
ISO/IEC DTR 13211–3:2006

Definite clause grammar rules

Editors: Klaus.Daessler
klaus.daessler@mathint.com

July 10, 2011

Introduction

This technical recommendation (TR) is an optional part of the International
Standard for Prolog, ISO/IEC 13211. Prolog manufacturers wishing to imple-
ment Definite Clause Grammar rules in a portable way shall do so in compliance
with this technical recommendation.

Grammar rules provide convenient and simple functionality for parsing and
processing text in a variety of languages. They have been implemented in many
Prolog systems. As such, they are deemed an worthy extension to the ISO/IEC
13211 Prolog standard.

This TR is an extension to the ISO/IEC 13211–1 Prolog standard, adopting
a similar structure. Specifically, this TR either adds new sections and clauses
to, or modifies the reading of existing clauses on ISO/IEC 13211–1.

This draft may contain in several places informative text, type-set in italics.
Such informative text is used for editorial comments deemed useful during the
development of this draft and may not be included in the final version.

Previous editors and draft documents

• Paulo Moura: ISO/IEC DTR 13211– 3:2006 Grammar rules in Prolog,
ISO, 2006-10

• Roger Scowen: N171 — ISO/IEC DTR 13211–3:2004 Grammar rules in
Prolog, ISO, 2004-05

• Tony Dodd: DCGs in ISO Prolog — A Proposal, BSI, 1992

1

1 SCOPE 2

Contributors

This list needs to be completed; so far we have only included people present
at the ISO meetings collocated with the ICLP (2005, 2006, and 2007) and the
authors of the two drafts cited above, and Richard as I have included here some
contributions from him that I found on the net. PM.

• Bart Demoen (Belgium)

• Jan Wielemaker, (Netherlands)

• Joachim Schimpf (UK)

• Jonathan Hodgson (USA)

• Jose Morales (Spain)

• Katsuhiko Nakamura (Japan)

• Klaus Daessler (Germany)

• Manuel Carro (Spain)

• Mats Carlsson (Sweden)

• Paulo Moura (Portugal)

• Pierre Deransart (France)

• Péter Szabó (Hungary)

• Péter Szeredi (Hungary)

• Richard O’Keefe (NZ)

• Roger Scowen (UK)

• Tony Dodd (UK)

• Ulrich Neumerkel (Austria)

• Vı́tor Santos Costa (Portugal)

1 Scope

This TR is designed to promote the applicability and portability of Prolog gram-
mar rules in data processing systems that support standard Prolog as defined
in ISO/IEC 13211–1:1995. As such, this TR specifies:

a) The representation, syntax, and constraints of Prolog grammar rules

b) A logical expansion of grammar rules into Prolog clauses

2 NORMATIVE REFERENCES 3

c) A set of built-in predicates for parsing with and expanding grammar rules

d) Reference implementations and tests for the specified built-in predicates
and for a grammar rule translator

NOTE — This part of ISO/IEC 13211 will supplement ISO/IEC 13211–1:1995.

2 Normative references

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

3 Definitions

For the purposes of this TR, the following definitions are added to the ones
specified in ISO/IEC 13211–1:

3.1 body (of a grammar-rule): The second argument of a grammar-
rule. A grammar-body-sequence, or a grammar-body-alternative, or a grammar-
body-choice, or a grammar-body-element.

3.2 clause-term: A read-term T. in Prolog text where T does not have prin-
cipal functor (:-)/1 nor principal functor (-->)/2. (This definition replaces
clause 3.33 of ISO/IEC 13211–1).

3.3 definite clause grammar: A sequence of grammar-rules.

3.4 comprehensive terminal-sequence, CTS: see terminal-sequence, com-
prehensive.

3.5 expansion (of a grammar-rule): The preparation for execution (cf.
ISO/IEC 13211–1, section 7.5.1) of a grammar rule.

3.6 generating (wrt. a definite clause grammar): Producing legal
terminal-sequences of a grammar, obeying right-hand-contexts, if any.

3.7 grammar-body-alternative: A compound term with principal func-
tor (;)/2 and each argument being a body (of a grammar-rule).

3.8 grammar-body-choice: A compound term with principal functor (->)/2.
The first argument is a body (of a grammar-rule), and the second argument is
a body.

3.9 grammar-body-element: A cut (the atom !), or a grammar-body-
goal, or a non-terminal, or a terminal-sequence.

3 DEFINITIONS 4

3.10 grammar-body-goal: A compound term with principal functor ({})/1
whose argument is a goal.

3.11 grammar-body-sequence: A compound term with principal functor
(,)/2 and each argument being a body (of a grammar-rule).

3.12 grammar-body-terminals: A terminal-sequence.

3.13 grammar-rule: A compound term with principal functor (-->)/2.

3.14 grammar-rule-term: A read-term T. where T is a grammar-rule.

3.15 head (of a grammar-rule): The first argument of a grammar-rule.
Either a non-terminal (of a grammar), or a compound term whose principal
functor is (,)/2, the first argument is a non-terminal (of a grammar), and the
second argument is a right-hand-context.

3.16 new variable with respect to a term T: A variable that is not an
element of the variable set of T.

3.17 non-terminal (of a grammar): An atom or compound term that
denotes a non-terminal symbol of the grammar.

3.18 non-terminal indicator: A compound term A//N where A is an atom
and N is a non-negative integer, denoting one particular non-terminal.

3.19 parsing (wrt. a definite clause grammar): Successively accepting
and consuming legal terminal-sequences, assigning them to corresponding non-
terminals and obeying a right-hand-context, if any.

3.20 remaining terminal-sequence (RTS): See terminal-sequence, re-
maining.

3.21 right-hand-context: A terminal-sequence occuring as second argu-
ment of a grammar-rule-head, restricting parsing resp. generating after com-
pleting this grammar rule.

3.22 terminal (of a grammar): Any Prolog term that denotes a terminal
symbol of the grammar.

3.23 terminal-sequence: A list (cf. ISO/IEC 13211–1, section 6.3.5) whose
first argument, if any, is a terminal (of a grammar), and the second argument
is a terminal-sequence, if any.

4 SYMBOLS AND ABBREVIATIONS 5

3.24 terminal-sequence, comprehensive: Terminal sequence, contain-
ing as (possibly empty) prefix a terminal-sequence described by a grammar
rule body in combination with other grammar rules of a grammar.

3.25 terminal-sequence, remaining: Rest of comprehensive terminal-sequence
without the leading terminal-sequence corresponding to a grammar rule body.

3.26 variable, new with respect to a term T: See new variable with
respect to a term T.

4 Symbols and abbreviations

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5 Compliance

5.1 Prolog processor

A conforming Prolog processor shall:

a) Correctly prepare for execution Prolog text which conforms to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

b) Correctly execute Prolog goals which have been prepared for execution
and which conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

c) Reject any Prolog text or read-term whose syntax fails to conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

d) Specify all permitted variations from this TR in the manner prescribed by
this TR and by the ISO/IEC 13211–1, and

6 SYNTAX 6

e) Offer a strictly conforming mode which shall reject the use of an imple-
mentation specific feature in Prolog text or while executing a goal.

NOTE — This extends corresponding section of ISO/IEC 13211–1.

5.2 Prolog text

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.3 Prolog goal

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.4 Documentation

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A conforming Prolog processor shall be accompanied by documentation that
completes the definition of every implementation defined and implementation
specific feature specified in this TR and on the ISO/IEC 13211–1 Prolog stan-
dard.

5.5 Extensions

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A processor may support, as an implementation specific feature, any construct
that is implicitly or explicitly undefined in this TR or on the ISO/IEC 13211–1
Prolog standard.

5.5.2 Predefined operators

Please see section 6.3 for the new predefined operators that this TR adds to the
ISO/IEC 13211–1 Prolog standard.

6 Syntax

6.1 Notation

6.1.1 Backus Naur Form

No changes from the ISO/IEC 13211–1 Prolog standard.

6 SYNTAX 7

6.1.2 Abstract term syntax

The text near the end of this section on the ISO/IEC 13211–1 Prolog standard
is modified as follows:

Prolog text (6.2) is represented abstractly by an abstract list x where x is:

a) d.t where d is the abstract syntax for a directive, and t is Prolog text, or

b) g.t where g is the abstract syntax for a grammar rule, and t is Prolog
text, or

c) c.t where c is the abstract syntax for a clause, and t is Prolog text, or

d) nil, the empty list.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section.

6.1.3 Variable names convention for terminal-sequences

This TR uses variables named S0, S1, ..., S to represent the terminal-sequences
used as arguments when processing grammar rules or when expanding grammar
rules into clauses. In this notation, the variables , S1, ..., S can be regarded as a
sequence of states, with S0 representing the initial state and the variable S rep-
resenting the final state. Thus, if the variable Si represents the initial terminal-
sequence, the variable Si+1 will represent the remaining terminal-sequence after
processing Si with a grammar rule.

6.2 Prolog text and data

The first paragraph of this section on ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of read-terms which denote (1) directives, (2) grammar
rules, and (3) clauses of user-defined procedures.

6.2.1 Prolog text

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of directive-terms, grammar-rule terms, and clause-
terms.

6 SYNTAX 8

prolog text = p text

Abstract: pt pt
p text = directive term , p text

Abstract: d.t d t
p text = grammar rule term , p text

Abstract: g.t g t
p text = clause term , p text

Abstract: c.t c t
p text = ;

Abstract: nil

6.2.1.1 Directives

No changes from the ISO/IEC 13211–1 Prolog standard.

6.2.1.2 Clauses

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

clause term = term, end

Abstract: c c
Priority: 1201
Condition: The principal functor of c is not (:-)/1
Condition: The principal functor of c is not (-->)/2

NOTE — Subclauses 7.5 and 7.6 defines how each clause becomes part of the
database.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

6.2.1.3 Grammar rules

grammar rule term = term, end

Abstract: gt gt
Priority: 1201
Condition: The principal functor of gt is (-->)/2

grammar rule = grammar rule term

Abstract: g g

NOTE — Section 10 of this TR defines how a grammar rule in Prolog text is
expanded into an equivalent clause when Prolog text is prepared for execution.

6.3 Terms

NOTE — The operator -->/2, specified in section 6.3.4.4 of the ISO/IEC 13211–
1 Prolog standard, is used as the principal functor of grammar rules.

7 LANGUAGE CONCEPTS AND SEMANTICS 9

7 Language concepts and semantics

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

7.13 Predicate properties

The following optional property is added to the list of predicate properties:

• expanded from(non terminal, A//N) — The predicate results from the
expansion of a grammar rule for the non-terminal A//N

NOTE — the expanded from/2 property name was chosen in order to account
for other possible, implementation-specific expansions.

7.14 Grammar rules

7.14.1 Terminals and non-terminals

Zero or more terminals are represented by terms contained in lists in order to
distinguish them from non-terminals (string notation may be used as an alter-
native to lists when terminals are characters and the flag ”double quotes” has
value ”chars”; see sections 6.3.7 and 6.4.6 of ISO/IEC 13211–1). Non-terminals
are represented by callable terms.

NOTE — In the context of a grammar rule, terminals represent tokens of some
language, and non-terminals represent sequences of tokens (see, respectively,
definitions 3.18 and 3.22).

7.14.2 Format of grammar rules

A grammar rule has the format:

GRHead --> GRBody.

A grammar rule is interpreted as stating that its head, GRHead, can be rewritten
by its body, GRBody. The head and the body of grammar rules are constructed
from non-terminals and terminals. The head of a grammar rule is a non-terminal
or the conjunction of a non-terminal and, following, a terminal-sequence (a right-
hand-context, see 7.14.3):

NonTerminal --> GRBody.

NonTerminal, RightHandContext --> GRBody.

The control constructs that may be used on a grammar rule body are described
in section 7.14.6. An empty grammar rule body is represented by an empty list:

GRHead --> [].

The empty list cannot be omitted, i.e. there is no -->/1 form for grammar
rules.

7 LANGUAGE CONCEPTS AND SEMANTICS 10

7.14.3 Right Hand Contexts

7.14.3.1 Description

A right-hand-context is a terminal-sequence, as an optional second argument of
the head of a grammar rule (see 3.15). A right-hand-context contains terminals
that are prefixed to the remaining terminal-sequence after successful application
of the grammar rule.

7.14.3.2 Syntax

GrammarRuleHead = NonTerminal

GrammarRuleHead = NonTerminal, RightHandContext

RightHandContext = TerminalSequence

7.14.3.3 Examples

Assume that we need rules to look-ahead one or two tokens that would be
consumed next. This could be accomplished by the following two grammar
rules:

look_ahead(X), [X] --> [X]. look_ahead(X, Y), [X,Y] --> [X,Y].

When used for parsing, procedurally, these grammar rules can be interpreted
as, respectively, consuming, and then restoring, one or two terminals.

Another example may be a small grammar rule with right-hand-context:

phrase1, [word] --> phrase2, phrase3.

After preparation for execution this occurs in the database as follows:

phrase1(CTS, RTSfinal):-

phrase2(CTS, RTS2),

phrase3(RTS2, RTS3),

RTSfinal = [word | RTS3].

or, respectively

phrase1(CTS, [word |RTS3]) :-

phrase2(CTS, RTS2),

phrase3(RTS2, RTS3).

7 LANGUAGE CONCEPTS AND SEMANTICS 11

Here CTS shall denote the comprehensive terminal-sequence for parsing/generating
wrt. phrase1. RTS2 and RTS3 shall denote, respectively, the remaining terminal
sequences after application of the nonterminals phrase2 and phrase3.

NOTES

1 In case of parsing, as soon as phrase2 and phrase3 are recognized in the
comprehensive terminal-sequence (input list) CTS, the terminal word is prefixed
to the remaining terminal-sequence RTS3 of phrase1. word is then the first ter-
minal to be taken in respect for further parsing after phrase1. Thus the path
of further parsing is constrained by the right-hand-context.

2 Sometimes the concept of comprehensive terminal-sequence resp. remain-
ing terminal-sequence are named input list resp. output list. This is misleading,
because it only takes in respect the case of parsing by a grammar. There a ter-
minal list shall be parsed wrt. nonterminals, and a rest will remain after a
parsing step. The inverse case of generating sentences by grammars, where
the comprehensive terminal-sequence is the real output list, is ignored by such
wording.

3 There are exotic cases, where the remaining terminal-sequence seems not to
be trailing part of the comprehensive terminal-sequence, e.g. with the following
grammar rule...but it is:

nt,[word] --> [].

which is expanded by preparation for execution to:

nt(CTS,[word|RTS]) :-

CTS = RTS.

This nonterminal nt represents an empty terminal sequence, but constrains fur-
ther parsing to take in respect word as next token. The comprehensive terminal-
sequence is identical with the remaining terminal-sequence for that nonterminal.

7.14.4 Non-terminal indicator

A non-terminal indicator is a compound term with the format //(A, N) where
A is an atom and N is a non-negative integer.

The non-terminal indicator //(A, N) indicates the grammar rule non-terminal
whose functor is A and whose arity is N.

7 LANGUAGE CONCEPTS AND SEMANTICS 12

NOTES

1 In Prolog text, including ISO/IEC 13211–1 and this TR, a non-terminal
indicator //(A, N) is normally written as A//N.

2 The concept of non-terminal indicator is similar to the concept of pred-
icate indicator defined in sections 3.131 and 7.1.6.6 of the ISO/IEC 13211–1
Prolog. Non-terminal indicators may be used in exception terms thrown when
processing or using grammar rules. In addition, non-terminal indicators may
appear wherever a predicate indicator as defined in ISO/IEC 13211–1 can ap-
pear. Furthermore non-terminal indicators may be used as predicate property
(cf. section 7.13). In particular, using non-terminal indicators in predicate di-
rectives allows the details of the expansion of grammar rules into Prolog clauses
to be abstracted.

7.14.4.1 Examples

For example, given the following grammar rule:

sentence --> noun_phrase, verb_phrase.

The corresponding non-terminal indicator for the grammar rule left-hand side
non-terminal is sentence//0. Assuming a public/1 directive for declaring
predicate scope, we could write:

:- public(sentence//0).

in order to be possible to use grammar rules for the non-terminal sentence//0
outside its encapsulation unit.

7.14.5 Prolog goals in grammar rules

7.14.5.1 Description In the body of grammar rules, curly brackets enclose
a non-empty sequence of Prolog goals that are executed when the grammar rule,
prepared for execution, is processed.

NOTE — The ISO/IEC 13211–1 Prolog standard defines, in section 6.3.6, a
curly bracketed term as a compound term with principal functor ’{}’/1, whose
argument may also be expressed by enclosing its argument in curly brackets.

7.14.5.2 Examples

Consider, for example, the following grammar rule:

digit(D) --> [C], {0’0 =< C, C =< 0’9, D is C - 0’0}.

This rule recognizes a single terminal as the code of a character representing a
digit when the corresponding numeric value can be unified with the non-terminal
argument.

7 LANGUAGE CONCEPTS AND SEMANTICS 13

7.14.6 Control constructs and built-in predicates supported by gram-
mar rules

The following nonterminals denote control constructs, specified in the ISO/IEC
13211–1 Prolog standard, after their preparation for execution, and may be used
in the body of grammar rules:

(’,’)//2, (’;’)//2, (->)//2 in combination with (’;’)//2, and !//0.

The following nonterminal denotes, after its preparation for execution, the built-
in predicate \+/1 as specified in the ISO/IEC 13211–1 Prolog standard, and may
be used in the body of grammar rules:

\+//1.

The nonterminal (:)//2 denotes, after its preparation for execution, the control
construct (:)/2 as specified in the ISO/IEC 13211–2 Prolog Modules standard
and may be used in the body of grammar rules.

For a more precise description of these nonterminals wrt. grammar rules see
section 7.14.6.1 ff.
The following nonterminals, occuring in grammar rules, shall not denote cor-
responding Prolog control constructs resp. corresponding built-in predicates,
after their preparation for execution:

true//0, fail//0, call//1, catch//3, and throw//1.

7.14.6.1 The nonterminal (’,’)//2

In the body of a grammar rule (’,’)/2 is principal functor of a grammar-body-sequence
(cf. Definition 3.11). If occuring in the head of a grammar rule, (’,’)//2 is
principal functor of a term consisting of a nonterminal and a right-hand-context.

7.14.6.2 The nonterminal (’;’)//2

In the body of a grammar rule (’;’)/2 is principal functor of a grammar-body-alternative.

NOTE — The effect of nonterminals comma, (’,’)//2, and semicolon, (’;’)//2,
maybe understood best by application of (write canonical)/1 (see section
8.14.2.5 of ISO/IEC 13211–1) on a grammar rule, containing them:

?-write_canonical((sentence --> subject, verb, object;

object, verb, subject)).

7 LANGUAGE CONCEPTS AND SEMANTICS 14

-->(sentence, ;(’,’(subject, ’,’(verb, object)),

(’,’(object, ’,’(verb, subject))))

yes

This leads to the following Prolog clause after preparation for execution :

sentence(CTS, RTS) :-

subject(CTS, ITS1),

verb(ITS1, ITS2),

object(ITS2, RTS)

;

object(CTS, ITS3),

verb(ITS3, ITS4),

subject(ITS4, RTS).

ITS1 .. ITS4 are the respective intermediate terminal sequences, arising during
continued parsing resp. generating the comprehensive terminal sequence CTS

with two alternative rules, combined in one grammar-body-alternative.

7.14.6.3 The nonterminal (’->’)//2 together with (’;’)//2 (choice)

In the body of a grammar rule (’->’)/2 is principal functor of a grammar-body-choice.
See definition 3.8.

7.14.6.4 The nonterminal (’ !’)//0

During execution of a grammar rule (’!’)//2 commits parsing resp. gen-
eration to that grammar rule; no other grammar rule with same non-terminal
indicator can be applied during execution of the respective comprehensive ter-
minal sequence.
If occuring in the right-hand-context of the head of a grammar rule, (’!’)//2 is
prefixed to the remaining terminal sequence of that nonterminal, where it may
commit further parsing or generating. The actual nonterminal is not influenced.

7.14.7 The control construct call//1

7.14.7.1 Description

Expanding, i.e. preparing for execution of the non-terminal

call//1

7 LANGUAGE CONCEPTS AND SEMANTICS 15

shall lead to an expansion result

call/3

which is a legal goal for the control construct call/3 which is required by this
DTR and defined in 7.14.8.
A Prolog processor may support additional control constructs. Examples in-
clude soft-cuts and control constructs that enable the use of grammar rules
stored on encapsulation units other than modules, such as objects. These addi-
tional control constructs must be treated as non-terminals by a Prolog processor
working on a strictly conforming mode (see 5.1e).

NOTE — Consider the following example for the correlation of Grammar

Rules, call//1 and call/3:

atom_charsdiff(Atom, Xs0, Xs):-

atom_chars(Atom, Chars),

append(Chars, Xs, Xs0).

atomchars(Atom) --> call(atom_charsdiff(Atom)).

at_eos_pred([], []).

at_eos --> call(at_eos_pred).

7.14.8 The control construct call/3

7.14.8.1 Description

call(G, A1, A2) is true iff G is a goal which is true when activated using
the implementation defined arguments A1 and A2. For the definition of G, and
Error cases restricted to G, see section 7.8.3 of ISO/IEC 13211-1.
The definitions of the arguments A1 and A2, examples and the error cases of
call/3 shall be supplied in the implementation specific documentation.

7.14.8.2 Template

call(+callable term, ?argument1, ?argument2)

8 BUILT-IN PREDICATES 16

7.14.9 Executing procedures expanded from grammar rules

If a grammar rule to be prepared for execution has a non-terminal indicator
N//A, and N is the name of the predicate indicator N/A’ of a built-in predicate
in the complete database, the result of expansion and the behaviour of the pre-
pared grammar rule on execution is implementation dependent. This does not
hold for the built-in predicates defined in 7.14.6.

When the database does not contain a grammar rule with non-terminal indicator
N//A during execution of a non-terminal with non-terminal indicator N//A ,
the error term as specified in clause 7.7.7b of ISO/IEC 13211–1 when the flag
unknown is set to error shall be:

existence_error(procedure, N//A)

NOTES

1 Prolog Processors shall report errors resulting from execution of grammar
rules at the same abstraction level as grammar rules whenever possible.

2 Parsing resp. generating of texts with grammar rules is defined in section
8.1.1. Grammar rules are expanded into Prolog clauses during preparation for
execution, which maps the parsing or generating with a grammar rule body
into executing a goal given a sequence of predicate clauses. See section 7.7 of
ISO/IEC 13211–1 for details.

8 Built-in predicates

8.1 Grammar rule built-in predicates

8.1.1 phrase/3, phrase/2

8.1.1.1 Description

phrase(GRBody, S0, S) is true iff the comprehensive terminal sequence S0

unifies with the concatenation of either a terminal sequence of the grammar
rule body GRBody or a terminal sequence resulting from generation by the non-
terminal of GRBody w.r.t. the current Grammar rules, both extended by the
remaining terminal sequence, where S unifies with the remaining terminal se-
quence.
If the nonterminal of GRBody is followed by a right-hand-context (cf. definition
3.2), then the right-hand-context shall be prefixed to the remaining terminal
sequence after having parsed resp. generated wrt. the nonterminal of GRBody.
Procedurally, phrase(GRBody, S0, S) is executed by calling the Prolog goal
corresponding to the expansion of the grammar rule body GRBody, given the
terminal-sequences S0 and S, according to the logical expansion of grammar
rules described in section 10.

8 BUILT-IN PREDICATES 17

8.1.1.2 Template and modes

phrase(+grammar-rule-body, ?terminal-sequence, ?terminal-sequence)

8.1.1.3 Errors

a) GRBody is a variable
— instantiation error

b) GRBody is neither a variable nor a callable term
— type error(callable, GRBody)

The following two errors are implementation defined, i.e. if a Prolog pro-
cessor offers them, their form must be the following:

c) S0 is not a terminal-sequence
— type error(terminal-sequence, S0)

d) S is not a terminal-sequence
— type error(terminal-sequence, S)

NOTE — This relaxation is allowed because handling these errors could
overburden a Prolog Processor.

8.1.1.4 Bootstrapped built-in predicates

The built-in predicate phrase/2 provides similar functionality to phrase/3.
The goal phrase(GRBody, S0) is true when all terminals in the terminal-sequence
S0 are consumed and recognized resp. generated:

phrase(GRBody, S0) :-

phrase(GRBody, S0, []).

8.1.1.5 Examples

These examples assume that the following grammar rules has been correctly
prepared for execution and are part of the complete database:

determiner --> [the].

determiner --> [a].

noun --> [boy].

noun --> [girl].

verb --> [likes].

verb --> [scares].

sentence --> noun_phrase, verb_phrase.

9 EVALUABLE FUNCTORS 18

noun_phrase --> determiner, noun.

noun_phrase --> noun.

verb_phrase --> verb.

verb_phrase --> verb, noun_phrase.

Some example calls of phrase/2 and phrase/3:

| ?- phrase([the], [the]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy, today]).

no

| ?- phrase(sentence, [the, girl, likes]).

no

| ?- phrase(sentence, Sentence).

Sentence = [the, girl, likes, the, boy]

yes

| ?- phrase(noun_phrase, [the, girl, scares, the, boy], Rest).

Rest = [scares, the, boy]

yes

9 Evaluable functors

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

10 Logical expansion of grammar rules

This section extends, with the specified number, the ISO/IEC 13211–1 Prolog
standard:

This section presents a logical view for the expansion of grammar rules into
Prolog clauses, starting with a description of the used notation.

10 LOGICAL EXPANSION OF GRAMMAR RULES 19

10.1 Notation

The terms S0 and S represent, respectively, the comprehensive terminal-sequence
and the remaining terminal-sequence after processing a grammar rule. Variables
named Si represent intermediate states, as explained in section 6.1.3.

The term EType(T, Si, Si+1) denotes an expansion of type Type of a term T,
given, respectively, the comprehensive and remaining terminal-sequences Si and
Si+1

Four types of expansion rules are used, denoted by the terms: Erule (expansion
of grammar rules), Ebody (expansion of grammar rule bodies), Eterminals (ex-
pansion of grammar rule terminals), and Enon terminal (expansion of grammar
rule non-terminals).

The symbol ≡ is used to link a expansion rule with its resulting Prolog term or
with another expansion rule.

10.2 Expanding a grammar rule

Grammar rules with a right-hand-context:

Erule((NonTerminal, Terminals --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head

Ebody(GRBody, S0, S1), Eterminals(Terminals, S, S1) ≡ Body

Grammar rule with no right-hand-context:

Erule((NonTerminal --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head

Ebody(GRBody, S0, S) ≡ Body

10.3 Expanding a non-terminal

Enon terminal(NonTerminal, S0, S) ≡ Head

where:

NonTerminal =.. NonTerminalUniv,

append(NonTerminalUniv, [S0, S], HeadUniv),

Head =.. HeadUniv

(see section ?? for the definition of the auxiliary predicate append/3)

10 LOGICAL EXPANSION OF GRAMMAR RULES 20

10.4 Expanding a terminal-sequence

Terminal-sequences, either a right-hand-context or a grammar rule body goal:

Eterminals([], S0, S) ≡ S0 = S

Eterminals([T| Ts], S0, S) ≡ S0 = [T| Tail]

where:

Eterminals(Ts, S1, S) ≡ Tail

where S1 is a new variable with respect to the term [T| Ts].

An alternative definition, given a terminal-sequence Terminals is:

Eterminals(Terminals, S0, S) ≡ S0 = List

where:

append(Terminals, S, List)

(see section ?? for the definition of the auxiliary predicate append/3)

10.5 Expanding a grammar rule body

Non-instantiated variable on a grammar rule body:

Ebody(Var, S0, S) ≡ phrase(Var, S0, S)

If-then-else construct on the body of a grammar rule:

Ebody((GRIf -> GRThen; GRElse), S0, S) ≡ If -> Then; Else

where:

Ebody(GRIf, S0, S1) ≡ If

Ebody(GRThen, S1, S) ≡ Then

Ebody(GRElse, S0, S) ≡ Else

If-then construct on the body of a grammar rule:

Ebody((GRIf -> GRThen), S0, S) ≡ If -> Then

where:

Ebody(GRIf, S0, S1) ≡ If

Ebody(GRThen, S1, S) ≡ Then

Disjunction on the body of a grammar rule:

Ebody((GREither; GROr), S0, S) ≡ Either; Or

10 LOGICAL EXPANSION OF GRAMMAR RULES 21

where:

Ebody(GREither, S0, S) ≡ Either

Ebody(GROr, S0, S) ≡ Or

Conjunction on the body of a grammar rule:

Ebody((GRFirst, GRSecond), S0, S) ≡ First, Second

where:

Ebody(GRFirst, S0, S1) ≡ First

Ebody(GRSecond, S1, S) ≡ Second

Cut on the body of a grammar rule:

Ebody(!, S0, S) ≡ !, S0 = S

Curly-bracketed term on the body of a grammar rule:

Ebody({}, S0, S) ≡ S0 = S

Ebody({Goal}, S0, S) ≡ Goal, S0 = S

when Goal is a non-variable term and:

Ebody({Goal}, S0, S) ≡ call(Goal), S0 = S

when Goal is a Prolog variable.

Negation on the body of a grammar rule:

Ebody(\+ Body, S0, S) ≡ \+ Goal, S0 = S

where:

Ebody(Body, S0, S) ≡ Goal

Terminal-sequence in the body of a grammar rule:

Ebody(Terminals, S0, S) ≡ Eterminals(Terminals, S0, S)

Non-terminal on the body of a grammar rule:

Ebody(NonTerminal, S0, S) ≡ Enon terminal(NonTerminal, S0, S)

	Introduction
	Previous editors and draft documents
	Contributors

	Scope
	Normative references
	Definitions
	Symbols and abbreviations
	Compliance
	Prolog processor
	Prolog text
	Prolog goal
	Documentation
	Extensions
	Predefined operators

	Syntax
	Notation
	Backus Naur Form
	Abstract term syntax
	Variable names convention for terminal-sequences

	Prolog text and data
	Prolog text

	Terms

	Language concepts and semantics
	Predicate properties
	Grammar rules
	Terminals and non-terminals
	Format of grammar rules
	Right Hand Contexts
	Non-terminal indicator
	Prolog goals in grammar rules
	Control constructs and built-in predicates supported by grammar rules
	The control construct call//1
	The control construct call/3
	Executing procedures expanded from grammar rules

	Built-in predicates
	Grammar rule built-in predicates
	phrase/3, phrase/2

	Evaluable functors
	Logical expansion of grammar rules
	Notation
	Expanding a grammar rule
	Expanding a non-terminal
	Expanding a terminal-sequence
	Expanding a grammar rule body

