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---Abstract----

Metastructures are a new way to extend Prolog’s built-in unification by user defini-
tions. While the behavior of ordinary terms during unification remains the same, the
user can define the behavior of metastructures. Metastructures enable the user to im-
plement efficiently many proposed enhancements of Prolog such as functional extensions,
constraints according to the CLP scheme and meta-logical primitives in terms of Prolog,
instead of relying on a highly specialized system. Metastructures can be implemented so
efficiently that programs not using this extension are executed with a very small over-
head. Metastructures have the same execution expense as an efficient implementation of
freeze/2. Additionally, the system’s garbage collector is able to detect and remove all
unused metastructures without knowing their actual definition.

1 Introduction

In recent years the area of logic programming languages has evolved rapidly. The number
of existing extensions of Prolog is very large. For all intents and purposes, in a specific
Prolog implementation only a few extensions can be implemented because of the large de-
velopment time required. The technique of metainterpreters is the only choice for realizing
arbitrary languages in one system within a reasonable amount of time. While there already
are sophisticated compiler-generation techniques for meta-interpreters e.g. [Neumag88], the
compilation to Prolog cannot always remove the huge interpretation overheads, especially
since extensions local to unification cannot be handled efficiently with this technique.

When considering existing approaches of extensions to syntactic unification, we observe:
highly specialized implementations, where the unification algorithm cannot be manipulated
by the user (e.g. [Col87,JaLa87,vH89]), approaches too general to be implemented efficiently
and too general to allow the reuse of existing Prolog programs [Ko84], or extensions allowing
definitions in a procedural language[CLiST89] only.

Our approach focuses on a sufficient abstract yet efficient interface, which permits to
write implementations of constraints in Prolog, neglecting the actual representation of the
constrained variables. Metastructures are applicable, but not restricted to the following areas:

e CLP-languages [JaLa87], equational theoriesfEmY87], new abstract data types con-

sistent to unification, provided an unification algorithm exists, eg. associative-lists
[Siek86].

e functional extensions, i.e. narrowing, term rewriting systems [BeLe86]
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e control primitives e.g. freeze/2 [vC86] and restricted forms of intelligent backtracking,
support for negation [Nais86] and correct quantification for variables [Vas86]

e database support by set abstractions, and restricted forms of bottom up evaluation

e system programming

+ stream-based side effect free I/O-facilities, similar to committed choice languages

+ structure sharing in a structure copying system.

+ merging different representations for the same terms. In [KiiNe87] character strings
are an alternative representation for atoms within the same system. This extension
is completely transparent to the user.

For the system implementor, metastructures have important advantages:

e Only small modifications are required for an existing Prolog implementation. The
implementor needs only to concentrate on the efficient implementation of Prolog with
metastructures. Many optimization schemes, e.g. tail-end recursion, may be reused.
Application dependent problems (e.g. equation solving algorithms) are left over to the
user.

e Metastructures make very few assumptions about an existing implementation. As a
result a variety of possible implementations stands as an option.

e Due to the high efficiency and the small implementation effort, it seems probable that
metastructures will be used within various Prolog systems. Constraint languages would
be portable.

e Libraries of metastructures dedicated to specific problem domains can be provided.

In chapter 2 metastructures will be briefly presented and compared with the traditional
approach to implement freeze/2 and dif/2. In chapter 3 we will discuss metastructures
from the (meta-) programming language point of view. Problems of consistent definitions will
be discussed in chapter 5. Aspects of the implementation are covered in chapter 4. We will
show that runtime overheads in a Prolog system enhanced by metastructures are insignificant.
In addition the implementation effort to extend an existing Prolog machine will be shown to
be considerably smaller than it is for a highly specialized constraint language.

2 Metastructures

A variable to be constrained needs an intermediate device to hold the description of the con-
straint. After solving or reducing the constraint, the intermediate device should be replaced
by its “result”. We introduce metastructures to serve this purpose. In the sequel a metastruc-
ture will be identified by the unique functor! meta/n, where n > 0. Although meta/n is not
a conventional Prolog term, we will use this notation to describe a metastructure in detail.
If we restrict for example a free variable X to be an even number, thus X € {y|y mod 2 = 0},
we bind X as follows: X = meta(Y, “Y mod 2 =0"). In general, a metastructure consists of
the following parts: meta(value,property,, ..., property,)
e value-part, represented by the first argument of meta/n. This is intended to represent
later on a description of the constrained variable nearer or “narrowed” to the solution.
The value-part determines the two possible states of a metastructure:
+ As long as the value-part is free, the metastructure serves to restrict of the
unknown value. Such a metastructure is called pending.
+ If the value-part is bound to a non-variable term or to another metastructure, the
metastructure has reached saturation and is then called reduced.

Tn this paper we will follow this convention for sake of a simplified presentation. In Ch. 4.2 we describe
our implementation in more detail allowing arbitrary names for metastructures.



’ unify(T1,T2) H Variable \ Functor/Arity \ Metastructure ‘

Variable N4 Vv V4
Functor/Arity Vv N term meta unify/2
Metastructure Vv term meta_unify/2 | meta meta unify/2

Abbildung 1: Unification table of Prolog terms and metastructures

Briefly, we term a metastructure as pending if the value-part is free; reduced if not free.

e property-part, represented by the other arguments (possibly empty). The arguments

are arbitrary Prolog terms, which represent the meaning of the constraint.

At creation time the value-part is free. This means that the metastructure has no value yet
and is hence pending. The whole metastructure with property and value-part is accessible.
If the value-part becomes known, (i.e. if it is bound to a non-variable term or another
metastructure), the property-part is no longer of importance. The reduced metastructure is
replaced by the value-part. Thus the following equivalences are always true:

meta(known_value,property;, ...) <= known_value
meta(meta(V,propertyi1, ...),propertysi, ...) <= meta(V,propertyii, ...)

A metastructure is very similar to the suspension-data type as presented in [Carl87]
however, its behavior during unification is slightly different.

In order to combine metastructures and ordinary Prolog terms, we extend unification
as follows: The behavior of ordinary terms remains completely the same. When unified
with a variable, metastructures behave in the same way as non-variable terms (see /’s in
Fig. 2). All remaining cases where either or both of the terms are pending? need a more
detailed treatment. The interface for the description of the desired behavior of metastructures
comprises two user definable predicates—“methods”:

e term meta unify/2 for the unification with a non-variable term

e meta meta unify/2 to unify two metastructures

Metastructures cannot be manipulated by unification directly. To prevent the call of the
user definitions (the “evaluation”), we introduce the predicate

e ===/2 for syntactical unification.

It is equivalent to =/2, except for the cases of pending metastructures. ===/2 treats them
like ordinary structures.

2.1 Implementation of freeze/2

Goal “?- freeze(Variable,Goal).” [v(C86] delays execution of Goal until Variable
is bound. We use metastructure meta/2 to implement the suspension, refer to Fig. 2.
The property-part (the second argument) contains the frozen goal. The predicate freeze/2
unifies a new metastructure which contains the frozen goal and the variable responsible for
suspension. The value-part of the new metastructure is a new variable (see meta(_,...)).

When such a suspension (i.e. a pending metastructure) is unified with a non-variable term,
term meta unify/2 is called. The frozen goal is fetched (see ===/2), Term is unified with the
value-part, Term is therefore the “result”. In this manner, meta/2 becomes reduced and the
fetched Goal is finally called. When two suspensions are to be unified, meta meta unify/2 is
called, a new suspension which is the conjunction of both is constructed® and the two frozen

2Reduced metastructures have been already replaced by their value-part, or are “skipped”.
3 Attempts to unify a metastructure with itself are suppressed.



freeze(Variable,Goal) :-

Variable = meta(_,Goal). % create "suspension"
term_meta_unify(Term,Meta) :- % "supspension" found

Meta === meta(Term, Goal), % fetch Goal, bind value-part

Goal. % call frozen Goal

meta_meta_unify(Metal,Meta2) :-

Metal === meta(Var,Goall),
Meta2 === meta(Var,Goal2),
Var === meta(_, (Goall,Goal2)). % new "supension"

Abbildung 2: Implementation of freeze/2 with metastructures

goals are reduced to the conjunction.

2.2 Metastructures vs. delay/2

The control primitive delay/2 as defined in [Carl87] cannot be implemented with metastruc-
tures. As Carlsson states, a goal g(Any) is delayed by “?- delay(X,g(Any)).” “until X is
bound to any term, including a logical variable”.* There are several reasons why such a
predicate is undesirable:

e Semantically, the unification of a variable and any term being disjoint from it, whether
the term be interpreted (constraint) or not (functor), must not fail. Even the unification
of a free variable with another (free) variable may fail. By allowing to execute any goal
upon unification of X with a free variable, a failure may consequently arise.

e The first action a goal delayed by delay/2 will perform is to test in a loop whether it
should be delayed again. Evidently, the delayed goal is called too often.

e Unification in ordinary Prolog-programs will be slowed down because, nearly every uni-
fication deals with variables. A test must be added for every comparison of variables.
See chapter 4.1 for further details. Moreover, the event “until X is bound” is implemen-
tation dependent. delay/2 may or may not detect all bindings of free variables.

It is apparent that Carlsson needs delay/2 to implement dif/2. In chapter 2.3.2 we give

another implementation of dif/2 in terms of metastructures.

2.3 Implementation of dif/2

The predicate dif/2, already implemented in the first Prolog system “Prolog 07, provides a
sound implementation of disequality of terms. Our implementation of dif/2 is different from
other approaches [vC86,B0i88,Carl87].

2.3.1 Traditional implementation

Due to the symmetry of disunification only one variable needs to be constrained. If both
arguments in “?- dif (X,Y).” are free, the constraint is added to one variable only:

dif(X,Y) :- reduce(X,Y,V), !, var(V), delay(V,dif(X,Y)).
dif (X,Y).
The predicate reduce (X,Y,V) realizes an iterator: It fails, if X \= Y. Itsucceeds otherwise

and renders in V a variable of term X or Y, which then must be substituted in order to achieve
unification. If X == Y, V holds an atom®. Any unification of X with another variable” will

4[Carl87],§2.2, p.43

5See [v(86] for a historical overview

Sas [v(C86] we give no definition in Prolog. Under infinite trees such a definition is impossible see Ch. 5.
"Binding strategies with temporally ordered variables ([vC86], p. 91) may rule out several redundant calls.



cause a test for dif/2, whereas Y remains untouched. As long as X remains free, subsequent
bindings of Y have no impact. Iterator reduce/3 iterates over the two terms until the terms
are definitely different®.

2.3.2 Metastructure implementation

Metastructures are similar to non-variable terms during unification with free variables. This
“inherited” property of metastructures prevents us from using the traditional approach. For
“?— dif(X,Y), X = Y.” the unification X = Y cannot raise the execution of a related defi-
nition. Unfortunately, unification succeeds. Our implementation in Fig. 3 constrains both
variables. The unification X = Y is detected, since both variables are bound to metastructures.
The goal “?- X = Y.” entails “?- meta meta unify(X,Y).”. No overheads are incurred for
the unification of X or Y with a free variable.

The implementation in Fig. 3 uses an explicit passing of continuations to iterate over the
two terms (argument 2 and 3 of is_dif). The quadratic cost for structured terms is avoided
a priori. In this example, metastructures contain in their property-part a list of all other
variables, i.e. metastructures from which they are to be different.

3 Language aspects

In this chapter aspects of programming metastructures are discussed. We focus on the meta-
language to realize constraints rather than the usage of a constraint language.

The language for expressing how unification should be performed is only a small extension
to the Prolog language. The built-in unification algorithm of Prolog is extended as presented
previously. This new algorithm is used to perform unification in all programs. Modifications
to unification are defined in Prolog by providing a new definition of the parts of ordinary
unification.

To summarize, we have the following new elements which constitute the meta-language
for metastructures: term meta unify/2 and meta meta unify/2 to control unification of
metastructures, ===/2 to access the representation of metastructures via syntactic unifica-
tion. This meta-language serves for the realization of constraints only and must not be
visible to the user of constraints. The meta-language is very simple. It is the programmer
defining unification who bears full responsibility for the correctness of his extensions. The
definitions of metastructures cannot assert the equational rules. It is possible to break them
(e.g. transitivity or symmetry; even for conventional terms) with an arbitrary definition of a
metastructure For some guidelines refer to chapter 3.3.

The reason for the very primitive design lies in the various tasks metastructures should
perform: On the one hand, we want to define meta-logical or extra-Prolog features as
freeze/2 whose semantics is defined operationally. On the other hand we want to define
equational theories whose semantics is declaratively defined. As both of these tasks concern
unification, it is desirable to have only one extension to a Prolog system to serve both. It
should be evident to the reader that such diverging tasks result in only a very small com-
promise. The advantage of metastructures is that the compromise is settled at the level of
Prolog and not at a lower level of a procedural language.

8Tn order to reduce the quadratic cost due to the search for a pair to be unified, the terms passed to the
next examination may be simplified to the “frontier”, i.e. the pairs of terms the result of dif/2 depends on,
as observes [Nais86], p. 9..



dif (X,Y) :-dif(X,Y,0,[1).

% dif/4: dif with additional continuations
dif (X,Y,Xs,Ys) :-

X = meta(_, [is_dif(Y,Xs,Ys)]),

Y = meta(_,[is_dif (X,Xs,Ys)]).

% reduce/2: search continuations for next possibly different pair
reduce([X|Xs], [YIYs]) :-
var(X), var(Y), X ==Y, !,

reduce (Xs,Ys) % pair identical, try next
;0 (var(X); var(Y)), !,
dif(X,Y,Xs,Ys) % pair of "frontier"
. X =.. [XFIXL], Y =.. [YF|YL],
(  XF \= YF, ! % pair does not unify
; append (XL,Xs,XN), append(YL,Ys,YN),
reduce (XN, YN) % functors identical, try next
).
term_meta_unify(T,M) :-
M === meta(T,L),
tm_dif (L,T).
meta_meta_unify(M1,M2) :-
M1 === meta(V,L1), M2 === meta(V,L2),
append(L1,L2,L3),
mm_dif (L3,V),

V = meta(_,L3).

tm_dif ([1,T).

tm_dif ([is_dif(E,X,Y) |Ds],T) :-
(var(E); reduce([TI|X],[EIY])),
1

L)

tm_dif (Ds,T).

mm_dif ([1,V).

mm_dif([is_dif(E,X,Y)|Ds],V) :-
(nonvar(E); E \== V; reduce(X,Y)),
|

mm_dif (Ds,V).
Abbildung 3: Implementation of dif/2 with metastructures

3.1 Metastructures and object-oriented programming

From an object-oriented point of view, metastructures can be seen as a means to realize
objects. In [KTMBS&6] various possible object-oriented extensions of logic programming lan-
guages are discussed. Concerning metastructures, the representation of an object is given by
the metastructure’s property-part. Just as a class defines a set of similar objects (i.e. a type),
all definitions related to a metastructure define a new type of terms for Prolog. Messages
are equivalent to predicates visible to the user which deal with metastructures, e.g. write/1.
The corresponding methods (e.g. the extended implementation of write/1) access via ===/2
the internal representation. Also, term meta unify/2 and meta meta unify/2 can be seen
as methods responding to the message of unification. Here, the relation of metastructures to
a language like Vulcan is best expressed by [KTMB86]:

“A weakness of Vulcan ...1is the inability to unify Vulcan objects. This could be dealt with by extending

the underlying Prolog to send equals messages when attempting to unify objects. This would not work in the



standard concurrent logic programming languages, since messages cannot be sent from the guard.”

In contrast, metastructures send equals messages. This is the point, at that, where the
analogy to object-oriented programming does not hold convincingly: While message passing
is unidirectional in object-oriented languages, unification works in both directions. Unifi-
cation is more powerful than comparisons in a procedural language. Whereas an object’s
(temporal) state is a fundamental concept for object-oriented programming, equivalence is a
fundamental concept for logic programming languages. It is interesting to observe the pro-
blems in object-oriented programming due to this lack of referential transparency. Specifically
equality (procedurally: comparisons) of objects pose severe conceptual problems[KhoCo86].
Even if there is a large gap between the object-oriented and logic programming paradigm,
both deal with abstract data types, each in its own manner.

The motivation of metastructures as a means to implement abstract data types should be
obvious. The internal representation is hidden from the user (who uses ordinary unification).
Only the behavior during unification and some operations (predicates) define the abstraction.

3.2 Hierarchies

We have intentionally excluded a hierarchical (dynamic) type system. One of the reasons is
the conceptual mismatch incurred by hierarchies known form object-oriented techniques: As
mostly only one hierarchy is provided, design decisions (i.e. designing conceptual hierarchies)
must take into account implementation issues (e.g. using inheritance for code sharing) too.
This area is still open to research. It is possible to support the dynamic part of a type system
as [GoMe87,Smol88] with metastructures. At the level of metastructures this is considered
as an application issue.

3.2.1 Modularization

The definition of metastructures can be reused in a Prolog system supporting modules where
there is a unique relation between any functor and its predicate. Only a name based module
system which supports modularization of terms is appropriate for combination with meta-
structures. Whereas, a predicate based system cannot preserve the unique relation (consider,
for example, freeze/2).

3.3 Coding technique

Developing unification algorithms, even in Prolog, is a very difficult topic. Adopting an
existing unification algorithm which uses a similar term representation as Prolog will only
amount to a small programming effort. One should be aware of the following points, which
help to avoid basic problems when starting programming. Some may be enforced by appro-
priate type checking and data flow-analysis.
e term meta unify(T,M) must either bind the metastructure M to the term T or fail.
Otherwise the basic rules of equational reasoning would be broken.
e meta meta unify/2 often needs to create a new metastructure replacing both old ones.
e ===/2 should be used with care. It is similar to CLU’s up and down [LisGu86]:
It allows you to access representations. Up to now we have used this predicate in
the interfaces only and have not found any other meaningful application, i.e. in
termmeta_unify/2 and meta meta unify/2 as well as for the redefinition of some
“methods” e.g. write/1 and assert/1.
e Typing has to be implemented by the user, no checks are made by the system.
e Side effects in the definition of unification should be avoided.



[ unify(T1,T2) [| Variable | Functor/Arity | Constraint |

Variable i i T
Functor /Arity i ¥10 T, *
Constraint 1 T, * T, *

Abbildung 4: Unification overheads of dif/2: * **) metastructures; 1,i) traditionally; one
step tag decoding: 1), *)

e Use shared variables within any metastructures with care. In the context of metastruc-
tures they can be abused like pointers in a procedural programming language. The user
of a metastructure definition can get access to the representation. Special care must be
taken for the value-part. However, it sometimes occurs, where different metastructures,
being friends, share variables even in the value-part with one another.

Difficulties arise when several “types” have to be “coerced”. A lot of tedious and redun-
dant code has to be written which is often much larger than the original definitions together.
In fact, providing tools for such tasks is an interesting research topic. Many results could be
reused from the field of automated deduction.

Formally, the notion of conservative extensions seems to be appropriate to describe the
relation of correctly defined metastructures to ordinary Prolog terms?: metastructures, when
applied correctly, do not change the meaning of ordinary terms. An ordinary term is still
referentially transparent. In contrast, semantic unification lacks this property. Conventional
terms are reinterpreted. The advantage of a conservative extension is that all the pre-existing
sorts are completely independent of metastructures. This is not only true for the conceptual
level but also for the (system-) implementation level as will be shown in the next chapter.

4 Implementation issues

4.1 Required modifications

Metastructures are an abstraction within the unification algorithm. They can be implemented
with a variety of implementation techniques. In the sequel we will sketch techniques to be
considered, if an existing Prolog system is to be modified. As metastructures are an extension
local to unification, their impact on the design of the abstract machine will be rather small.
For a WAM-implementation get- and unify-instructions are subject to extensions.

The only undesired overheads during unification appear, if metastructures are implemen-
ted close to ordinary structures. In such an implementation the overheads occur in the case
where a structure is unified with a non-variable term (e.g. “?- a = s(X).”, see Fig. 4). If
the attempt to unify these terms fails, an additional test is necessary.

During head-unification term meta_ unify/2 or meta meta unify/2 may be called. In
most abstract machines such as the WAM or the abstract machine used in VIP-Prolog (Vienna
Abstract Machine—VAM[Kral87]) the process of unifying goal and head (get- and unify-
instructions) is considered to be an atomic action for efficiency reasons (i.e this process must
not be interrupted by another inference). Goals backed up throughout an inference are to
be executed thereafter. A straightforward implementation uses a register pointing to a list
of pairs to be unified. Resetting the register and testing it after completion of an inference
adds overheads far below 5% on conventional processors.

9[EhrMag5]; “extensions and enrichment” Ch. 6.12
00verheads in fail case only, e.g. a = g(Z); but not a = b.



If the definition of a constraint is a completely deterministic Prolog program a compiler
may replace the Prolog part by an appropriately compiled routine. It is thus possible to
execute, e.g. dif/2’s, definition during the process of unifying goal and head, allowing earlier
failure during the inference. The program’s procedural behavior might be slightly different,
as the early failure may prevent the execution of other constraints. The programmer must not
make any assumptions about the order of unification, especially about the order of execution
of additional goals. This feature is therefore implementation dependent.

4.2 Indexing different sorts of metastructures

In the presence of many different metastructures, sorts, indexing mechanisms improve the
interface in retrieving appropriate definitions. In our implementation, any Prolog-structure
has a uniquely associated metastructure. The search for appropriate rules is reduced to an
indexed search over one functor for term meta unify/2 and over two for meta meta unify/2.
The effort is nearly independent from the number of existing sorts. However, as noted in
chapter 3.2 the conceptual structurization within a type system still remains an open problem.

4.3 Built-in predicates

In a system supporting metastructures the I/O- and db-BIPs must detect pending meta-
structures. The decision of treatment depends largely on the meaning of the metastructure
and should therefore be handled by the user. Raising and catching an appropriate exception
allows the redefinition of these BIPs appropriately. There are essentially two ways to handle
metastructures in this context:

e The metastructure represents a kind of abstract data type (e.g. associative lists). It is
for the user a first class object like an ordinary Prolog term. In this case a syntactical
representation should be displayed. Metastructures are asserted respectively.

e The metastructure is considered relevant to the actual computation only. It serves as a
control primitive. The term will therefore be shown or asserted without the metastruc-
ture.

Constraints in the CLP-scheme are between these extremes. In [HeiMi89] a framework

for dealing with such issues in CLP(R) is presented.

4.4 Memory management, Garbage collection.

There are several detailed implementation descriptions of dif/2 and freeze/2 using an
additional stack to manage frozen goals [vC86,B0i88]. As an additional stack increases both
the size of choice points and the time required for backtracking, we believe that metastructures
are represented best as ordinary structures.

During equation solving many intermediate results occur, each result being represented
by a metastructure. Programs will now be more deterministic, as metastructures used as
constraints help to avoid choice points. Already used metastructures, and in all likelyhood
probably their property-part too, will have no significance for the ongoing computation'!.
The specific treatment during unification allows one to detect unused reduced metastruc-
tures without knowing the actual definitions of term meta unify/2 and meta_meta unify/2.

Reduced metastructures can be removed except where there exists a choice point from which

1 Consequently memory may be used up although traditional garbage collection is performed: Reduced
metastructures may exhaust memory representing nothing at all. Even the order of computation time may be
deteriorated. This phenomenon—called space leaks—is well known in lazy functional languages [Wad87].



unify(X,Y) :- (var(X); var(Y)), !, X = Y. % maybe occur-check
unify(X,Y) :- X =.. [FIXs], Y =.. [F|Y¥s], unifylist(Xs,Ys).

unifylist([]1,[1).
unifylist([X|Xs], [YIYs]) :- unify(X,Y), unifylist(Xs,Ys).

Abbildung 5: Unification in Prolog with occur-check
the metastructure is reachable as pending. We will not go into details of the marking and re-
duction algorithm. Basically, reduced metastructures which will not become pending anymore
are detected by means of virtual backtracking [Bru84,Pit85]. In contrast to Bruynooghe’s al-
gorithm, marking starts from the oldest choice point. Besides, this algorithm can eliminate
redundant reference chains.

4.5 Reducing constraints

In [vH89], p.103 a value trail to overwrite the representation of constraints is used. In our
experience it is preferable to reduce metastructures to ordinary terms by simply binding
the value-part and applying a garbage collector later on. However, there are many clas-
ses of constraints which can be represented more efficiently than the way we have presen-
ted. Consider finite integer domains. Obviously a definition similar to greater/2 in Fig.
6 can be used. However, in many cases this implementation is not very efficient. If we
want to constrain a variable X to be an interval of integers, X may be specified as follows:
“..., Min < X, X < Max, ...” Subsequent exclusions of elements (by dif (X,E1)) will lead
to more complicated representations.

So = {z|min < x Az < maz}
S1 ={zlmin <x ANx <maz} —{zjlr =e1}
Si={zmin <z Az <maxA(z>e Vzr<e)}

This process is very space consuming. Another choice is to enumerate explicitly the set
of possible values. Subsequent exclusions reduce the set. Such operations are more efficiently
implemented with destructive updates than by respecting referential transparency of Prolog
data structures; i.e. creating modified copies. Such a representation is chosen in CHIP
[VH89], p. 104. It is evident that such operations cannot (and must not) be supported for
metastructures defined at the meta-language level directly. Yet metastructures can at least
serve as the interface between the Prolog engine and low-level implementations, avoiding the
redesign the kernel’s abstract machine and garbage collector. The Prolog interface can then
be used for rapid prototyping of new extensions.

5 Open problems

Nearly all Prolog implementations realize unification without occur-check. It is therefore
possible to create infinite terms—infinite trees. While there is a consistent framework for
infinite trees[Col82], they pose some problems for the design of new unification algorithms
in general and for metastructures in particular. However, infinite data structures pose a
problem only for the definition of metastructures which contain arbitrary subterms. As long
as metastructures are closed they can be used consistently even in a system with infinite
trees.

One uses the procedure in Fig. 5 as a skeleton for implementing new unification al-
gorithms. In the case of a system with infinite trees there is no corresponding skeleton.

10



Furthermore the definition above will end up looping, if an infinite data structure is to be
processed. It is consequently much more tedious to define consistent extensions to unification
in a system without occur-check. By the way, this is the reason why no definition of reduce/3
[vC86] is given in Prolog.

On the other hand an occur-check for ordinary terms and metastructures restricts the
expressiveness of metastructures considerably and it would not be possible, to implement
freeze/2 anymore: For a variable attached to a frozen goal and occurring in the same
goal, our definition in chapter 2.1 creates an infinite metastructure, since X is bound to
meta(V,f(X)) in “?- freeze(X,f(X)).”. Anyway, with our definition of freeze/2, the
user would never realize that infinite data structures are created, because the definition of
freeze/2 prevents falling into an endless loop. Also in CLP(R), constraints corresponding
to infinite data structures have a definite meaning. Given f/1 as an interpreted functor,
“?7- X = £(X).” denotes the function’s fix points.

In Fig. 6 an implementation of the well known successor functor based on metastruc-
tures is shown. It allows to mix (coerce) the successor functor with integer numbers. Given
our implementation, we can create the infinite metastructure X = meta(_,X) by the goal
“?7- X = s(X).”. The unification of an arbitrary variable with a metastructure always suc-
ceeds. Hence the creation of the infinite term is not prevented. A fix might be made by putting
another metastructure into the argument. The successor functor s(X) could be represented
by meta_s(_,meta_check(_,X)). We do not know whether such a fix can be made in general.
However we believe that the current definition of metastructures needs no redefinition. In
summary, our experiences with metastructures and occur-check are as follows:

e Infinite metastructures like X = meta(X,...) are to be definitely excluded.

e Flat metastructures containing no subterms pose no problems, even in a system with

infinite trees.

e Metastructures implementing an abstract data type which has no or a very restric-
ted connection to arbitrary terms, may consistently contain for themselves arbitrary
structures, even infinite trees, or an explicit occur-check implemented in Prolog.

e Reasoning about ordinary terms (e.g. dif/2) is unsafe without occur-check.

6 Conclusion

Metastructures provide a simple yet efficient interface to extend unification by the user. The
main advantages of our approach in comparison to other logic programming languages are:
Unification is extensible by user defined Prolog predicates without changing the Prolog kernel.
The extensions may be used for implementing new equational theories as well as for meta-
logical programming. Ordinary Prolog programs are executed with a minimal overhead. The
extension is easy to implement and may be well supported by the Prolog system.
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% successor-notation
% replace occurences of s(X) by meta(_,X)

term_meta_unify(T,M) :-
int(T), T > 0, M === meta(V,P),
Sis T - 1,
S = P.

meta_meta_unify(M1,M2) :-

M1 === meta(V,P1),
M2 === meta(V,P2),
P1 = P2.

Abbildung 6: Example of coercion: s(0) = 1

Gr greater Sm :-
Gr \== Sm,
Gr = meta(_, [Sm], []1),
Sm = meta(_, [], [Gr]).

term_meta_unify(T,M) :-
M === meta(T,Ss,Gs),
not ( get_member(smaller,S,Ss), nonvar(S), S >=
not ( get_member(greater,G,Gs), nonvar(G), G =<

meta_meta_unify(M1,M2) :-
M1 === meta(V,S1s,Gls), M2 === meta(V,S2s,G2s),
consistent(S1s,G2s), consistent(S2s,Gls),
append(S1s,S2s,S3s), append(Gls,G2s,G3s),
V === meta(_,S3s,G3s).

consistent(Ss,Gs) :-

not (
get_member (smaller,S,Ss),
get_member (greater,G,Gs),
( nonvar (S), nonvar(G), G =< S
; S ==
)
).

get_member (C,E,Es) :-
member (T,Es) ,
( E ===
; var(T),
ismeta(T),
get_meta(C,T,Ts),
get_member (C,E,Ts)

).
get_meta(smaller,T,Ts) :- T === meta(_,Ts,_).
get_meta(greater,T,Ts) :—- T === meta(_,_,Ts).

Abbildung 7: Comparing natural numbers
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