
The binary WAM,
a simplified Prolog engine

Ulrich Neumerkel

Institut für Computersprachen
Technische Universität Wien

ulrich@mips.complang.tuwien.ac.at

I Existing Abstract Machines for sequential Prolog

II Binary Prolog and the binary WAM

III Source-to-source optimizations for binary Prolog

1



I
Existing Abstract Machines for sequential Prolog

Abstract Machine defines framework:

• basic interfaces

• instruction set for intermediate code

starting point for optimizations in native code compilation

1972 Prolog 0 Roussel Algol-W str. copying, dif
1973 Prolog I Battani, Meloni Fortran str. sharing, 200 LIPS
1977 PLM Warren DEC-10 str sharing
1979 —”— —”— last call optimization
1982 ZIP Bowen, Clocksin, Mellish str. copying
1983 WAM Warren str. copying
1986 VAM2P Krall str. sharing + copying
1990 BINWAM Tarau “WAM-RISC”

2



Evaluation criteria for Abstract Machines

• Simplicity

– small instruction set
– small implicit state
– simple meta-interpreter for essential architecture
– compact and reasonably efficient emulator

• Efficiency
Programs comparable to procedural programs should run with simi-
lar efficiency.

• Level of optimizations (source; intermediate code; machine code)
low level = few optimizations
best: source-to-source level optimization

Compiled versions with (complex) abstract interpretation can improve
machine, but inherent problems remain.

3



Data areas, all machines very similar
AND-control:

local/environment stack
global/copy stack, heap

OR-control:
choice point stack
trail

Traditionally, choice-stack combined with environment stack.
Instruction Formats
Machine Operands Decoding Implicit control trans- instr.

yr. Head Goal operands fer position removal
PLM 77 2 1 h [g] none prefix no
ZIP 83 1 1 g, h arg-stack postfix yes
WAM 83 2 2 g, h none postfix yes
VAM2P 86 1 1 h+g none prefix no
VAM1P 86 0 2 g none prefix yes

4



Interface between predicates
1. Determinate interface

PLM: reference to initialized goal.
ZIP: arguments on stack, all arguments initialized.
WAM: register interface, all arguments initialized.
VAM: simultaneous reading of goal and head.

Environment stack interface between head and body.
p(s(1)) ←

... .
← ..., p(s(X)), ... .
does not allocate a structure

2. Nondeterminate interface

PLM, ZIP, VAM: choice points of constant size
WAM: choice points contains additionally copy of argument re-

gisters, optimization for shallow backtracking required
5



Format of intermediate code
Important for native code compilation
PLM: only heads can be compiled, goals remain data

ZIP: linear sequence of code, compilable, but many modes

WAM: very easy to compile
full compilation of head-unification doubles code (Demoen-Mariën-
Meier 1989)

VAM: compact for intermediary code, but quadratic code for compila-
tion (VAM1P )

Handling of terms

• tagging and type tests: minimized in compiled code by abstract in-
terpretation

• single assignment, difficult to overcome (compile time garbage collec-
tion, reference counting)

6



Treatment of logical variables
Often only used to pass parameters.
Parameters should be implemented as in a procedural language:
no trail-checking, no useless initializations, no useless dereferencing

1 Head-variables: parameter passing from head to first goal.
p(..., HV) ←

q(..., HV),
... .

PLM, ZIP, VAM2P : copy variable from stack to stack
larger space requirements

WAM: no operation, or move variable from register to register
no additional space requirements

7



Treatment of logical variables

2 Existential, internal variables: parameter passing from one goal to
the next.
p(...) ←

q(..., V),
r(..., V),
... .

PLM: V initialized after head p.
- lots of trail-checking/trailing

ZIP, WAM: V initialized before calling q. Implies trail-checking in
the head.
Improvement for WAM by Joachim Beer: extra data type uninitia-
lized variable.

VAM: V initialized while unifying goal q with head q. No trai-
ling/trail checking, even if q is nondeterminate.

8



Treatment of logical variables

3 Last call optimization (TRO) and existential variables.

p(...) ←
...,
q(..., V),
r(..., V).

WAM: unsafe variables: Mostly, V is bound when calling r. Other-
wise, V is allocated (saved) on the heap.

PLM, ZIP: copying
VAM2P : last call optimization after unifying goal and head, very

tricky

9



Strengths of AMs:

PLM: structure sharing, still used in ATP

WAM: good, as long as registers can be used

- argument registers make variable passing costly
- registers lost after proceed (facts)

VAM: handles variables often as VARs in procedural languages

Missing optimizations

• efficient handling of variables

• flexible calling conventions

• interprocedural state

• leaf procedures

10



II
Binary Prolog and the binary WAM

Binary Prolog

• subset of full Prolog, only one goal in clauses

• AND-control compiled within terms (continuations)

• cuts implemented with additional parameters

• convenient intermediary language

p(X, X).

p(X, Y) ←
q(Y, Z),
r(Z, X).

p(X, X, Cont) ←
Cont.

p(X, Y, Cont) ←
q(Y, Z, r(Z, X, Cont)).

11



Binary WAM
Subset of WAM without environments. Similar: Mali, Prolog by BIM
BinProlog by Paul Tarau (Version 2.07)
• C-emulator in 4500 LOC

• 123 instructions. SICStus: 556 = 266+266+24

• most builtins inline instructions

• slightly faster than SICStus.

• larger heap consumption
Interesting for compilation:
long sequences of unconditional instructions = single basic block
1. unify instructions

2. builtins

3. put instructions, create continuations (basic block)

4. execute
12



Orthogonal data structures
Implementation of pointers

Classical approach: three different pointer tags

1. Reference for variables and sharing
2. Pointer to structure
3. Pointer to list as “optimization”

BinProlog: only a single pointer tag, no list optimization

1. Reference for variables, sharing, structures, no pointer tag

simplifies implementation:

smaller case analysis
simpler indexing
dereferencing for structures implicit

increases memory consumption?

13



Last argument overlapping
Collapsing references to structures in the last argument

Representation of [a,b,c], n elements:

Classical encoding: 2n cells
a/0 7−→b/0 7−→c/0 []/0

Näıve encoding: 3n cells
./2 a/0 7−→./2 b/0 7−→./2 c/0 []/0

Last argument overlapping: 2n + 1 cells
./2 a/0 ./2 b/0 ./2 c/0 []/0

Representation of s(s(s(0))), sn:

Classical approach = näıve encoding: 2n cells
Last argument overlapping: n + 1 cells

14



Minimal adaptations for last argument overlapping:
• write-mode for get structure instruction:

get structure An:
deref(An);
if(VAR(An))

{ trail(An);
if (An + 1 == H)

H = An;
*H++ = functor;
...

}

• copy term/2 Cheney-like copying, combination of depth-first (for last
argument) and breadth-first.

• garbage collector

• code-generation for put-structure instructions:
instead of bottom up (from leaves to root) now top down for last
arguments

15



Impacts of last argument overlaps:

• fewer pointers in terms

• fewer dereferencing

• fewer dependencies for writing/reading functors

• compact continuations

• cyclic unification simpler to implement

16



III
Source-to-source optimizations for binary Prolog

• argument reordering to minimize register moves

• minimizing continuations with auxiliary predicates

• definition of new predicates for sequences of built-ins

• minimizing size of choice points

17


