
vanHelsing: A Fast Proof Checker for
Debuggable Compiler Verification

Roland Lezuo∗, Ioan Dragan∗†, Gergö Barany∗‡, Andreas Krall∗
∗Institute of Computer Languages
Vienna University of Technology

{rlezuo,ioan,gergo,andi}@complang.tuwien.ac.at
†Institute e-Austria and

Victor Babeş University of Medicine and Pharmacy
Timişoara, Romania
idragan@ieat.ro

‡CEA, LIST, Software Reliability Laboratory
Gif-sur-Yvette, France

gergo.barany@cea.fr

Abstract—In this paper we present vanHelsing, a fully au-
tomatic proof checker for a subset of first-order problems
tailored to a class of problems that arise in compiler verification.
vanHelsing accepts input problems formulated in a subset of the
TPTP language and is optimized to efficiently solve expression
equivalence problems formulated in first-order logic. Being a
practical tool vanHelsing provides also graphical debugging help
which makes the visualization of problems and localization of
failed proofs much easier. The experimental evaluation showed
that this specialized tool performs up to a factor of 3 better than
state of the art theorem provers.

I. INTRODUCTION

This section gives a short introduction into compiler cor-
rectness and describes the specific translation validation frame-
work vanHelsing has been developed for. Although proofs are
the most time consuming part of the framework they are just
another component in the whole system. This section gives an
overview over the whole translation validation framework and
justifies the problem formulation vanHelsing is optimized for.

Compiler correctness deals with the problem whether a
source program has been correctly translated into machine
code by the compiler. Compilers themselves are a large and
complex piece of software and recent research [1], [2] shows
that they are far from bug-free. For safety-critical systems
those bugs can result in catastrophic events, even if the
software itself has been verified (as the bug was introduced by
the compiler). The formal verification of compilers is therefore
an important research area. One possibility to assure compiler
correctness is to have a verified compiler, i.e. a compiler
that is proven bug-free and thus correct. The most relevant
implementation is Leroy’s CompCert compiler [3] which, in
large parts, is generated from verified Coq code.

While the CompCert project demonstrates that an indus-
trial grade verified compiler can be created, it fundamentally
changes the way a compiler is implemented. Traditional ven-
dors are therefore interested in techniques assuring correctness
without the need to rewrite their compiler from scratch in
language unfamiliar to the team. Translation validation [4]
is an approach allowing traditional compiler construction. It

treats the compiler as a black box and only observes the
input (source code) and the output (machine code). Similar to
program checking [5], the idea is that the correctness criterion
is easier to implement than a verified compiler. Translation
validation thus splits the code into untrusted parts (i.e. the
compiler) and trusted parts (i.e. the verification code).

vanHelsing was designed and implemented as part of
a translation validation framework for the back-end of an
optimizing C compiler [6]. In this framework each individual
pass of the compiler is proven locally correct by applying the
translation validation method. Each pass may induce global
constraints which are collected by the framework and vali-
dated when the full compilation becomes available. In most
cases the input and output languages of the single passes are
intermediate languages used by the compiler. Only the very
first pass operates on the source language and only the very
last pass creates machine code. The input to each pass is the
output of its predecessor and has thus been validated. In this
manner a chain-of-trust [6] is created.

The majority of translation validation work is done when
proving local correctness of single passes. In the back-end
the intermediate languages are assembly-like languages which
operate on registers and are organized in so called basic blocks
(sequences of non-branching instructions). Formal semantics
of each intermediate-language operation is given by abstract
state machine (ASM) [7] models. Uninterpreted functions are
used to describe their arithmetic effects. To compute the
semantics of a whole basic block symbolic execution is applied
to the ASM models. This is feasible as basic blocks are free
from loops, and only a small number of intermediate-language
operations are data dependent, e.g. conditional branches, pred-
icated execution. Thus the number of paths is low and can be
handled for realistic programs.

The symbolic execution engine emits first-order formulas in
TPTP format [8] utilizing a technique called direct symbolic
execution [6]. These translation facts contain the so called
data flow of a basic block which describes its arithmetic
effects. (Side-effects of the block, i.e. memory and control
flow changes are handled by the framework, which is beyond

the scope of this paper.) A data flow consists of variables (i.e.
registers in our application) and arithmetic functions operating
on those variables (i.e. a 3 address machine). Variables which
are used in a basic block, without being defined are called
live-in. Variables which are defined in a basic block are called
live-out. Variables which only hold intermediate results of
an expression’s evaluation are called temporaries. A medium
sized basic block can easily result in more than 10.000 TPTP
formulas. An example will be given in section II.

A simulation proof technique is applied to each basic
block before and after each single pass [6]. A pass specific
mapping correlates live-in variables of the block before to live-
in variables of the block after the translation. Live-out variables
are mapped as well. A translation is locally correct if mapped
live-out variables of the block are calculated by equivalent
expressions using the same mapped live-in variables. It is
important to know that the symbolic execution engine is part
of the verification and thus of the trusted code. For commercial
reasons it is important to keep the amount of trusted code as
small as possible because this directly translates into costs for
certifications. Thus its reasonable to have a not-ideal problem
formulation when it avoids implementing a pre-processor (and
thus have additional certification costs).

The intermediate-language models use uninterpreted func-
tions, hence the first-order formulas created by symbolic
execution contain them as well. We use uninterpreted functions
to model the semantics of machine instructions and compiler
intermediate language to match the semantics of the underlying
hardware. A microprocessor implementation may e.g. define
division-by-zero to result to zero. To be able to model such as-
pects of the arithmetic units one can not rely on built-in integer
arithmetics of theorem provers. Uninterpreted functions also
allow to easily model complex instructions like multipy-and-
accumulate with saturation semantics. In certain cases using a
prover’s built-in theories could be a feasiable optimization. The
potential of such optimization was not studied in this work.

Summarizing the constraints affecting the problem formu-
lation i) the use of uninterpreted functions to cover implemen-
tation aspects of realistic microprocessors and ii) no problem
pre-processing, because such code is part of the trusted code
and thus expensive in certifications of the product.

The rest of this paper is structured as follows. First we
give an overview of what motivated our tool and introduce
the notions that are used trough the paper (see Section II).
A more formal description of the problem we are addressing
with the help of vanHelsing is presented (see Section III).
Next implementation details and optimisations used in order
to obtain these results are presented (see Section IV). In
Section V we preset the debugging capabilities of vanHelsing.
We thoroughly evaluated the vanHelsing tool and compared its
performance against best off-the-shelf provers (see Section VI).

II. MOTIVATION AND PRELIMINARIES

Let us start by giving an example. Consider the constant
folding pass, which evaluates expressions containing constant
values at compile time. In Listing 1 we can observe the struc-
ture of problems that are emitted by our research compiler. The
output is in TPTP [8] format and encodes three independent

data flows. Written as expressions, these are:

sym5 = ((sym1 + 1) + 1) + sym4

sym9 = (sym6 + 2) + sym8

sym12 = sym11funrelatedsym10

For now ignore sym12, which is unrelated to our problem.
For various reasons the output of our compiler contains a large
number of formulas which are unrelated to a specific proof. We
will later show how vanHelsing debugging mode treats such
unrelated formulas. Live-in variables are sym1, sym4, sym6,
sym8, sym10 and sym11, while sym5, sym9 and sym12 are
live-out. (sym2, sym3 and sym7 are intermediate values and
neither live-in nor live-out).

1 fof(id0,hypothesis,add(sym1,1,sym2)).
2 fof(id1,hypothesis,add(sym2,1,sym3)).
3 fof(id2,hypothesis,add(sym3,sym4,sym5)).
4
5 fof(id3,hypothesis,add(sym6,2,sym7)).
6 fof(id4,hypothesis,add(sym7,sym8,sym9)).
7
8 fof(id5,hypothesis,unrelated(sym10, sym11, sym12)).

Listing 1: Translation facts with three data flows

Note the relation between the expressions for sym5 and
sym9. The corresponding translation validation problem could
then be formulated as a first-order formula expressing the fol-
lowing question: Assuming sym1 = sym6 and sym4 = sym8,
does sym5 = sym9 hold? If it does, then this particular
instance of this program transformation is proved correct.

To generate a complete problem which can be handed
off to a theorem prover or proof checker two translation
facts (of the same basic block, before and after a pass) are
combined with so called proof obligations. Proof obligations
are additional formulas and the conjecture. The additional
formulas describe the transformations performed by the pass
and the conjecture is the correctness criterion for the pass.
In our framework the compiler guides the proof system by
providing additional formulas as witness-information (which
is still untrusted information though). The generation of the
conjecture (based on the witness-information) is part of the
trusted code. A majority of the proof obligations are about
showing that two data flows are equivalent, i.e. they are
instances of the expressions equality problem. From a compiler
verification point of view it is interesting to have evidence that
the compilation was indeed performed correctly. This evidence
should contain a traceable, constructive argument.

As our translation validation framework is designed to
be used in an industrial context with medium to large ap-
plications, performance is an important issue. The theorem
prover is key to achieve a good performance of the whole
translation validation framework. In order to choose the best
performing first-order theorem provers we turned to the CASC
competition [9]. And from there we picked the best performing
ones, Vampire [10], [11] and E [12]. Both provers are using
resolution and superposition [13] calculi to perform the proof.
More details can be found in the Handbook of Automated
Reasoning [14].

For our verification application, based on the sketched
problem formulation, the most likely outcome is thus that a
refutation will be found. This means the compilation has been
performed correctly and the refutation is the proof trace (evi-
dence for our application). There is an annoying uncertainty,

because a refutation merely means that a contradiction has
been derived. If the derived contradiction is unrelated to the
conjecture the proof proves nothing for our application and we
call it a spurious proof. As the compiler is untrusted it may
easily emit translation facts or witness-information containing
a logical contradiction. Spurious proofs are thus a real issue
for a translation validation application. It is of course possible
to execute the theorem prover on the translation facts without
a conjecture to validate that it is free of contradictions. The
major drawback of this approach is that it roughly doubles the
verification time.

On the other hand, if no refutation can be found, the
result is either that the problem is satisfiable, or a timeout
occurs. For our application this means that the compilation
went wrong, i.e. it can’t be proven correct. The main issue
with superposition based provers is that there is no indication
of the cause of the error. For acceptance in an industrial
context the tool must provide good error reporting facilities and
help to identify the problem with the proof. Manually finding
the problems in proofs consisting of thousands of formulas
is a tedious and time-consuming task. It needs quite some
experience and knowledge with theorem provers to pinpoint
the problem and translate it back into the original problem
domain, i.e. to answer the question what went wrong in the
compilation. vanHelsing offers graphical debugging aid to
investigate the cause of failing proofs. In our experience this
allows compiler domain experts to quickly identify the issues
in the original problem domain with a deep understanding of
the tool. More detail will be presented in section V.

Satisfiability modulo theories (SMT) [15] is a major branch
in automated theorem proving that could theoretically help
with this issue. Using the same problem formulation SMT
produces a model for erroneous translation (they are satis-
fiable) which helps in identifying the bug in the compiler.
For more complex problems finding a model seems to be a
very time consuming task. In our experiments we noticed a
big degradation in performance of the Z3 solver, more details
about this are presented in Section VI. On the other hand
no information is given when the problem is found to be
unsatisfiable. For our application this means that no evidence
is created.

After studying these problems, the observation we made is
that many proofs in our problem domain have a very similar
tree-like structure. As they are derived from the data-flow of
the compiled programs we call them data-flow equivalence
problems (DFE) [6]. The motivation to develop the vanHelsing
checker was to exploit the special structure of these problems
in order to i) improve the performance and ii) have a tool that
reliably creates evidence and iii) provide users the possibility
to debug why a proof failed.

III. THE PROBLEM CLASS

In the following we are going to briefly present the sup-
ported input language, features and restrictions imposed by
vanHelsing. As input language the vanHelsing checker uses a
subset of TPTP v6.0 [8].

As top-level elements Typed First-Order Formulas (TFF),
containing type information for predicates and variables and
First-Order Formulas (FOF) are accepted. Due to the way

vanHelsing is designed, the TFF formulas are accepted but
it does not keep track of the type specified in the formula but
rather assumes integer types for all values. Nonetheless correct
type information should be added to achieve compatibility
with other provers (i.e. Vampire). All TPTP formulas have the
generic form language(id, role, formula). with
language being fof or tff. The role of a FOF formula is one
of axiom, hypothesis or conjecture (formula to be proven). The
subset of accepted FOF formulas is tailored to model data-flow
equivalence (DFE) problems. We first list the supported subset
of TPTP and establish some terminology before defining the
DFE problem itself (section III-B).

A. Input Language

• Values / Variables – $true, 1, -4, sym2
The values $true and $false encode the boolean
constants true and false. Integer constants represent
the corresponding integer value. Boolean and Integer
constants are called well-defined values (that is: their
semantic value is known). All other values (e.g. sym2
are supposed to be (unknown) integer values. Vari-
ables starting with an upper case letter are universally
quantified free variables used in patterns.

• Functor Application – pred(x,y,z)
In the context of vanHelsing, all functions must be
treated as predicates. Although the formalization ex-
clusively uses predicates the problem domain exclu-
sively uses functions. In order to address these issues,
by convention we map a n-ary function f of the
problem domain to a n+1-ary predicate f in the DFE.
The addition z = add(x, y) in the problem domain
would be mapped to the predicate add(x, y, z). If a
functor application is also part of the conjecture, the
corresponding fact must eventually be derived for the
proof to succeed.

• Equality – x = y
Assuming x and y are both well-defined but have
different values this implies that the problem contains
a contradiction. If equality is used in the conjecture
the values x and y must eventually be unified for the
proof to succeed.

• Inequality – x != y
In case x and y are both well-defined but have the
same value it implies that the problem contains a
contradiction. If inequality is used in the conjecture
the values x and y must not be unified for the proof
to succeed.

• Implication – lhs => rhs
If lhs (the pattern) evaluates to true rhs (the action)
will be performed. An action may either be a function
application, in that case a new fact will be added to
the proof or an equality, which triggers an unification.
No unbound free variables must occur in the action.
An example usage is the implication (add(A,B,X)
& add(A,B,Y)) => X=Y). In the context of our
work, implications drive the unification used to solve
the DFE.

• Conjunction - formula1 & formula2
Informally introduced in above example. Let us define

conjunction to be similar to the notion used in first-
order logic, as a remark we note that conjunctions can
be also used in the context of terms. Important appli-
cations of the conjunction is a conjecture consisting
of multiple clauses and of course in complex patterns
of implications.

• Equivalence – lhs <=> rhs
The equivalence pattern will be translated into two
implications (lhs => rhs and rhs => lhs).

B. Data-flow Equivalence Problems

The vanHelsing checker is designed and optimized to
solve a specific problem class very efficiently. In this section
we define the data-flow equivalence problems and give an
example.

Given a set of functions F = {fi : i ∈ 0 . . . n} (each
with a fixed arity) and a set of variables V = {vj : j ∈
0 . . .m} a data-flow (DF) is a set of function applications
vj = fi(a0, . . .) : vj ∈ V , fi ∈ F , a0, . . . ∈ V . A variable vj
which is the result of applying a function fi (vj = fi(a0, . . .))
is called to be defined by this function application. A variable
aj appearing as an argument in a function application is called
to be used by this function application. The DF is free of cycles
meaning that a variable defined by a function application is
never used in that function or any other function defining the
arguments (recursive).

There are two distinct sets of variables in a DF. The set of
all variables which are only defined but not used is called the
live-out set, the set of variables only used but never defined is
called the live-in set.

Given a defined variable vj its data-flow tree (expression)
can be constructed by recursively replacing all variables not
in the live-in set with their defining function applications.

A DFE consists of two DF (DF0 and DF1) and two
mappings MI and MF . MI is a bijective function associating
each variable v0i of the live-in set of DF0 with a variable v1i of
live-in set of DF1. MF also is a bijective function associating
the variables in the live-out sets.

The syntactic DFE problem can now be formulated as
follows. Let DF0 and DF1 be data-flows, MI a live-in mapping
and MF a live-out mapping. Is the data-flow tree of each live-
out variable v0j of DF0 equal to the data-flow tree of MF (v

0
j)

(respecting the equality of live-in variables defined by MI)?

The semantic DFE does not ask for syntactic equality of
the data-flow trees but semantic equality. A set of semantic
equivalent transformations must be given then. In this paper
we implicitly mean semantic DFE problems unless stated
otherwise. The key observation here is that the conjecture
of a DFE is a conjunction of equalities. To prove those
equalities a prover must not derive any new clauses, unification
is sufficient.

We encode semantic DFE in first-order logic. All n-ary
function applications are mapped to n + 1-ary predicates
(with the function result being the last argument). Variables
of the DFE are mapped to (TPTP) values. The (syntactic and
semantic) equivalence of data-flow trees needs to be encoded
by axioms. Listing 2 shows an example. The two data-flows are

fof(id0,hypothesis,add(sym1,1,sym2)).
fof(id1,hypothesis,add(sym2,1,sym3)).
fof(id2,hypothesis,add(sym3,sym4,sym5)).

fof(id3,hypothesis,add(sym6,2,sym7)).
fof(id4,hypothesis,add(sym7,sym8,sym9)).

fof(id5,hypothesis,unrelated(sym10, sym11, sym12)).

fof(ax1,axiom,(add(A,B,X) & add(A,B,Y)) => X=Y).

Listing 2: A TPTP file containing three data-flow trees

formed by the predicates id0, id1, id2 and id3, id4. (Actually
there is a third data-flow formed by predicate id5). Axiom
ax1 encodes syntactic equivalence. The mappings I and F are
missing in this listing and will be added later.

In order to better visualize how the input problem looks,
vanHelsing offers an option to print the internal representa-
tion of the problem, the proof graph, using GraphViz [16].
Figure 1 shows the initial graph built from the example given
in Listing 2. Function applications are printed as structured
rectangular boxes. The first field contains the predicate’s name
while the following fields contain the predicate arguments. And
we use, as a convention, the last argument to represent the
result. All arguments are linked to the referenced value nodes
and are printed in ellipses. In case of the unified values, values
that are equal, are printed as a list after the equal sign, in our
example there are none.

IV. IMPLEMENTATION

vanHelsing is a command line tool for POSIX systems
written in C++. It is used as part of our translation validation
tools and we consider the implementation as stable and mature.
During the development of the validation tools vanHelsing’s
implementation has been thoroughly tested by executing Vam-
pire in parallel and assure that both tools produce the same
results. As input language it accepts a subset of the FOF
language specified in TPTP (including all-quantified variables,
negation, conjunction, implication and equality).

Internally the problem is represented as a graph with two
basic node types. Value nodes represent constants, variables
and symbols while functor nodes represent basic boolean
operators and user defined predicates. Implications of the form
P (X) ∧ P (Y) =⇒ X = Y drive the unification engine.
The antecedent is treated as a pattern and matched against
the graph. If a match is found the equality described by the
consequent is used to rewrite the graph, i.e. to unify value
nodes. The value node with the smaller degree is removed
from the graph and edges are inserted from all its adjacent
nodes to the unified node.

This matching is repeated in a round-wise manner until a
fixed point is found. Thus vanHelsing implements a forward-
chaining strategy.

Whether two data flows (expressions) are semantically
equivalent is reduced to the question whether the value nodes
representing their result have been unified or not. In case they
have been unified vanHelsing can create evidence file summa-
rizing all performed unifications together with the matching
patterns. vanHelsing therefore never finds spurious proofs and
always provides evidence.

sym2 =

add
sym7

sym8

sym9
unrelated

sym10

sym11

sym12

sym5 =

sym1 =

sym3 =

sym11 =

sym9 =

add
sym2

1
sym3

sym4 =

add
sym3

sym4

sym5sym7 =

add
sym1

1
sym2

sym12 =

sym10 = sym8 =

sym6 =
add

sym6

2
sym7

Fig. 1: Initial Data Flow Trees

In order to further improve performance of vanHelsing
we have also implemented a number of optimisations inside
vanHelsing. These optimizations in conjunction with the way
we represent the problem proves to perform best in the context
of compiler back-end verification.

1) Dead patterns: As a first optimization it is ensured that
vanHelsing does not try to match a function application pattern
if there are no terms it could match, e.g. in cases where only
add functions are used no matching needs to be performed
for a function named sub (subtraction). This optimization
becomes very effective because conjunction patterns inherit
this property from their clauses. This enables the use of a
generic library of axioms which describe all optimizations
performed by the compiler and reuse of that library for other
verification projects, because axioms not used by a specific
pass don’t impact the execution time of the prover.

2) Term Indexing: The unification process is driven by
implications. Many of the axioms describe the syntactic equiv-
alence of the data-flow trees. They all have the generic form:

pred(A,B,X) ∧ pred(A,B, Y) =⇒ X = Y

The first predicate is matched and concrete values are assigned
to its free variables A and B. Matching the second predicate
can now be accelerated if A or B are (already) well-defined,
i.e. their values are constants. vanHelsing stores all functors
of a specific type in a hash-map (for fast look-up) and
maintains hash-maps for functors with well-defined arguments.
In the current implementation the first three arguments are
considered. Term indexing proved to be a key feature and
is considered the single most important optimization imple-
mented in vanHelsing.

3) Functor freezing: We call a sort of functors frozen if no
functor of their name has been modified in the current round.
A pattern is called frozen if it matches a functor which is
frozen itself. The conjecture pattern inherits its frozen status
from its clauses. Initially there are no frozen functors, assuring
that each pattern is matched at least once. Frozen patterns
may be skipped during the pattern matching phase as they
can not produce any new unifications. A sort of functors must
be unfrozen when a new fact involving this sort is added to
the proof (i.e. a new fact was stated in a consequent).

V. DEBUGGING A FAILING PROOF

The final problem graph is also a very good indicator
of the reason for the failed proof (i.e. the compiler bug).
By exploiting the regular structure of data flow equivalence
problems it is possible to identify the relevant parts of the
graph. vanHelsing computes the reachability (from pairs of
value nodes which were not unified, but were conjectured
to) under the assumption that all predicates are encoding
functions. The direction of the edges are therefore incoming
for all arguments but the last one (the result).

1 fof(ax1,axiom,(add(A,B,X) &
2 add(A,B,Y)) => X=Y).
3 fof(op1,hypothesis, sym1=sym6).
4 fof(op2,hypothesis, sym4=sym8).
5
6 fof(cj1,conjecture, sym5=sym9).

Listing 3: Missing an axiom

Listing 3 shows an example for a failing proof. Lines 3
and 4 encode (application provided) knowledge about initially
equal live-in variables of two data flows (from Listing 1).
The conjecture (in line 6) states that the given symbols must
be computed by semantically equivalent data flows. Without
knowing the arithmetic identity (A+1)+1+C = A+2+C, the
prover is unable to unify sym3 and sym7 and thus the proof
fails. Each conjectured equivalence which was not unified
is dumped into a separate graph (all irrelevant nodes have
been removed). These small, isolated graphs can be manually
inspected to identify the reason for the failing proof. Value
nodes have one of three possible colors in the failure dumps:
red and yellow nodes are only part of one data flow, while
orange nodes are part of both (i.e. were unified). The reason
for the failure is often near the first value nodes which were not
unified (i.e. red or yellow ones). Figure 2 shows the resulting
graph (irrelevant nodes have been removed, i.e. the unrelated
functor and its values are not printed).

Visual inspection quickly reveals that the first different
colors begin to appear with sym2 and sym7. It is clear
that sym7, representing the expression A + 2, needs to be
unified with the expression A + 1 + 1, represented by sym3.
A developer can thus quite easily conclude the cause of the
problem. In this case the proof system is not aware of this

sym5=sym9

add
sym6

1
sym2 sym2 =

sym9 =

add
sym7

sym8

sym9

add
sym6

2
sym7

sym5 =

add
sym3

sym8

sym5

add
sym2

1
sym3

sym7 =

sym8 = sym4

sym6 = sym1

sym3 =

Fig. 2: A failing proof

sym9 = sym5

sym2 =

unrelated
sym10

sym11

sym12

sym8 = sym4

add
sym6

2
sym7

sym12 =
sym11 =

sym6 = sym1

sym10 =

add
sym7

sym8

sym9

sym7 = sym3

add
sym6

1
sym2

add
sym2

1
sym7

Fig. 3: A succeeding proof

optimization. Adding the needed axiom (Listing 4) results in
a succeeding proof depicted in Figure 3.
fof(ax2,axiom,(add(A,1,B) & add(B,1,C)

& add(A,2,D)) => C=D).

Listing 4: The missing axiom

VI. PERFORMANCE EVALUATION

We have compiled 5 sets of benchmarks from three dif-
ferent back-end passes of our compiler. The problems within
all sets have a common structure, but the structures are
different between the sets. Instruction selection (isel) problems
are the most complex, because the transformation has the
largest impact on the data flow. Register allocation (regalloc)
problems are of modest complexity, depending on the amount
of spill code inserted. Without spilling the data flow does not
change at all, but if registers were spilled the changes are
intrusive. VLIW scheduling (vliw) problems are the simplest:
Instructions are reordered, the data flow will not be changed
at all. Normally the problems emitted by our compiler can
be proven, i.e. isel.succ, regalloc.succ and vliw.succ. During
development we also collected a set of problems which can
not be proven (compiler bugs, missing axioms), i.e. isel.fail
and vliw.fail. Interestingly we noticed that Z3 does not scale
well with respect to performance on the failing problem sets.

The problems emitted by our compiler are directly used by
Vampire and vanHelsing. Because E-prover does not support
types, we have to apply a preprocessing step and remove them.

In order to also experiment with Z3, we had to first convert
the problems into SMTlib format. For doing so we used the
tptp2x program that is part of TPTP library and allows us
to convert problems into smt format which can be used by
Z3. The current formulation of the problems proves to be not
optimal for Vampire nor for Z3. Vampire would profit from
using the built-in equality instead of using axioms. Z3 would
profit from its built-in arithmetics instead of the axiomatization
provided by us. But as mentioned in the introduction the
problem formulation can not be chosen freely. It is given by
the design and constraints of the symbolic execution engine
for ASM models and by the design goal to keep the trusted
code as small and simple as possible.

Table I contains the number of problems in the set, average
file size (mean) as an indicator of the complexity of each
problem, total size of the set and time each prover needs to
process the whole problem set. We report on the best of 3 runs
of vanHelsing (version aa115e4), Vampire (1.8 rev. 1362), E-
prover (E 1.8-001 Gopaldhara) and Z3 (4.3.1). The tests were
performed on a Core i7 @ 1.73 GHz using a 64 bit Ubuntu
12.10. We decided to run all the solvers three times in order
to eliminate any effect from the operating system that might
influence the results while the experiments are run.

Vampire is a very fast prover and has won the FOF section
of the CASC [9] competition for many years now. Although
that is the case, for our problem formulation vanHelsing always
performs better then Vampire (roughly factor 2). Vampire
proves to always be second fastest prover tested for these

TABLE I: Benchmark Set and Performance

Size Runtime (seconds)
Benchmark Set # files mean total vanHelsing Vampire E Z3
isel.succ 1705 25 kiB 49 MiB 13.76 24.54 44.31 42.41
regalloc.succ 454 412 kiB 239 MiB 49.11 54.79 491.98 55.34
vliw.succ 401 484 kiB 259 MiB 54.55 209.13 816.41 233.74
vliw.fail 27 905 kiB 22 MiB 4.38 17.54 88.72 81.21
isel.fail 343 29 kiB 12 MiB 2.97 7.45 38.82 961.81

isel.succ isel.failvliw.succ vliw.failregalloc.succ

0

5

10

15

20

1 11 111
.7
8

2
.53
.8
3

4

1
.1
23
.2
2

1
3
.0
7

1
4
.9
7

2
0
.2
6

1
0
.0
2

3
.0
8

3
2
3
.9
5

4
.2
8

1
8
.5
5

1
.1
3

Fa
ct

or

vanHelsing
Vampire
eprover

Z3

Fig. 4: Relative performance (factor), smaller is better

problem sets. E-prover has been executed in silent mode and
failed to prove one problem of the isel.succ set. In the case
of E-prover we have noticed that the performance is generally
worse than vanHelsing and Vampire’s performance. In general
Z3’s performance almost matches Vampire, with one major
exception, the class of satisfiable problems. For this evaluation
hard timeouts (-T:3 -t:3) of 3 seconds (vanHelsing needs less
than 3 seconds for all 343 problems in the set) were neccesary.
We noticed that using this small timeout Z3 fails to find a
solution on all problems of the vliw.fail set and only found the
solution for 28 problems of isel.fail. By increasing the timeout
to 240 second, Z3 finds 309 models for the isel.fail set, but
still no model is generated for any of the problems in vliw.fail.
Figure 4 shows the relative performance for all provers on
each of the problem sets, normalized to vanHelsing’s total
runtime. Despite the good performance in our application we
do not expect vanHelsing to be competitive on general first-
order problems.

VII. CONCLUSIONS

In this paper we presented vanHelsing, a tool that is tailored
toward the problem of proving expressions to be semantically
equivalent. These kind of problems frequently, but not exclu-
sively, occur in compiler verification. An outstanding feature
of vanHelsing is its ability to produce graphical representations
of the problem in GraphViz format. If the proof for a problem
can’t be found, the relevant sub graph can be displayed.
vanHelsing uses colors to highlight the problematic parts of
failing equivalence proofs. In combination this reduces the
time spent to isolate to cause for failing proofs from hours
to minutes.

Beside its debugging capabilities, vanHelsing’s perfor-

mance on the problems that occur in practical compiler verifi-
cation is much better than state-of-the-art theorem provers (up
to a factor of 3).

REFERENCES

[1] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 283–294.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993532

[2] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 216–226. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594334

[3] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, pp. 107–115, 2009.

[4] A. Pnueli, M. Siegel, and F. Singerman, “Translation validation,” in Pro-
ceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, ser. TACAS ’98. Springer,
1998, pp. 151–166.

[5] M. Blum, S. Kannan, C. Sci, and C. Sci, “Designing programs that
check their work,” 1989.

[6] R. Lezuo, “Scalable Translation Validation,” Ph.D. dissertation, Vienna
University of Technology, 2014.

[7] Y. Gurevich, Evolving algebras 1993: Lipari guide. New York, NY,
USA: Oxford University Press, Inc., 1995, pp. 9–36.

[8] G. Sutcliffe, “The TPTP problem library and associated infrastructure:
The FOF and CNF parts, v3.5.0,” Journal of Automated Reasoning,
vol. 43, no. 4, pp. 337–362, 2009.

[9] G. Sutcliffe and C. Suttner, “The State of CASC,” AI Communications,
vol. 19, no. 1, pp. 35–48, 2006.

[10] A. Riazanov and A. Voronkov, “The design and implementation of
VAMPIRE,” AI Commun., vol. 15, pp. 91–110, Aug. 2002.

[11] L. Kovács and A. Voronkov, “First-Order Theorem Proving and Vam-
pire,” in CAV, 2013, pp. 1–35.

[12] S. Schulz, “E - a brainiac theorem prover,” AI Commun., vol. 15, no.
2,3, pp. 111–126, Aug. 2002.

[13] L. Bachmair and H. Ganzinger, “Resolution theorem proving,” in
Handbook of Automated Reasoning, 2001, pp. 19–99.

[14] J. A. Robinson and A. Voronkov, Eds., Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press, 2001.

[15] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proceedings of the Theory and Practice of Software, 14th International

Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1792734.1792766

[16] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” SOFTWARE - PRACTICE
AND EXPERIENCE, vol. 30, no. 11, pp. 1203–1233, 2000.

