
CASM
Simulator Synthesis & Model Verification

of the MIPS I architecture

Specification
A specification of a MIPS I instruction set and execution model is given in
CASM. The whole specification only needs 700 lines of CASM code. 600
lines are needed to model all instructions, the rest is used to describe the
state and the execution model.

Instruction Set Models

rule andi(addr:Int) =

let rs = PARG(addr , FV_RS) in

let rt = PARG(addr , FV_RT) in

let imm = PARG(addr , FV_IMM) in

if rt != 0 then

GPR(rt) := BVand(32, GPR(rs),

BVZeroExtend(imm , 16, 32)))

Execution Model
This rule defines one computation step of the CASM program. It is exe-
cuted until the MIPS program triggers a trap.

rule run_program dumps (GPR , LO , HI)->trace =

let branch = BRANCH in

seqblock

debuginfo trace "executing @" + hex(PC)

call (PMEM(PC)) (PC)

CYCLES := CYCLES + 1

if branch = undef then

PC := PC + 4

else {

PC := BRANCH

BRANCH := undef

}

if trapped then {

print "program stopped (trapped )"

program(self) := undef

}

endseqblock

Execution State
This is the relevant state needed to execute MIPS programs. It is also used
by the pipelined implementations, although additional state is needed to
model pipeline registers. Only this subset is used to perform verification.

function (symbolic) GPR : Int -> Int

function (symbolic) LO : -> Int

function (symbolic) HI : -> Int

function PC : -> Int

function CYCLES : -> Int

function trapped : -> Boolean

function BRANCH : -> Int

The CASM language
• based on Abstract State Machine (ASM)

• statements (rules) produce update sets

• all rules are side-effect free

• update sets are merged either parallel or sequential

• resulting update set applied when computation step concludes

• interleaving: state transformation - rule evaluation -
state transformation - rule evaluation - . . .

• efficient compilation

• symbolic execution (generating first-order logic predicates)

Model Verification
(using first-order logic)

The Problem: Are the pipelined instruction models combined
with the pipeline and execution model coherent to the specification
(instruction set models and its execution model)?
Solution: For each instruction both models are symbolically
executed using the same initial state. A conjecture stating that
the final states are equal is emitted. The fully-automated theorem
prover vampire is used to perform the simulation proofs:

(symbolic)
initial state

specification
model

pipelined
model

final state final state

?≡

Simulator Synthesis
(compiling CASM to C++)

• Models compiled to C++

• ELF loader written in C++

• MIPS instruction decoder interfacing CASM written in C++

• MIPS syscall interfacing the host C library written in C++

• C++ library implementing arithmetic operations on bit vectors

• need to link MIPS program to simulator specific C library

• able to access host file system and perform terminal IO

Implementation
Two pipeline implementations were developed, one implementing operand
forwarding and one stalling on data hazards. Both use the very same
pipelined models of the instruction set. The instruction set needs 1500
lines of CASM code, the pipeline models approximately 400.

Pipelined Instruction Models
An implementation of the instruction using the classic 5-stage pipeline.
Each stage consists of 2 phases, begin (latching input signals) and end
(outputs are available), which allows to model inter-stage concurrency.

rule andi(addr:Int , stage:Int , phase:Int) = {

if stage = ID and phase = end then

let rs = PARG(addr , FV_RS) in

let rt = PARG(addr , FV_RT) in

let imm = PARG(addr , FV_IMM) in {

call(ID_READ_OP1 )(rs)

IDOP2 := BVZeroExtend(imm , 16, 32)

IDRESREG := rt

}

if stage = EX and phase = begin then {

EXRES := BVand (32, EXOP1 , EXOP2)

}

if stage = WB and phase = begin then

call (WRITE_REGISTER )(WBRESREG , WBRES)

}

Operand Forwarding

rule ID_READ_OP1(reg : Int) =

if EXRESREG = reg then {

IDOP1 := EXRES

} else if MEMRESREG = reg then {

IDOP1 := MEMRES

} else

IDOP1 := GPR(reg)

Atomically execution of pipelined models
Execution of pipelined instruction models, the 2 phases (begin, end) are
executed sequential using an intermediate (temporary) state. The seqblock
makes them to appear as a combined atomic state transformation.

rule execute_pipeline =

seqblock

forall s in PipelineStages do

let op = pipeline(s) in

if op != undef then

call (PMEM(op))(op, s, begin)

forall s in PipelineStages do

let op = pipeline(s) in

if op != undef then

call (PMEM(op))(op, s, end)

endseqblock

Simulator Synthesis

MIPS ELF binary
+

C library stubs

gcc Toolchain

compiled
CASM models

ELF loader

instruction decoderC library
stubs

Host C libraryHost
File System

BitVector
Operations

Library

Simulator Performance (MiBench and SpecInt)

10 kHz

50 kHz

100 kHz

1MHz

basicm
ath

qsort
susan.sm

oothing

susan.edges

susan.corners

adpcm
.encoding

adpcm
.decoding

CRC32

gsm
.encoding

gsm
.decoding

164.gzip

in
st

ru
ct

io
n

s
p

er
se

co
n

d
(l

og
)

ISS

Forwarding

Bubbling

Bubbling*

This work is partially supported by the Austrian Research Promotion Agency (FFG) under contract 827485, Correct Compilers for Correct Application Specific Processors and Catena DSP GmbH.

���
���
���
���
���

���
���
���
���
���

uages
comp
lang

uter

Roland Lezuo <rlezuo@complang.tuwien.ac.at>
Andreas Krall <andi@complang.tuwien.ac.at>

Vienna University of Technology
Institute of Computer Languages (E185)
Argentinierstraße 8
1040 Vienna, Austria


