
INFORMATIK-ARBEITSTAGUNG

AB Programmiersprachen und Übersetzer
Institut für Computersprachen

���
���
���
���
���

���
���
���
���
���

uages
comp
lang

uter

Invitation

to the Joint CompLang/RISC Workshop on

Timing Analysis and Symbolic Computation (TASCo 2009)
4 - 5 February 2009

Library E185.1, Argentinierstr. 8, 4th Floor (Centre)

Workshop Programme

Wednesday, 4 Feb. 2009

10:00 Welcome and Opening

10:15 Development of Infrastructures for Automatic Program Analysis

Markus Schordan, University of Applied Sciences Technikum Wien, Vienna, Austria.

11:15 A Constraint-based Loop Analysis for TuBound

Adrian Prantl, Vienna University of Technology, Vienna, Austria.

Lunch

14:00 Functional Program Verification in Theorema. Recent Achievements

and Perspectives

Nikolaj Popov and Tudor Jebelean, RISC-Linz, Hagenberg, Austria.

15:15 Combining Automated Reasoning and Algebraic Methods in Theorema

Tudor Jebelean, RISC-Linz, Hagenberg, Austria.

16:30 Forward Symbolic Execution for Program Verification in Theorema System

Mădălina Eraşcu and Tudor Jebelean, RISC-Linz, Hagenberg, Austria.

17:45 Plenary Session

Workshop Dinner

Thursday, 5 Feb. 2009

09:00 Towards Automatic Verification of Structural Code-Coverage Preservation

Raimund Kirner, Vienna University of Technology, Vienna, Austria.

10:15 Specification, Verification and Synthesis of Tail Recursive Programs

in Theorema

Nikolaj Popov and Tudor Jebelean, RISC-Linz, Hagenberg, Austria.

11:30 Wrap-up Session

Lunch

14:00 Open Discussion Session and Farewell

Zu dieser Arbeitstagung lädt der Arbeitsbereich für Programmiersprachen und Übersetzer am

Institut für Computersprachen herzlich ein.



Abstracts of Presentations

Development of Infrastructures for Automatic Program

Analysis

Markus Schordan

University of Applied Sciences Technikum Wien
schordan@technikum-wien.at

As the volume of existing software in the industry grows at a rapid pace, the problems of un-
derstanding, maintaining, and developing software assume great significance. A strong support
for analysis of programs is essential for a practical and meaningful solution to such problems.
To be able to analyze such software systems, powerful tools are required that can handle the
complexity of popular languages such as C++, Java, and C#. We present an approach for com-
bining analysis and transformation tools that enables their application to popular programming
languages without extending existing compilers.

The presented Static Analysis Tool Integration Engine (SATIrE) aims at integrating a broad
range of analysis tools by providing additional gap-filling components, such that the selection
of an arbitrary tool chain most suitable for a certain program analysis or manipulation task
becomes feasable. The integrated tools are the LLNL-ROSE source-to-source infrastructure, the
Program Analyzer Generator from AbsInt for abstract interpretation, and the language Prolog
for manipulating terms representing C/C++ programs. Analysis results are made available as
annotations of a common high-level intermediate representation and as generated source code
annotations. We also support an external file format of the intermediate representation, allowing
a tight integration with external tools.



A Constraint-based Loop Analysis for TuBound

Adrian Prantl

Vienna University of Technology
adrian@complang.tuwiena.ac.at

The safety of our day-to-day life depends crucially on the correct functioning of embedded
software systems which control the functioning of more and more technical devices. Many
of these software systems are time-critical. Hence, computations performed need not only to
be correct, but must also be issued in a timely fashion. Worst case execution time (WCET)
analysis is concerned with computing tight upper bounds for the execution time of a system in
order to provide formal guarantees for the proper timing behaviour of a system. State-of-the-
art WCET analysis tools rely on supporting analyses and manual annotations to provide them
with information on the execution behaviour of the program such as loop bounds or maximum
recursion depths. Typically, both steps are performed on the binary code of the program. The
manual annotation of a binary program, however, imposes high demands on the programmer
[1].

With TuBound, we are providing an improved work-flow by lifting manual annotations and
supporting analyses to the source code level of a program. The information computed on this
level and annotated in the code is then conjointly transformed throughout the compilation and
optimization of the program to the binary code level to make it accessible to the WCET analysis
component of our TuBound tool [2].

In this talk, we highlight the static program analysis component of TuBound at whose heart is
an interprocedural interval analysis and an approach to loop analysis that is based on constraint
logic programming [3].

References

[1] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Ingomar Wenzel. WCET
Analysis: The Annotation Language Challenge. In Proceedings 7th Int. Workshop on Worst-Case

Execution Time Analysis (WCET 2007), 83 - 99, Pisa, Italy, 2007.

[2] Adrian Prantl, Markus Schordan, and Jens Knoop. TuBound A Conceptually New Tool for Worst-
Case Execution Time Analysis. In Proceedings 8th Int. Workshop on Worst-Case Execution Time

Analysis (WCET 2008), 141-148, Prague, Czech Republic, 2008. ISBN: 978-3-85403-237-3.

[3] Adrian Prantl, Jens Knoop, Markus Schordan, and Markus Triska. Constraint solving for high-level
WCET analysis. In Proceedings of the 18th Int. Workshop on Logic-based methods in Programming

Environments (WLPE 2008), Udine, Italy, 2008.



Functional Program Verification in Theorema. Recent

Achievements and Perspectives

Nikolaj Popov and Tudor Jebelean

RISC–Linz
{popov,Tudor.Jebelean}@risc.uni-linz.ac.at

We present an environment designed for proving total correctness of recursive functional
programs.

As usual, correctness is transformed into a set of first-order predicate logic formulae – verifi-
cation conditions. As a distinctive feature of our method, these formulae are not only sufficient,
but also necessary for the correctness [2].

We demonstrate our method on several examples and show how correctness of those may be
proven fully automatically.

In fact, even if a small part of the specification is missing – in the literature this is often
a case – the correctness cannot be proven. Furthermore, a relevant counterexample may be
constructed automatically [3].

A specialized strategy for proving termination of recursive functional programs is developed
[5]. The detailed termination proofs may in many cases be skipped, because the termination
conditions are reusable and thus collected in specialized libraries. Enlargement of the libraries
is possible by proving termination of each candidate, but also by taking new elements directly
from existing libraries.

During the talk, we emphasize on the most recent achievements we have made, and in
particular verification of functions defined by mutual recursion and functions containing nested
recursion [4].

Our work is performed in the frame of the Theorema system [1], which is a mathematical
computer assistant aiming at supporting all the phases of mathematical activity: construction
and exploration of mathematical theories, definition of algorithms for problem solving, as well as
experimentation and rigorous verification of them. Moreover, the logical verification conditions
can be passed to the automatic provers of the system. Theorema includes a collection of general
as well as specific provers for various interesting domains (e.g., integers, sets, reals, tuples, etc.).

References

[1] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi, N. Popov,
J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema: Towards Computer-Aided Mathematical
Theory Exploration. Journal of Applied Logic, 2005.

[2] T. Jebelean, L. Kovacs, and N. Popov. Experimental Program Verification in the Theorema
System. Int. Journal on Software Tools for Technology Transfer (STTT), 2008. To appear.

[3] N. Popov and T. Jebelean. A Prototype Environment for Verification of Recursive Programs. In
Z. Istenes, editor, Proceedings of FORMED’08 , pages 121–130, March 2008. To appear as ENTCS
volume, Elsevier.

[4] N. Popov and T. Jebelean. Verification of Functional Programs Containing Nested Recursion. In
B. Buchberger, T. Ida and T. Kutsia, editors, Proceedings of SCSS’08, pages 163–175, Hagenberg,
Austria, July 2008.

[5] N. Popov and T. Jebelean. Proving Termination of Recursive Programs by Matching Against Sim-
plified Program Versions and Construction of Specialized Libraries in Theorema. In D. Hofbauer
and A. Serebrenik, editors, Proceedings of 9th International Workshop on Termination (WST’07),
pages 48–52, Paris, France, June 2007.



Combining Automated Reasoning and Algebraic Methods in

Theorema

Tudor Jebelean

RISC–Linz
Tudor.Jebelean@risc.uni-linz.ac.at

We present some applications of the Theorema system to the generation of invariants for
imperative loops and to automated proving in elementary analysis, which are based on the
interaction of logic techniques with methods from computer algebra and from algebraic combi-
natorics. The Theorema project (www.theorema.org), provides a uniform logic frame for the
exploration of mathematical theories [1], based on automatic reasoning. The use of combinato-
rial and algebraic methods in conjunction with automated reasoning leads to powerful analysis
tools, because they allow the automatic generation of inductive assertions for programs [4] –
joint work with Laura Kovacs. The method generates all the invariants which can be repre-
sented as polynomial equations (in fact, a basis for the ideal generated by the corresponding
polynomials) in two stages: first the recursive equations corresponding to the evolution of loop
variables are transformed into closed formulae (depending on the loop counter) using combina-
torial techniques; second these closed forms are used in successive applications of the Buchberger
algorithm in order to find out the invariant ideal. We also show how to significantly enhance
the power of automatic provers [5, 3] – joint work with Bruno Buchberger and Robert Vajda
– in particular for reasoning in numeric domains (reals, integers) by using the CAD method
(Cylindrical Algebraic Decomposition) in order to generate natural proofs in elementary anal-
ysis (the so called epsilon delta proofs). Namely, by applying the S-Decomposition [2] logical
technique we decompose the original proof problem into several numerical conjectures which
involve existential quantifiers, whose witnesses are then found by CAD. This combination of
techniques builds a prover with the distinctive feature that it does not need all the axioms of the
underlying domain (e.g. the reals), but it automatically finds the appropriate lemmata which
are necessary for completing the proof.

References

[1] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi, N. Popov, J.
Robu, M. Rosenkranz, and W. Windsteiger. Theorema: Towards Computer-Aided Mathematical
Theory Exploration. Journal of Applied Logic, 2005.

[2] T. Jebelean. Natural Proofs in Elementary Analysis by S-Decomposition. RISC Report 01-33,
November 2001.

[3] T. Jebelean. Using Computer Algebra for Automated Reasoning in the Theorema System, 2005.
Invited talk at Seventh Asian Symposium on Computer Mathematics (ASCM 2005).

[4] L. Kovacs and T. Jebelean. Finding Polynomial Invariants for Imperative Loops in the Theorema
System. In S. Autexier and H. Mantel, editors, Proceedings of Verify 06 Workshop, IJCAR 06,

The 2006 Federated Logic Conference, pages 52-67, 2006.

[5] R. Vajda, T. Jebelean, and B. Buchberger. Combining Logical and Algebraic Techniques for
Natural Style Proving in Elementary Analysis. Mathematics and Computers in Simulation, 2008
(in print).



Forward Symbolic Execution for Program Verification in

Theorema System

Mădălina Eraşcu and Tudor Jebelean

RISC–Linz
{merascu,Tudor.Jebelean}@risc.uni-linz.ac.at

We present a static analysis method for imperative program verification based on forward
symbolic execution; given the Hoare triple (Input Specification, Program Body, Output Specifi-
cation), we want to check whether the program fulfils its specification. The problem of generat-
ing the verification conditions is approached using an axiomatic calculus characterizing inference
rules for each statement encountered in the program: assignments (including recursive calls),
conditionals and abrupt statements (Return). While loops can be simulated using conditionals
and recursion. Detailed theoretical aspects of this method are stated in [1]. The method is im-
plemented in a prototype framework on top of the computer algebra system Mathematica and
uses the existing Theorema imperative language. Our goal is to automatically prove/disprove
the verification conditions generated using logical, algebraic and combinatorial techniques. At
this aim, we combined logical (natural deduction) and simple algebraic inferences for prepro-
cessing the verification conditions. For further reasoning about the resulting formulae, we will
use polynomial algebra algorithms which might (e.g. Cylindrical Algebraic CAD Decomposition
works on the theory of real closed fields) or might not (e.g. Groebner basis algorithms works
on a commutative ring with 1) need to set an underlying theory. Although CAD method is
powerful enough for handling our formulae, it has a high complexity and therefore we avoid to
use it until the latest. We will de ne classes of verification conditions which can be handled by
other means and, if possible, hold also in weaker theories than reals.

References

[1] M. Eraşcu and T. Jebelean. Practical Program Verification by Forward Symbolic Execution:
Correctness and Examples. In B. Buchberger, T. Ida, T. Kutsia, editors, Proceedings of Austrian-

Japan Workshop on Symbolic Computation in Software Science, pages 47-56, 2008.



Towards Automatic Verification of Structural

Code-Coverage Preservation∗

Raimund Kirner

Vienna University of Technology
raimund@vmars.tuwien.ac.at

Embedded Systems are ofen used in safty-critical environments. Thus, thorough testing
of them is mandatory. To achieve a required structural code-coverage criterion it is beneficial
to derive the test data at a higher program-representation level than machine code. Higher
program-representation levels include, besides the source-code level, languages of domain-specific
modeling environments with automatic code generation. This enables for a testing framework
with automatic test-data generation to achieve high retargetability.

Within the project “Sustaining Entire Code-Coverage on Code Optimization” (SECCO)
we address the challenge of ensuring that the structural code coverage achieved at a higher
program representation level is preserved during the code generations and code transformations
down to machine code [1,2]. We define the formal properties that have to be fulfilled by a code
transformation to guarantee preservation of structural code coverage. Based on these properties
we will formalize code transformations to automatically prove whether a given code coverage
preserves the code coverage of interest.

∗ The research leading to these results has received funding from the Austrian Science Fund (Fonds zur

Förderung der wissenschaftlichen Forschung) within the research project “Sustaining Entire Code-Coverage on

Code Optimization” (SECCO) under contract P20944-N13.

References

[1] Raimund Kirner. Towards preserving model coverage and structural code coverage. Submitted to

the EURASIP Journal on Embedded Systems, 2008. Research report 49/2008.

[2] Raimund Kirner and Susanne Kandl. Test coverage analysis and preservation for requirements-
based testing of safety-critical systems. ERCIM News, (75):40-41, Oct. 2008.



Specification, Verification and Synthesis of Tail Recursive

Programs in Theorema

Nikolaj Popov and Tudor Jebelean

RISC–Linz
{popov,Tudor.Jebelean}@risc.uni-linz.ac.at

We describe an innovative method for proving total correctness of tail recursive programs
having a specific structure, namely programs in which an auxiliary tail recursive function is
driven by a main nonrecursive function, and only the specification of the main function is
provided.

The specification of the auxiliary function is obtained almost fully automatically by solving
coupled linear recursive sequences with constant coefficients [3].

The process is carried out by means of CA (Computer Algebra) and AC (Algorithmic Com-
binatorics). We demonstrate this method on an example involving polynomial expressions.

Furthermore, we develop a method for synthesis of recursive programs for computing polyno-
mial expressions of a fixed degree by means of “cheap” operations e.g., additions, subtractions
and multiplications. For a given polynomial expression, we define its recursive program in a
schemewise manner [5].

The correctness of the synthesized programs follows from the general correctness of the
synthesis method, which is proven once for all, using the verification method developed in [4].

References

[1] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi, N. Popov,
J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema: Towards Computer-Aided Mathematical
Theory Exploration. Journal of Applied Logic, 2005.

[2] N. Popov and T. Jebelean. Proving Termination of Recursive Programs by Matching Against Sim-
plified Program Versions and Construction of Specialized Libraries in Theorema. In D. Hofbauer
and A. Serebrenik, editors, Proceedings of 9th International Workshop on Termination (WST’07),
pages 48–52, Paris, France, June 2007.

[3] L. Kovacs, N. Popov, and T. Jebelean. Verification Environment in Theorema. Annals of Math-

ematics, Computing and Teleinformatics (AMCT), 1(2):27–34, 2005.

[4] N. Popov. Functional Program Verification in Theorema. PhD thesis, RISC, Johannes Kepler
University Linz, Austria, July 2008.

[5] N. Popov and T. Jebelean. Using Computer Algebra Techniques for the Specification, Verification
and Synthesis of Recursive Programs. Mathematics and Computers in Simulation, 2008. To appear.



About the Speakers

• Mădălina Eraşcu, M.Sc.

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University of Linz
A-4040 Linz, Austria

merascu@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/home/merascu

Mădălina Eraşcu is a 1st year PhD student in the Theorema research group (leader: Bruno
Buchberger) at the Research Institute for Symbolic Computation (RISC), Johannes Kepler
University of Linz, Austria. She is interested in program analysis using formal methods,
computer algebra and automated theorem proving. She holds a MSc from Johannes Kepler
University (International School for Informatics), Linz (www.risc.jku.at).

• Prof. Dr. Tudor Jebelan

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University of Linz
A-4040 Linz, Austria

Tudor.Jebelean@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/home/tjebelea/

Tudor Jebelean is an Associate Professor in the Theorema group (leader: Bruno Buch-
berger and Tudor Jebelean) at the Research Institute for Symbolic Computation (RISC),
Johannes Kepler University of Linz, Austria. His main research interests are automated
reasoning and program verification using logic and algebraic methods. He holds a PhD in
Computer Science and Habilitation title from Johannes Kepler University of Linz.

• Dr. Raimund Kirner

Institute of Computer Engineering
Vienna University of Technology
A-1040 Vienna, Austria

raimund@vmars.tuwien.ac.at

https://ti.tuwien.ac.at/rts

Univ. Assistent Dr. Raimund Kirner received his Master’s degree and his PhD degree at the
Vienna University of Technology (TU Vienna) in 2000 respectively 2003. During this time
he has been working as a research and teaching assistant at the Institut für Technische
Informatik at TU Vienna. The main focus of Kirner’s research is worst-case execution
time analysis of real-time programs, including compiler support and design methodologies
to make systems predictable. He has published several papers on WCET analysis and
was involved in two projects funded by the European Commission (SETTA, NEXT TTA).
From 2003-2005 Raimund Kirner has worked on the FIT-IT project MoDECS, and from
2005-2007 he worked on the FIT-IT project TeDES, both funded by the Federal Ministry of
Transport, Innovation, and Technology (BMVIT). Currently, Raimund Kirner is principal
investigator of the following projects: “Compiler-Support for Timing Analysis” (COSTA),
“Formal Timing Analysis Suite” (FORTAS), and “Sustaining Entire Code-Coverage on
Code Optimization” (SECCO). He is a member of the IEEE Computer Society, the ACM,
and the Austrian Computer Society (OCG).



• Dr. Nikolaj Popov

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University of Linz
A-4040 Linz, Austria

popov@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/home/npopov

Nikolaj Popov is a postdoctoral researcher in the Theorema group of Prof. Bruno Buch-
berger and Prof. Tudor Jebelean, at the Research Institute for Symbolic Computation,
University of Linz, Austria.

His research deals with the development of a relevant theory for proving correctness of
recursive programs in an automatic manner. His particular focus is on the automatic gen-
eration of a necessary and sufficient set of verification conditions in order for the program
to be correct.

He holds an MSc from Sofia University, Bulgaria, and a PhD degree from the Research
Institute for Symbolic Computation of the Johannes Kepler University, Linz, Austria.

• Dipl.-Ing. Adrian Prantl

Institute of Computer Languages
Vienna University of Technology
A-1040 Vienna, Austria

adrian@complang.tuwien.ac.at

http://www.complang.tuwien.ac.at/adrian

Adrian Prantl studied computer science at the Vienna University of Technology. During
the final year he worked with OnDemand Microelectronics designing and implementing
the compiler tool chain for the Chili family of VLIW processors. He is currently working
towards a PhD and engaged in the FWF-funded project “Compiler Support for Timing
Analysis” (CoSTA) aiming at bringing the power of source code transformations to the
field of worst-case execution time analysis.

• Dr. Markus Schordan

University of Applied Sciences Technikum Wien
A-1200 Vienna, Austria

schordan@technikum-wien.at

http://www.technikum-wien.at/

In 1997-2001 Markus Schordan was a research and teaching assistant at the University
Klagenfurt (Department of Information Technology) in Austria. His research focused
on alias analysis and data-flow analysis of object-oriented languages, in particular Java.
He lectured on the subjects of formal languages and compiler construction, and taught
courses in object-oriented programming, functional and logic programming. He earned his
Dr.sc.techn. with distinction (mit ausgezeichnetem Erfolg) in Computer Science from the
University Klagenfurt, Austria, in June 2001.

In 2001-2003 he gained international experience as post doctoral researcher at the Lawrence
Livermore National Laboratory (Center for Applied Scientific Computing (CASC)), CA,
USA. Working on the source-to-source infrastructure project ROSE his research focused on
design and implementation of intermediate representations of object-oriented languages,
domain specific high-level transformations, and parallelization.



In January 2004 he became university assistant at the Vienna University of Technology,
Austria. He lectured on compiler construction and software frameworks. His research
focused on tool integration, static analysis of object-oriented languages, source-to-source
transformation, high-level optimization, and parallelization. In December 2007 he also be-
came project leader of the ALL-TIMES project at TU Vienna. ALL-TIMES is a medium-
scale focused-research project within the European Commission’s 7th Framework Pro-
gramme on Research, Technological Development and Demonstration.

In September 2008 he moved to a permanent position at University of Applied Sciences
Technikum Wien and became Deputy Program Director of Game Engineering and Simu-
lation. He continues to lecture on topics in the field of programming languages and also
lectures on game engineering. His research focuses on analysis of object-oriented systems,
including state-of-the-art game engines.


