
© imec 2003

Performance Analysis for Identification
of (Sub)task-Level Parallelism in Java

R.Stahl, R.Pasko, L.Rijnders, D.Verkest, S.Vernalde,
R.Lauwereins and F.Catthoor

IMEC

Leuven, Belgium

2

Performance Analysis: need for
embedded system program optimisation

?
MAPPING
(optimal)

original program
(single-threaded)

multiprocessor platform
(heterogeneous)

3

Outline

Introduction
Parallel Performance Analysis (PPA)

Pre-processing
Profiler
Post-processing

Results & Conclusions

4

We do task-level parallelism extraction
from object-oriented programs
= high-level platform-independent transformations

“high-level”
looking at the high-level program structures e.g. classes, methods

“platform-independent”
positive effect for multiprocessor systems in general

thus, we have to:
identify dominant parts of the program
extract task-level parallelism
evaluate the transformation effect

extraction

PPA

orig.prg par.prg

5

Performance analysis requirements

program perspective:
same environment for original and transformed programs
(to take equal measure for both)

platform perspective:
exposing the parallel behaviour
(to evaluate the optimisation effects)

designer’s perspective:
as fast as possible
(minimal run-time overhead)
running on any platform
(most preferably on my computer)
easy to use

Extraction

PPA

orig.prg par.prg

6

Concept of virtual time

program:
executing in one environment
with minimal run-time overhead

virtual time
(virtually parallel execution)

platform:
simulating parallel behaviour
on any platform

→

T1 T2 T3

T1

T2

T3 time

7

Outline

Introduction
Parallel Performance Analysis (PPA)

Pre-processing
Profiler
Post-processing

Results & Conclusions

8

PPA

Parallel Performance Analysis

pre-processing
user-controlled instrumentation
program transformation for profiler

parallel profiler
implements the run-time support for the

concept of virtual time
executing program
simulating parallel behaviour

post-processing
critical-path analysis
feedback for the parallelism extraction

program

pre-processing

virtual-time
parallel profiling

post-processing

program ExtAPI

9

Pre-processing enables selective
profiling based on user interest
user indicates the important parts of the
program

1. top-level methods and loops
accumulating most of the computation

2. looking inside in more detail

instrumentation:
inserts profiler-specific code to reflect
user’s interest

profiling modes:
full profile for n top levels in the call graph
selective profile
sub-graph (branch) profile
cumulative vs. non-cumulative method profile

10

Pre-processing adapts program for the
parallel profiler
virtual time is based on passing time
stamps between tasks of the program

two possible situations:
task-creation

sending time stamp from parent to child

task-synchronisation
updating the stamp between synced peers

solution = transformation of the Java
synchronisation primitives into profiler-
specific one (binary semaphore)

reducing extentions to run-time system
reducing run-time overhead

11

Parallel profiler implements run-time
support for the virtual time concept
virtual time core

passing appropriate time
stamps between cooperating
threads

interface
providing control over the
parallel profiler
passing information between
the program and the profiler

changing time information
passing time information

program control interpreter engine

thread timers

general counters

semaphores

counter IF sema IF

javaprogram

profiler IF

Ext IF

javaExtAPI

virtual time core

interface

12

Profiler core – minimal functionality
enabling parallel profiling
interpreter

Java interpreter
extended to enable operations
on thread timers
having configurable time unit
for different processors

thread timers
single timer per thread
storing proper time information
in the proper thread timer

semaphores
the only way to pass time
information between different
thread timers interpreter engine

thread timers

general counters

semaphores

counter IF sema IF

javaprogram

profiler IF

Ext IF

javaExtAPI

virtual time

interface

13

How it works ...

real execution sequence

virtual execution sequence

time

time

s.V() s.P() s.V() s.P()

interpreter

semaphores

thread timers tt0 tt1 tt0

th0

th1

X

14

Extension interface enables full run-
time control over the profiler
general purpose counters

init, inc/dec, set/rst, get
typical usage:

per method timer
method call counter

semaphore interface
init(state), P(), V()

profiler interface
reification

statistical information
configuring profiling mode

interpreter engine

thread timers

general counters

semaphores

counter IF sema IF

javaprogram

profiler IF

Ext IF

javaExtAPI

virtual time

interface

15

Example: simulating fixed number of
processors via profiler interface

thread counters

profiler IF

Ext IF

main:
…
ThreadID tid
Thread th0 = new Thread() {

tid = prf.getThisTID()
…

}
th0.start()
…
Thread th1 = new Thread() {

prf.setThisTID(tid)
…

}
th1.start()

main

th0

th1

main

th0/1

time

time

non-shared tid = unlimited no. of processors

shared tid = fixed number of processors

notes:
th0 and th1 share the same thread counter
threads are schedules by the JVM scheduler

16

Post-processing analysis indicates the
potential to improve
critical-path analysis
the most critical part is the one
where reduction in its execution
time has the highest impact on
overall execution time of the
program

task balance
the ideal partitioning creates
parallel sub-tasks with “balanced”
execution time, i.e., their idleness
is minimised

cut(T0)

T0

cut(T1)

T1 GAIN!

T2

GAIN!

17

Experimental results

speedup
~ 2.3MPEG player imperative, data-dominant, static

notes

~ 4.13D engine v1 OOD, modular, interactive

th
5
8

idle [%]
20
23

Tins [s]
30
31

~ 4.6
1.1 – 1.2

3D engine v2

OOD, recursion, complex

18
7 - 12

36
0

31
210javac v1

1.4 – 1.9 21 - 32 25 - 34 210javac v2
1.8 – 2.3 21 - 32 21 - 32 210javac v3

18

Conclusions

parallel performance analysis framework for task-level
parallelism extraction

concept of virtual time simulating parallel behaviour of
multithreaded programs

common execution environment for original and
transformed programs

run-time overhead < 3%

Future:

data-access analysis

19

Thank you

