
GUPU-Poster 1

Ulrich Neumerkel
Institut für Computersprachen
Technische Universität Wien
ulrich@complang.tuwien.ac.at

GUPU: A Prolog course environment
and its programming methodology

Problems learning Prolog

Built-in predicates according to Mixtus:
 56 with side effects,
 15 sensitive to instantiations e.g. var
 16 logical

*

avoid imperative references by focusing on language skills
=

reading techniques + programming environment

* previous knowledge/skills not helpful
* many things suggest imperative understanding
 - frequently used imperative names
 suggest imperative meaning; e.g. append/3
 - overwhelming majority of built-ins produce side effects
 - imperative programming environments
 - imperative I/O required, often misused for "debugging"
 - tracers show imperative not declarative meaning
 - debuggers produce/require too much detail

*

GUPU
Gesprächsunterstützende Programmierübungsumgebung

* specialized for Prolog courses
* side effect free, no toplevel shell
* subset of Prolog (e.g. layout and spelling significant)
* fast querying and testing

Conversation supporting programming course environment

http://www.complang.tuwien.ac.at/ulrich/gupu/

Solution

GUPU-Poster 2

Family of reading techniques

* read few properties at once
 by covering parts of program
* no execution traces, no proof trees

English sentences
- limited to small programs

Reading programs

Informal reading

Declarative reading

Termination reading

Argumentwise reading

Goalwise reading

Clausewise reading

Term size

Size of solutionsequence Procedural reading

Size of solutionset

Instructions

UnificationsNumber of inferences

GUPU-Poster 3

Informal and declarative reading

read only parts at once
(add remark that something is missing)

ancestor_of(Ancestor, Person) :-
 child_of(Person, Ancestor).
ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

Someone is an ancestor of a descendant,
if he is the parent of that descendant,
or
if he is the parent of another ancestor of
the descendant.

Incomprehensible

Clausewise reading

Goalwise reading

Argumentwise reading

Someone is an ancestor if he has a child.
(But maybe more is required)

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

Someone is an ancestor of a descendant, if the
ancestor has a child. (But maybe more is required)

ancestor_of(Ancestor, Person) :-
 child_of(Person, Ancestor).
ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

Someone is an ancestor of a person,
if he is the parent of that person.
(But there may be other ancestors as well.)

Informal reading

Declarative reading

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

Anyone is ancestor of anyone.

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

Someone is an ancestor of a descendant,
if the descendant descends from (another)
person. (But maybe more is required)

Someone is an ancestor of a descendant, if he is
the parent of another ancestor of the descendant.
(But there may be other ancestors as well.)

ancestor_of(Ancestor, Person) :-
 child_of(Person, Ancestor).
ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

GUPU-Poster 4

Detecting errors with declarative reading

most errors can be located by
reading only part of a program

Someone is an ancestor of a person,
if the ancestor is a child of that person.

Wrong definition

The hidden clause cannot "undo" the error.
It can be ignored, if the remaining program is already wrong.

ancestor_of(Ancestor, Person) :-
 child_of(Ancestor, Person).
ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

* errors can be located statically
* debuggers not helpful,
 because they provide irrelevant detail
 (e.g. procedural aspects)

Estimating efficiency
with declarative reading

size of solutionset
size of terms in solution

GUPU-Poster 5

Procedural reading

* special case of declarative reading
* uncover goal in fixed order
* consider variables, estimate size of solutions

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

Free Variables in head.

Person always free.
Descendant has no influence
on child_of/2.

Descendant is passed through.
ancestor_of/2 depends on
child_of/2.

Termination reading

Hide parts that do not influence termination.
If remaining predicate terminates (for a
particular goal), also the original will terminate.

ancestor_of(Ancestor, Person) :-
 child_of(Person, Ancestor).
ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

If this rule terminates (and fails),
also original predicate terminates.

If Person= Ancestor it does not terminate
(similarly for larger cycles)

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

ancestor_of(Ancestor, Descendant) :-
 child_of(Person, Ancestor),
 ancestor_of(Person, Descendant).

GUPU-Poster 6

The programming environment GUPU

Gesprächsunterstützende Programmierübungsumgebung

* specialized for Prolog courses
* side effect free, no toplevel shell
* subset of Prolog (e.g. layout and spelling significant)
* fast querying and testing

Conversation supporting programming course environment

http://www.complang.tuwien.ac.at/ulrich/gupu/

1) find relation
2) find nonimperative, descriptive names
 names must not be verbs in imperative (checked)
3) write goals for which relation should hold and should not hold
4) code predicate

Supported approach to write predicates:

answer substitutions
generated on demand

links to examples

query/assertion

longer answer substitutions
are displayed in chunks of five

queries/assertions checked
on saving; failing queries
are reported as errors

question to the lecturer

and its answer

negative assertion
goal must fail

example statement

links to help texts

help text windowassignment window

layout of predicates
is checked

answer substitutions
are temporary text
deleted on reload

Viewing answer substitutions

viewers visualize
answer substitutions

side effect free "output" using query annotations
based on elementary viewers more complex viewers are built

:- html(Cs) <<< Query.

:- text(Cs) <<< Query.

:- postscript(Cs) <<< Query.

View characterlist as unstructured text.

View characterlist as postscript document.

View characterlist as html document.

grammar describes text representation

grammar for Postscript

GUPU-Poster 7

simple query

annotated query

GUPU-Poster 8

annotated query

residual program
can be included into source

* Mixtus integrated
* simple usage by annotating query
* instant response
* often helpful for finding errors

Partial evaluation

Partial evaluation

Abstract.
GUPU is a programming environment specialized for Prolog programming courses
which supports a novel way to teaching Prolog. The major improvement in teaching
Prolog concerns how programs are read and understood. While the traditional
approach covers Prolog’s execution mechanism and its relation to mathematical logic
we confine ourselves to reading programs informally as English sentences. The
student’s attention remains focused on a program’s meaning instead of details like
proof trees or execution traces. Informal reading is limited to short predicates.
Larger predicates translate into incomprehensible sentences cluttered with referents
and connectives. To overcome this problem a simple reading technique is presented
that does not translate the whole predicate at once into English. Only parts of a
predicate are considered. The remainder (e.g. some clauses, goals, arguments) is
neglected for the moment. In this manner incomprehensible sentences are avoided.
Our reading technique extends well to the more procedural aspects of Prolog like
termination and resource consumption. The reading technique allows to reason about
a program (e.g. understanding, detecting errors) in an efficient static manner while
avoiding reference to superfluous details of the computation.

GUPU supports this approach with a side effect free programming environment.
Programs are subject to restrictions which ease informal reading and catch many
mostly syntactic and stylistic errors. The cumbersome ‘‘type and forget’’-style
top-level shell is replaced by a side effect free mode of interaction which also
improves coding style by allowing to write tests before coding a predicate. The
partial evaluator Mixtus is seamlessly integrated into GUPU.

