
Smaller and faster Intel SSE Code

Stefan Kral

skral@complang.tuwien.ac.at,
WWW home page: http://www.complang.tuwien.ac.at/skral

Abstract. Codes exhibiting suitable data-flow parallelism can often
profit from using Intel SSE, a SIMD extension to the CISC style In-
tel 64 instruction set architecture. As SSE instructions are, on average,
larger than scalar instructions, they exhibit a heavier load on instruc-
tion pre-decoding, decoding, and caching hardware. For long straight-line
SSE codes, instruction lengths become an obstacle to high performance
that is not adequately handled by available optimizing compilers. This
paper presents three orthogonal code optimization techniques that mini-
mize SSE code size and runtime: (i) address code generation specifically
aimed at signal transform access patterns, (ii) offset assignment for val-
ues residing on the stack, (iii) SSE register reassignment using genetic
optimization. For compute kernels of the renowned signal transform li-
brary FFTW, the techniques in this paper, when combined, yield up to
30% improvement in code size and performance, compared to the best
codes produced by the optimizing Intel C compiler.1
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1 Introduction

Over the course of its more than 30 year history, the Intel x86 [13] instruction
set architecture (ISA) has evolved substantially while retaining binary compat-
ibility: Starting out as a 16-bit extension of Intel’s earlier 8-bit instruction set
architecture in 1978, it became a 32-bit architecture with virtual memory pro-
tection and multitasking capabilities in 1985. In 2003, it gained 64-bit integer
and 64-bit virtual address space support and was named “Intel 64”.

Today, the vast majority of the more than one billion PCs [7] in worldwide
use and almost 90% of the world’s most powerful Top500 supercomputers [17]
are powered by Intel 64 compatible processors.

SSE1–4. Between 1999 and 2008, Intel introduced several instruction set exten-
sions to the Intel x86 and Intel 64 instruction set architectures named Streaming
SIMD Extensions [13]. SSE aims at accelerating multimedia and scientific ap-
plications by speeding up compute-intensive codes exhibiting Single Instruction
Multiple Data (SIMD) style parallelism. SSE is successfully used in fields like
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linear algebra, digital signal processing, video encoding, image processing, and
3D computer graphics.

SSE instructions operate on fixed-size 128-bit vectors, consisting of multiple
scalar values packed together: sixteen 8-bit integers, eight 16-bit integers, four
32-bit integers, two 64-bit integers, four 32-bit floating-point numbers, or two
64-bit floating-point numbers.

SSE defines a dedicated vector register file that is distinct from the general-
purpose scalar integer register file. In total, SSE1–4 comprises 306 instructions,
used for integer and floating-point arithmetics, data-transfer to/from memory,
data permutation within vectors, and cache/memory management.

Intel Core Microarchitecture. Originally introduced in 2006, the Intel Core mi-
croarchitecture and its derivatives form the base of most Intel 64 mobile, desk-
top, and server processors. Intel Core based processors have a market share of
approximately 80% both among PCs and Top500 supercomputers.

The roots of the Intel Core microarchitecture reach back to the Intel Pen-
tium Pro processor introduced in 1995. Intel Core is a 4-way superscalar [16],
14-stage super-pipelined design [2] with in-order Intel 64 instruction fetch, in-
order Intel 64 instruction predecoding, in-order dynamic translation of Intel 64
instructions to fixed-width, RISC-style micro-operations (instruction decoding),
aggressive out-of-order execution of micro-operations, and in-order Intel 64 in-
struction completion.

Instruction Predecoding. Intel 64 instructions are variable in length. To enable
superscalar execution, the processor needs to determine multiple instruction
lengths in parallel during instruction predecoding [12].

The Intel Core microarchitecture does not cache the results of instruction
predecoding—a design choice which helps save chip space, but may necessitate
repeated predecoding [2]. As Intel Core predecoders process at most 16 bytes per
cycle, predecoding becomes a bottleneck whenever average instruction lengths
exceed 4 bytes, which is common in large numerical SSE kernel routines used in
scientific computing.

2 Intel 64 Instruction Lengths

Intel 64 is a complex instruction set computing (CISC) architecture: instructions
may have different lengths to allow the encoding of complex addressing modes,
immediate integer constants, and the direct usage of in-memory operands.

These features can help reduce the instruction count but contribute to bigger
instruction lengths: instruction encoding is most compact with simple addressing
modes, immediate constants no larger than 8-bit, and in-register operands.

Intel 64’s New Registers. Compared to Intel x86, Intel 64 doubles the number of
scalar general-purpose integer registers and SSE vector registers available to 64-
bit code on the assembly level, which can reduce register pressure significantly.
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Because of Intel 64 opcode space expansion details, many instructions get
encoded differently when using any of the new registers, making their instruction
lengths bigger by one byte.

SSE Instruction Lengths. Table 1 compares the instruction lengths of a selection
of packed double-precision floating-point 128-bit SSE vector instructions: For
different operations and their corresponding assembly-level instruction format,
instruction lengths in bytes are presented. Instructions using one or more SSE
registers and instructions with in-memory operands vary considerably in length,
depending on the addressing modes and SSE vector registers used.

Table 1. Comparison of 128-bit SSE vector instructions

Operation Instruction Format Length

Copy movapd reg,reg 4–5
Load movapd mem,reg 4–10
Store movapd reg,mem 4–10
Add addpd reg,reg 4–5
Add addpd mem,reg 4–10
Multiply mulpd reg,reg 4–5
Multiply mulpd mem,reg 4–10

Scalar Integer Instruction Lengths. Table 2 compares the instruction lengths of a
selection of scalar integer instructions commonly used for address calculation: For
different operations and their corresponding assembly-level instruction format,
instruction lengths in bytes are presented. Like in table 1, instructions vary in
length, depending on the registers, adressing modes, and size of the immediate
constant K used.

Table 2. Comparison of 64-bit scalar integer instructions

Operation Instruction Format Length

Copy movq reg,reg 3
Load movq mem,reg 3–8
Store movq reg,mem 3–8
Shift left and add leaq mem,reg 3–8
Multiply by constant K imulq K,reg,reg 4–7
Multiply by constant K imulq K,mem,reg 4–12
Add addq reg,reg 3
Subtract subq reg,reg 3
Shift left by constant K shlq K,reg 3–4



4

Instruction Mix. Compute-intensive numerical SSE kernel codes often consist of
a large number of SSE instructions, which do the bulk of the computation, and
a relatively small portion of scalar integer code used for address generation.

3 SSE Code Optimization

All three optimization techniques presented in this paper target large straight-
line Intel 64 SSE codes: Subsection 3.1 introduces a technique generating address
code for accessing variably strided 1D arrays, which is of particular interest for
numerical codes in the signal transform domain. Subsection 3.2 presents a heuris-
tic for rearranging the layout of the thread-local procedure stack frame to replace
as many 32-bit integer constants by 8-bit constants as possible. Subsection 3.3
shows how SSE registers can be reassigned to further reduce overall codesize.

Related Work. [18] aims at constructing FPGA/ASIC multiplier blocks for multi-
ple constant multiplications with the least number of additions and subtractions.

Previous work [10] targeted address code generation for a different hard-
ware architecture, IBM PowerPC, a reduced instruction set computing (RISC)
architecture that offers specific auto-modify addressing modes typical of DSP’s.

An alternative solution to accessing variably strided arrays is implemented
in [5], precomputation of constant integer multiplications.

Offset assignment [11] is a prominent research issue on digital signal pro-
cessors (DSP), which often feature addressing modes like auto-modify with a
constant range. Intel 64 processors lack these addressing modes.

3.1 M1: Address Code for accessing variably strided 1D Arrays

Addressing modes supported by most processors, including Intel 64, are targeted
at consecutive memory accesses. Variably-strided 1D accesses—and accesses to
multi-dimensional arrays stored as single contiguous blocks [8]—incur, by com-
parison, relatively high costs for address generation and decrease performance.

The technique presented here heavily relies on Intel 64 addressing modes,
which generally have the form reg + reg * {1,2,4,8} + offset: At most, this
allows to combine two additions and one (limited) shift left with a instruction
using an in-memory operand.

Example. A 6-point signal transform kernel code operates on an input array X

with variable stride S and an output array Y with variable stride T . It may first
read the input array elements X[4 ∗ S], X[0], X[3 ∗ S], X[5 ∗ S], X[2 ∗ S], X[1],
then process all the data, and may finally write the transformed data to the
output array elements Y [0], Y [3 ∗ T ], Y [4 ∗ T ], Y [2 ∗ T ], Y [T ], Y [5 ∗ T ].

No assumptions may be taken about the particular order in which the input
elements are read or the output elements are written, primarily as the particular
order may be the result of domain-specific high-level code scheduling [4].
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Optimization Preparation. As we operate on the assembly-level, we first perform
abstract interpretation of the code to reconstruct the expression trees used for
address generation.

Then, we determine which combinations of arrays, strides, and integer con-
stants are used.

Upon encountering access patterns similar to the one in the example, we
eliminate the code corresponding to the expression trees if it is solely used for
address generation, which frees integer registers that then become available for
new, optimized auxiliary calculations.

Address Code Generation. For every array-stride combination we consider split-
ting the input array into 2, 3, 4, or 8 equally-sized parts. For each part, a new
base register is allocated and calculated.

When generating code for a single array access, the nearest possible base
register is used, which considerably reduces the number of auxiliary integer in-
structions required. Whenever possible, constant multiplications by integers are
replaced by cheaper operations, like the Intel 64 specific limited-shift-and-add
integer instruction lea.

Whenever register pressure gets to high, index and base registers are reused
using a least-recently-used heuristics.

Analysis shows that the splitting techniques reduces well in practice, espe-
cially for very large codes.

3.2 M2: Offset Assignment

When the amount of live variables in a block exceeds the number of available
registers, auxiliary space needs to be allocated on the stack to hold excess values.

The Application Binary Interface (ABI) [15] for Intel 64 processors defines
one particular general-purpose integer register (%rsp) as the stack pointer that
must always point to the end of the latest allocated procedure stack frame.

Table 3. Comparison of SSE vector loads with different offsets and base registers

Assembly instruction Offset encoding Length

movapd 0(%rsp),%xmm0 special encoding for zero 5
movapd 32(%rsp),%xmm0 8-bit signed integer 6
movapd 1024(%rsp),%xmm0 32-bit integer 9

movapd 0(%rax),%xmm0 special encoding for zero 4
movapd 32(%rax),%xmm0 8-bit signed integer 5
movapd 1024(%rax),%xmm0 32-bit integer 8
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Compact Address Encoding. Table 3 shows SSE load instructions performing
a register-indirect memory access with three different constant offsets and two
different base registers, %rsp and %rax.

The constant offset zero is encoded most compactly, followed by 8-bit signed
integers, trailed by 32-bit integers.

Accesses using register %rsp as base are encoded less compactly than accesses
using integer registers %rax (shown in table 3), %rbx, %rcx, %rdx, %rdi, and %rsi.

Stack Pointer Aliasing. N of the above integer registers may be aliased with
%rsp to serve as auxiliary stack pointers. With proper offsetting, they cover
disjoint 256-byte stack regions accessible using small offsets.

Integer registers are scarse on Intel 64. As they are also used for passing
parameters and calculating effective addresses, we found N = 1 to be the best
choice for the signal transform kernel codes considered in this paper.

Stack Reassignment. To minimize the number of stack accesses having offsets
not fitting 8-bit integers, stack variables are reassigned.

First, the stack is grown by 256(N + 1) bytes. All auxiliary stack pointers
are properly offsetted from %rsp.

Then, the largest possible number of stack variables is assigned to the newly
allocated stack area by using a greedy approximation algorithm: For every loca-
tion L in the newly allocated stack area, select an unassigned stack-variable V ,
whose lifespan does not overlap with any variable already assigned to L, and
assign V to L. Repeat until all locations are full or all variables are assigned.

When selecting stack-variables in the above algorithm, we heuristically prefer
the ones with shorter lifespans.

3.3 M3: SSE Register Reassignment

While SSE registers %xmm0 through %xmm7 (xmm0-7) are available with Intel x86,
new registers %xmm8 through %xmm15 (xmm8-15) are only available with Intel 64.
Instructions get bigger when using xmm8-15, as shown in table 4.

Table 4. Comparison of variants of SSE instruction “addpd”

Assembly instruction Length

addpd %xmm0,%xmm1 4
addpd %xmm0,%xmm8 5
addpd %xmm8,%xmm0 5
addpd %xmm8,%xmm9 5

addpd (%rax),%xmm0 4
addpd (%rax),%xmm8 5
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Few Constraints. Unlike the scalar part of the Intel x86 instruction set, only
very few SSE instructions use fixed or implicit registers.

The Intel 64 ABI [15] declares all SSE registers as caller-saved. When not
holding procedure arguments, all registers are freely available as scratch registers.

Preparation. Intel 64 instructions use at least zero and at most three SSE regis-
ters as operands. For every instruction, we consider the number of SSE registers,
r, and build 2r distinct variants by mapping each of the r SSE operand registers
alternately to %xmm0 and %xmm8. All variants are collected and passed on to the
assembler to precisely determine instruction lengths.

Procedure-level data-flow analysis [3] is performed to obtained liveness infor-
mation, determining which SSE registers are fully local to each basic block.

SSE Register Reassignment. We operate on single basic blocks: Initially, all
block-local SSE registers are marked free. After the last use of block-local SSE
register, the register is marked as free. Whenever a block-local SSE register
is fully overwritten defined, that register may be replaced by any free register
from either xmm0-7 or xmm8-15, provided that all subsequent uses are replaced
consistently—to preserve program semantics.

Replacement choices can easily be steered by a bit-string: “Prefer xmm0-7 if
bit is zero, xmm8-15 otherwise.” This eases testing different settings (constant-0,
constant-1, random), local and glocal optimization methods.

We evaluated a number of combinations and found the following two par-
ticularly noteworthy: (1) “Start out preferring xmm0-7 whenever possible, and
then perform local hill-climbing search” produces good solutions in less than a
second. (2) “Randomize initial population of size 1000, run generational genetic
algorithm, and then perform local hill-climbing search” takes substantially more
time to complete, but consistently produces the best results.

4 Experimental Setup and Results

All techniques presented in this paper were implemented in a Intel 64 assembly
level source-to-source code optimizer named NXyn [9].

To assess the impact on scientific SSE codes, kernel routines of the renowned
discrete Fourier transform library FFTW [6] were compiled with the latest ver-
sion 11.1 of the optimizing Intel C compiler [14] using maximum optimization
flags. The assembly codes produced by the Intel C compiler served as baseline
and were post-processed by NXyn.

All performance tests were conducted on a Intel Core i3-350M processor, as
detailed in table 5. Only a single processor core was used in the experiments.

4.1 Code Size Improvements

Table 6 shows the impact of optimization on a selection of FFTW double-
precision DFT kernel codes: The column “icc” refers to the code that was pro-
duced by the Intel C compiler with optimization flags “-O3 -inline-forceinline”.
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Table 5. Hardware setup

Processor name Intel Core i3-350M (“Arrandale”)
Microarchitecture Westmere
Process technology 32nm
Number of cores 2
Number of threads 4
Clock speed 2.26 GHz
L1 instruction cache size 32 kB
L1 data cache size 32 kB
L2 cache size 2x 256 kB
L3 cache size 3 MB
Memory interface Dual-channel DDR3

It serves as a baseline for comparison. The column “icc precalc” refers to code
that uses effective address precomputation. The column “M0” refers to NXyn
without any of the optimizations shown in this paper. The column “M1” shows
the effect of optimized address generation, as presented in subsection 3.1. The
column “M1–2” shows the addition of offset assignment, as detailed in subsec-
tion 3.2. The column “M1–3” shows the addition of SSE register reassignment,
as shown in subsection 3.3.

Discussion. Every optimization (M1,M2, and M3) reduced the codesize of some
kernel code by at least 5%. Typically, M1 yielded the largest, M2 the second
largest, and M3 the smallest reductions. Only in very few, typically small codes,
a combination which meant to improve codesize actually increases it (emphasized
in the table data.)

While effective address precomputation “icc precalc” gave noticable codesize
reductions, its impact was less than M1 in almost all cases (including all shown
in above table).

Manual analysis of the produced assembly codes reveals that, for large kernel
codes, all optimizations were maxed out.

4.2 Runtime Improvements

Figures 1 and 2 show the performance of the generated codes, for power-of-two
and non-power-of-two transform sizes respectively.

Measurements show that, in the power-of-two case (figure 1), the performance
of already highly-optimized code is typically increased 10% or more by applying
methods M1–3.

Performance increases for non-power-of-two cases (figure 2) are smaller than
in the power-of-two cases, mainly due to the smaller codesizes of the kernels
employed.
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Table 6. Comparison of Fftw double-precision DFT kernel code sizes

Kernel name icc (100%) icc precalc M0 M1 M1–2 M1–3

n1 15 2976 91.3% 103.2% 85.0% 75.8% 70.5%
n1 16 2576 84.4% 98.8% 77.7% 72.1% 67.1%
n1 20 3872 88.4% 101.2% 81.4% 72.3% 67.8%
n1 32 6384 87.9% 102.0% 83.4% 74.2% 69.2%
n1 64 16000 90.4% 101.4% 86.2% 76.7% 71.4%
n1fv 12 1040 73.8% 100.1% 69.4% 70.9% 66.3%
n1fv 13 1744 83.4% 100.1% 79.0% 73.5% 68.9%
n1fv 16 1536 70.8% 100.1% 64.7% 62.6% 60.5%
n1fv 20 2176 77.9% 103.0% 70.6% 64.8% 61.8%
n1fv 25 5040 86.9% 101.6% 84.4% 73.0% 68.6%
n1fv 32 3776 77.9% 100.9% 67.4% 61.4% 58.1%
n1fv 64 8816 79.6% 103.6% 71.5% 66.4% 61.5%
n1fv 128 20560 83.8% 103.2% 75.3% 68.1% 65.5%
n1fv 256 46592 85.7% 103.1% 77.9% 70.4% 66.9%
t1fv 15 2096 89.3% 98.5% 98.5% 99.3% 91.7%
t1fv 16 2080 85.3% 97.0% 97.0% 96.2% 90.1%
t1fv 32 4688 93.8% 97.6% 80.9% 75.8% 69.6%
t1fv 64 10912 92.6% 99.8% 81.9% 77.2% 70.6%
t1fv 128 24256 93.5% 100.7% 84.3% 79.7% 78.1%
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5 Conclusion

This paper presented three code optimization methods for large SSE codes, which
are mostly orthogonal to each other and to existing optimization techniques in
the state-of-the-art Intel C compiler. The methods can significantly optimize
already highly optimized code, both with regard to codesize and performance,
as shown by measurements on current Intel Core i3 processor.
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