increasing precision, or else [cf. my …/Boulder.pdf]
by three recomputations with redirected roundings of all atomic operations.

• Uncertainty Quantification, the appraisal of uncertainty inherited from data,
requires a difficult and often costly combination of several approaches:

» Error analysis, Perturbation analysis, Partial Derivatives, … .
» Recomputation at many samples of intentionally perturbed input data.
» Interval arithmetic used skillfully to avoid excessive pessimism.

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 25/26

How shall we debug
long intricate scientific and engineering programs using

SORN/Unum Arithmetic ?

• Overly wide SORNs and their spurious C-solutions are difficult to diagnose or cure.

• Overly wide Unums due to uncertain data are difficult to diagnose, tedious to cure.

SORN/Unum arithmetics lack IEEE 754’s Flags ; consequently …
Overly wide SORNs/Unums due to over/underflow are difficult to diagnose or cure;

lack of flags that point to sites where exceptions first occurred obscures them.

SORNs lack NaNs, lack Algebraic Integrity; cannot easily discover invalid operations.

Unums have just one NaN instead of IEEE 754’s “plethora” of them that can
 serve as pointers to the program’s sites where they were created.

Alas, IEEE 754’s diagnostic capabilities are still supported poorly
by programming languages and software development systems, and

by computer architectures that trap floating-point exceptions
into the operating system instead of into the Math. library.

 [see my …/Boulder.pdf]

File: UnumSORN vs. Unums & SORNs for ARITH 23 Version dated July 10, 2016 1:29 pm

Prof. W. Kahan Page 26/26

How Best to Enhance the Reliability of Approximate Computation ?
Definitely not by pandering to ignorance.

Probably not by investing a lot of effort in radically different arithmetics.

We can accomplish more than what Unums would accomplish by investing in …

• Software development systems that support IEEE 754’s diagnostic capabilities.

• Programming languages liberated from FORTRANnish expression-evaluation and
supporting …

» 2, 4, 8, 16, … byte wide precisions chosen when a subroutine is called
» tagged intervals including Exterior, and Center ± Radius, and Open-ended
» coffins and parallelepipeds and ellipsoids
» better error-control for a library’s solvers (equations, quadrature, ODEs, …)

… in that order of priority.
 • • • • • • • • • • • •

“Work expands to fill the time available for its completion.” C. Northcote Parkinson’s Law [1958]

The best gauge of newer faster computers’ worth is
how much more they can do in the same time as before. J.L. Gustafson’s Law [1988]

How shall we gauge the reliability of a computing environment ?

