Teaching Beginners Prolog
How to Teach Prolog

2. Fassung

Ulrich Neumerkel

Institut fiir Computersprachen
Technische Universitat Wien
A-1040 Wien, Austria
http://www.complang.tuwien.ac.at /ulrich
ulrich@mips.complang.tuwien.ac.at

[The “magic” of Prolog — Common obstacles
II How to read programs

III Course implementation — Programming environment

Part 1
Common obstacles

e The “magic’ of Prolog

Prolog appears as magic if one tries to learn Prolog

by looking at execution traces

using side effects
— Which introductory book does not cover them?

e Previous skills and habits
e Prolog’s syntax
e Naming of predicates and variables

e [ist differences

Syllabus

Two apparently conflicting goals:

e Training (project oriented)

Larger projects do not work well

e Teaching (concept oriented)
Basics:

e Basic reading skills for understanding Prolog programs

e Avoiding common mistakes, develop coding style
Previous skills to build on

e Programming skills

e Mathematical skills

e Language skills

Previous (counterproductive) programming skills
The self-taught programmer

Bad programming habits
Severe handicap: Edit-Compile-Run-Dump-Debug
“Let the debugger explain what the program is doing”

e How do you make sure that your programs have no errors?
e Do you use assertions frequently?

e Do you write down assertions/consistency checks before you write the
actual code?

e How do you test?” How do you ensure that results are correct?

e How can the program falsify your claim of correctness?

Prolog shows no mercy upon the illiterate programmer.

Previous programming skills
Procedural languages
difference to Prolog not that large when knowing

e structured programming (proponents Dijkstra et al.) :
— to avoid bad habits: Verify, don’t run (& don’t debug)
unclear: how to ensure accurateness of spec?
— never visualize execution

— avoid anthropomorphisms — computer language # language
linguistic analogy not helpful

e invariants, pre- postconditions

e testable assertions — e.g. Eiffel

seldom taught along with practical programming

e C’'s assert.h (Even in C you can do better!)

Programming and Mathematical skills

Beginners have lots of problems understanding Prolog
because they never learned structured programming.

Mathematical skills
e mathematical logic as prerequisite
e calculational skills (e.g. manipulating formulee)

e unification

Language skills
e Only helpful skill to build on.

e Many difficulties of Prolog can be clarified by reading programs in
plain English.

e F.g. quantification problems in negation:

female(Female) <—
\+male(Female).

Everything/everyone, really everything/everyone that/who is not
male 1s female.

Therefore: Since a chair/a hammer/the summer isn’t male it is
female etc.

Language skills cont.

female(Female) <
person(Female),
\+male(Female).

Napoleon is a person (defined) but we haven’t defined Napoleon
as being male, so we assume he is female.

e Detect defaulty data structure definitions

is_tree(_Element). % Everything is a tree.
is_tree(node(L, R)) <«

is_tree(L),

is_tree(R).

Prolog’s Syntax, Difficulties

Minor typos make a student resort to bad habits
Comma vs. period
Prolog’s syntax is not robust: “male(john).” is a goal or fact,
depending on the context.

father of(Father, Child) <
child of(Child, Father),
male(Father), % !

male(john).

Happens to 84% of students.

Prolog’s syntax — increasing robustness

1. Redesign Prolog’s syntax. (Prolog IT)

2. Take a subset of existing syntax. (GUPU)
make spacing and indentation significant

(a) Each head, each goal goes into a single line.

(b) Goals are indented. Heads are not indented.

(c) Only comma can separate goals (i.e. no disjunction)

(d) Different predicates are separated by blank lines.

a < | — a 4
C. |, % Don’t play down the cut! !!

C.
= more helpful error messages possible

10

Names of predicates
key to understanding
assignments for finding the right names
Misnomers
e action oriented prescriptive names
append /3, reverse/2

use past participle instead, sometimes noun
e leave the argument order open

child/2, length /2
e pretend too general or too specific relation

reverse/2, length /2
e tell the obvious: body list//1

11

Finding a good predicate name

1. Start with intended types
typel type2 type 3 typed(Argl, Arg2, Arg3, Arg4)
“child of a person” : person_person /2

2. If name too general, refine
person _person = child_person /2
list_list /2 = list_reversedlist /2

3. Emphasize relation between arguments

e shortcuts like prepositions

child_of/2

e past participles alone.
list_reversed /2

12

Example of name finding
“length of a list”

e number list /2 =-length list /2

e list number/2 = list_length /2

e Argument order not important

e Traditional names often too general (length/2)

Shorter names
Omit less important arguments at the end
shortened name ends with an underscore
country_(Country, Region, Population, ...)
Type definitions
Convention: is_type(Type) or type(Type)

e documentation purpose

e serve as template for predicates defined over data structures

13

O’Keefe-rules

e unsuitable (for beginners)
e deal with procedural aspects

e inputs and outputs

atom_chars vs. atom_to_chars

14

Variable names
Lack of type system makes consistent naming essential

o for lists: [Singularform|Pluralform] ;| e.g. [X|Xs]

e naming void variables in the head
e.g. _Xs instead of _
member(X,[X]|]).

e state numbering (e.g. list differences)

15

Understanding differences
— misleading name: “difference list”

— misunderstanding: “difference lists” are not lists

Student statement: “My Prolog doesn’t have difference lists”
+ instead : list difference, difference of lists, differential list (?)
— differences too early
+ use grammars first

more compact, less error-prone, less typing
amazingly powerful
compact string notation

— differences presented as incomplete data structures — “holes”
+ motivate differences with ground lists
+ differences are not specific to lists

+ differences and state

16

Part 11
Reading of programs

Algorithm = Logic + Control
Common misinterpretation
Prolog program = Pure Prolog + Control predicates

Inpure parts required?
Separation of declarative and procedural aspects is not helpful.

Family of related reading techniques
Focus on distinct (abstract) parts/properties of the program

e informal reading in English
e declarative reading
e (almost) procedural reading
e termination reading

® resource consumption

17

Informal reading
use English to

e focus the student’s attention on the meaning of program
e avoid operational details

e clarify notions

e clarify language ambiguities

e clarify confusion of “and” and “or

ancestor_of(Ancestor, Person) <
child of(Person, Ancestor).
Someone is an ancestor of a person if he is the parent of that

PETSOMN.
Alternatively: Parents are ancestors.

18

ancestor_of(Ancestor, Descendant) <
child of(Person, Ancestor),
ancestor_of(Person, Descendant).

Someone is an ancestor of a descendant if he is the parent of
another ancestor of the descendant.
Alternatively: Parents of ancestors are ancestors

Reading complete predicates is often too clumsy:

Someone is an ancestor of a descendant, (either) if he is the
parent of that descendant, or if he is the parent of another
ancestor of the descendant. (unspeakable)

Alternatively: Parents and their ancestors are ancestors. (too

terse)

Informal reading is intuitive but limited to small programs.
= Extend informal reading to read larger programs

19

Declarative reading of programs

e consider only parts of program at a time
e cover the uninteresting/difficult parts (fke=this)

e shortens sentences to be read aloud

Analysis of clauses
Read single clause at a time.
Add remark: But there may be something else.
ancestor_of(Ancestor, Person) ¢
child_of(Person, Ancestor)

.
/L A , ™\ h |

Someone is an ancestor of a person if he is the parent of that
person. (But there may be other ancestors as well).

Alternatively: At least parents are ancestors.

20

1¢

"(U0sIo ‘103890UY)[eIouad 00} JO PIYD
— (T0SI9{ ‘10)S90UY)[RISUSS 00} JO 10)S9DUR

wre1dold ojoym 9y} 998 0} AIBSS009U J0U SI JI UOIJBIO[J0LID 10,

SOSIIE[O SNIO9UOJIIH

'SL0JSIIUD LD S407590UD [0 SJuUaLDd 35D3] 1y

CINg JUDPUIISIP ay3 fo 4035990uD UuD buLaq U0SLId 4IYIOUD

Jo quaund 2y} s,9Y J1 JUDPUIISIP D [0 40ISIOUD UD ST JUOIULOG

(Juepusdsa(] ‘U0SISJ)JO 10)S0UeR

‘(103800UY ‘UOSI9J)JOPIIYPD
— (JyrepuLdsH(] 1035090UY)JO"10)S90UR

a9

Analysis of the rule body

e goals restrict set of solution

e cover goals to see generalized definitions

father(Father) <
male(Father),

1 -1 1 VA o'k B Bk B = S | AN

Fathers are at least male.

(But not all males are necessarily fathers)

father toorestricted(franz) <—

Body is irrelevant to see that definition is too restricted.

22

Searching for errors
If erroneous definition is

1. too general. Use: Analysis of clauses to search too general clause

2. too restricted. Use: Analysis of the rule body

Reading method leads to analgous writing style.

23

Procedural reading of programs
e special case of the declarative reading
e uncover goals in strict order

e look at variable dependence

— first occurrence of variable
variable will always be free

— further occurrence
connected to goal /head

24

1. ancestor_of(Ancestor, Descendant) <— Yo <=

2. ancestor_of(Ancestor, Descendant) <—
child_of(Person, Ancestor), Yo <=

= Ancestor can influence child of/2.
= Descendant doesn’t influence child of /2.
= Person will be always free.

3. ancestor_of(Ancestor, Descendant) <

child_of(Person, Ancestor),
ancestor_of(Person, Descendant). Yo <=

= Descendant only influences ancestor_of/2.

25

Termination
e often considered weak point of Prolog

e nontermination is a property of
a general purpose programming language

e only simpler computational models guarantee termination
(datalog, categorical programming languages)

e floundering is also difficult to reason about

e pretext to stop declarative thinking, usage of debuggers etc.

e < Goal. terminates if <— Goal, fail. terminates (and fails)
Idea:

e termination reading special case of procedural reading

e consider simpler predicate

e if simpler predicate terminates (& fails), the original predicate termi-
nates as well

26

Termination reading
e cover all irrelevant clauses

— cover all facts
— non recursive parts

/1 X r xXr N\
Y — A VARP=vEn |
e TSI e e

1)) /"

X|Xs], Vs, [X]|Zs])
append(Xs, Ys, Zs).

e cover variables that are handed through (Ys)

L \]

X|Xs], ¥ [X|Z8])
append (Xs, ¥s Zs).

e cover head variables (approximation)

/ X r Xz
A V4 \ VA=
VAN NS

uk’ukrc

S
append([X [Xs], ¥s5 [X |Zs])
append (Xs, ¥s; Zs).

an

N

27

Resulting predicate:

appendtorso(| X|Xs|, [Z|Zs]) :-
appendtorso(Xs, Zs).

e if appendtorso/2 terminates, append/3 will terminate
e appendtorso/2 never succeeds

e only a safe approximation

< append([1]-], -, [2|.]).

< appendtorso([1]], [2]]).

appendtoro/2 does not terminate while append/3 does
e The misunderstanding of append/3

role of fact append(|], Xs, Xs)

often called “end/termination condition”

But: append([|, Xs, Xs) has no influence on termination!

28

Reasoning about termination: append3/4

append3A(As, Bs, Cs, Ds) < append3B(As, Bs, Cs, Ds) +
append(As, Bs, ABs), append(As, BCs, Ds),
append(ABs, Cs, Ds). append(Bs, Cs, BCs).

Which one terminates for merging and splitting?

29

Procedural reading of append3A /4

append3A(As, Bs, Cs, Ds) <
append(As, Bs, ABs), % <= terminates only if As is known

1/ AT “ ~ v — /.
Result:
terminates only if As is known (no open list)

= reject append3A /4

e only a part of the predicate was read

(the second goal was not read)
e it was not necessary to imagine Prolog’s precise execution
e no “magic’ of backtracking, unitying etc.

e no stepping thru with a debugger — a debugger shows irrelevant de-
tails (inferences of the second goal)

30

Procedural reading of append3B /4

append3B(As, Bs, Cs, Ds)
append(As, BCs, Ds), % <= terminates if As or Ds known

1/ pal O\

append3B(As, Bs, Cs, Ds)
append(As, BCs, Ds),
append(Bs, Cs, BCs). % <= if Bs or BCs (=Ds) known

Result:
1. terminates if As and Bs are known (more than merging)

2. terminates if Ds is known (= splitting)

31

Fair enumeration of infinite sequences
e termination reading is about termination/non-termination only
e in case of non-termination, fair enumeration still possible
e much more complex in general
e order of clauses significant

e e.g. unfair if two independent infinite sequences
list_list(Xs, Ys) <
length(Xs,),
length(Ys,).

e explicit reasoning about alternatives (backtracking)
e use one simple fair predicate (e.g. one length/2) instead

e learn the limits, but don’t go to them

32

Resource consumption
e analytical vs. empirical
e Do not try to understand precise execution!
e prefer measuring over tracing

e abstract measures often sufficient

E.g. inference counting, size of data-structures

— inference counting

list_double(Xs, XsXs)
append(Xs, Xs, XsXs).
+ length(XsXs, V), list_double(Xs, XsXs).

When counting, ignore facts (similar to termination reading)

33

Rename 2nd argument, delay unification

list_double(Xs, XsXs) <
append(Xs, Ys, XsXs),
Xs = Ys.
< list_double(Xs, XsXs).
Requires IV and not IN/2 inferences (+ unification costs)

— size of data structures
(If everything else is the same)
size of data structures approx. proportional to execution speed

34

Reading of definite clause grammars

Comma is read differently:

nounphrase — % A noun phrase consists of
determiner, % a determiner followed by
noun, % a noun followed by
optrel. % an optional relative clause.

Declarative reading of grammars

Context free grammars are the declarative formalism per se but
still it is helpful to consider generalizations:

nounphrase — % A noun phrase (at least)
determiner, % starts with a determiner
roun Yo —

optrel. % ends with an optional relative clause

35

Procedural reading of grammars

Take implicit argument (list) into account

seq([]) — seq3(Xs, Ys, Zs) —
J seq(Xs),
seq([X[Xs]) — seq(Ys),
X], seq(Zs).
seq(Xs).

append3(As, Bs, Cs, Ds)
phrase(seq3(As, Bs, Cs), Ds).

splitting and joining works

36

Part I1I
Course implementation

e 2nd year one semester course
2hrs/week (students claim: 9 x 5hrs work)

e nine weeks (example groups) about 70 small assignments
Course contents

e Basic elements (facts, queries, rules)

e Declarative reading (first only with datalog)

e Procedural reading (—""—)

e Termination (—"7—)

e Terms

e Term arithmetic

e Lists

e Grammars

37

e List differences (after grammars)
e State & general differences (make/next/done)
e Limits of pure Prolog (unfairness etc.)

e Meta-logical & control
most important part: error/1 (terminate execution with an error mes-
sage)
(nonvar/1, var/1, error/1, cut)

e Negation
e Term analysis

e Arithmetic

38

Topics not covered
(*): covered in an advanced course (3hrs)

L.

© o N o

setof(Template, Goal, Solutions) (*)

“answer substitutions” vs. “list of solutions” confusing — quantification tricky

. meta interpreters (*) — program = data too confusing

instead use pure meta interpreters “in disguise” (e.g. regular expressions)

. meta call (*)
. explicit disjunction (*) — meaning of alternative clauses must be understood first

.if then else (*) — leads to defaulty programming style

if used, restrict condition to var/nonvar and arithmetical comparison
data base manipulation (*) — difficult to test — if used, focus on setof/3-like usage
advanced control (*) — reasoning about floundering difficult

constraints (*)

. extra logical predicates

10.

debuggers, tracers — reason for heavy usage of cuts

39

GUPU Programming Environment

Gesprachsunterstiitzende Programmieribungsumgebung
conversation supporting programming course environment
Guided tour: http://www.complang.tuwien.ac.at/ulrich/gupu

e specialized for Prolog courses
e uses a subset of Prolog

e focuses on clean part of Prolog
i.e. no side effects allowed

e side effect free interaction
e comfortable querying and testing
e Only two (nonoverlapping) windows:

— example texts to be edited
— help texts with simple mark up links

(no window to execute or test)

40

1. Beispiel ################FFFFFFAREHERARBRBHFHHHHREERRS
Stellen Sie eine Frage (mit <).

Beachten Sie bitte den Unterschied zwischen einer

Anfrage wie z.B.

:— ocean(0Ozean).

und einer < Frage. Siehe Anhang A. Verwenden Sie die
< Fragen nur, wenn Sie Hilfe brauchen. Siehe auch

\Hinweis{Tastatur}.

2. Beispiel #######HHHHHHHHEEHHEEBEEEEREEEREHEE R
Schreiben Sie eine kleine Datenbasis (mit zumindest

10 Personen), die familiire Beziehungen beschreibt:

(In den folgenden Beispielen werden einige komplexere
Verwandtschaftsbeziehungen definiert, formulieren Sie

H B H H B

daher bitte eine Datenbasis, die komplex genug ist.

+*

-- Hier konnen Sie die Funktionstasten zum raschen
Kopieren von Funktoren verwenden. Siehe Anhang B. --

**

kind_von(joseph_I, leopold_I).
kind_von(karl_VI, leopold_I).
kind_von(maria_theresia, karl_VI).
kind_von(joseph_II, maria_theresia).
kind_von(joseph_II, franz_I).
kind_von(leopold_II, maria_theresia).
kind_von(leopold_II, franz_I).
kind_von(marie_antoinette, maria_theresia).
kind_von(franz_II, leopold_II).

:— kind_von(Kind, Elternteil).
:— ménnlich(Mann).
! | Pradikat :m&nnlich/1: nicht oder in nicht geladenem Beisp

iel definiert. \Hinweis{laden}

||||| nb599 server 100% 20:18 Freie Zeit xterm (GUPU

41

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Il
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Al
|
I

)

Bitte lesen Sie zuerst die Beschreibung dieser

Programmierumgebung in Anhang A und B!

Auf dieser Seite konnen Sie allgemeine Hinweise

lesen. Um einen Hinweis zu lesen, mit dem

Cursor vor einen Hinweis und DO driicken.
\Hinweis{init9495last} (Vom WS)

\Hinweis{Tastatur} (Allgemein)
\Hinweis{Reservierung} (Allgemein)
\Hinweis{Ubungsmodus} (Allgemein)

\Hinweis{Maschinenwahl}
\Hinweis{UberlasteteMaschinen}
\Hinweis{Konsistenzprifung}
\Hinweis{Bewertungsmodus}
\Hinweis{KompakteListen}
\Hinweis{Suffix}

ad Bsp.26 \Hinweis{Zahlenpaare}

ad Bsp.29 \Hinweis{Datenstrukturdefinition}
\Hinweis{AufbauendeLVAs} (SommerS.95)
\Hinweis{Wozu_Prolog}

ad Bsp.28 \Hinweis{appendnachsuffix}

ad Bsp.53 \Hinweis{Instanzierungsmuster} Erkl.

ad Bsp.57 \Hinweis{Frosch} Die ganze Geschichte

ad Bsp.58 \Hinweis{Variablen_in_DCGs}

ad Bsp.62 \Hinweis{Mdgliche_Instanzierungen}

ad Bsp.67 \Hinweis{Diagonalen}
\Hinweis{PrologAllgemein}

Abgabetermine sind nun mittwochs 24h00.
1. Abgabetermin ist Mittwoch 22. Marz.

--%%-Emacs: init.hlp (Hinweise)--Al11---

Interaction

1. edit text

2. press |DO| to save, compile, test

3. comments (from system or lecturer) are written back into text

child of(karl VI, leopold_I).

child of(maria theresia, karl VI).

! child of(maria<*>theresia, karl VI).

! Argumentliste eines Funktors unterbrochen, ...
child of(joseph_II, maria_theresia).

< append(Xs, Xs, Xs).

< @QQ % Xs = |].

< @Q@ ! Ausfuhrung dauert zu lang, Antwort unvollstandig
< Why the loop here?

x> Compare it to < append(Xs, Xs, Zs), Xs = Zs.

42

Program text, assertions
child_of(karl_VI, leopold_I).

child of(maria_theresia, karl VI).
child of(joseph_II, maria_theresia).
child_of(joseph_II, franz I).

child of(leopold II, maria_theresia).
child_of(marie_antoinette, maria_theresia).

< child of(Child, Parent).
¢~ child of(joseph 11, friedrich_IT).

43

Assertions
e < Goal. should succeed
e # NGoal. should not succeed (:/-), avoids talking about negation
e tested upon saving
e timeouts for “infinite loops”
e immediate feedback
e supports a more specification oriented programming method:

1. formulate test cases (= specification)
2. write predicate

3. testing is now “for free”

Querying predicates
Two roles of < Goal.

e assertion (tested upon saving)

® query

44

Answer substitutions
child_of(karl_VI, leopold_I).
child_of(maria_theresia, karl 'VI).
child of(joseph_II, maria_theresia).
child of(joseph I, franz I).

child of(leopold II, maria_theresia).

child_of(marie_antoinette, maria_theresia).

< child of(Child, Parent).

Q@@ % Parent = leopold_I, Child = karl VI.

Q@@ % Parent = karl VI, Child = maria_theresia.
Q@@ % Parent = maria_theresia, Child = joseph_II.
Q@@ % Parent = franz I, Child = joseph II.

Q@@ % Parent = maria_theresia, Child = leopold_II.
@@@Q@ ? Weitere Losungen mit SPACE
¢~ child_of(joseph_II, friedrich_II).

45

Answer substitutions cont.
e displayed in chunks
e locates most backtracking problems
e infinite sequences can be inspected
e redundant answer substitutions labeled
e answer substitutions inserted into program text
e casy to (re-)use answer substitutions for new goals

e timeouts

46

Example domains
1. The family database

— recursion maybe better with recursive terms

— infinite loops in the first week (timeouts)

— doesn’t compute something “real”

+ motivation, identification with own db (= often own family)

+ mapping Prolog to English much simpler if domain well known (e.g.
uncle John ...)

+ clarify notions taken for granted (e.g., siblings)
+ data incompleteness
+ various degrees of inconsistency, integrity constraints

+ recursion not that difficult with procedural reading technique

47

2. Maps
3. Stories Mapping small fairy tales into Prolog.

4. (simplified) grammars of programming languages
5. RNA-analysis (along D.B.Searls NACLPS89)

+ very pure
+ backtracking mechanism, efficiency issues

+ execution imposssible to understand step-by-step
no procedural cheating possible

+ constraining variables

+ reordering parsing

6. Analyzing larger text

E.g. extracting the words used etc.

48

