Arshad Jhumka
Martin Hiller, Neeraj Suri

TU — Darmstadt, Germany

10/14/2003 Arshad Jhumka

Context

 Safety-critical software

* Design of fault-tolerant software known to
be difficult, and very often ad-hoc.

« Validation is expensive — running of a lot
of experiments.

» May still end up with “inefficient™
software, e.g., false alarms, late error
detection.

10/14/2003 Arshad Jhumka 2

« Title: A Framework for the Design and
Validation of Efficient Fail-Safe Fault-
Tolerant Software

» Presentation outline:
— Background
— Problems and Objectives
— Design of efficient fail-safe fault-tolerant SW

— Test case generation for validation of efficient
fail-safe fault-tolerant SW

— Summary

10/14/2003 Arshad Jhumka

Background (1)

e Fault: An unexpected event, e.g., node crashes,
variable corruptions. Each one is a fault class.

* Fault-tolerant program: Satisfies some form of
correctness in presence of faults.

« Different levels of fault tolerance
— Masking fault tolerance (ideal)
— Fail-safe fault tolerance

10/14/2003 Arshad Jhumka 4

Background (2)

Correctness: Specification
 Safety: Talways...”

—mutual exclusion, always (output > 100)
 Liveness: “eventually...”” -- Termination

« A fail-safe fault-tolerant program always
satisfies its safety specification in
presence of faults. Ok to just stop.

10/14/2003 Arshad Jhumka

Fail-Safe Fault Tolerance
« Detection is important in fault tolerance

e Detector — A program component that checks the
validity of a predicate, e.g, assertion checks, comparator.

» Arora & Kulkarni, 1998 — detectors are
both necessary and sufficient to ensure
fail-safeness

10/14/2003 Arshad Jhumka 6

Assumptions
« Bounded programs — finite number of

General Problems

i

How do we systematically design
and locate detectors such that the

states, e.g., embedded programs. Can be
. K N ® . . o errors are detected as early as
achieved via proper subtyping.) possible?
« Logically (and physically) distributed ’—. @
software.
— 2. When detectors are distributed, how
Q@ do we assess their consistency?
* Source code available. 3. How can we systematically
generate test cases to validate
our design?
10/14/2003 Arshad Jhumka 7 10/14/2003 Arshad Jhumka 8
Goals Transformational Approach

Fail-safe fault-tolerant program able to

Detect all harmful errors
No false alarms
Detect errors early

< < <

Test cases for validation of fail-safe fault-tolerant
program

« Fault-intolerant program P (viewed as a
state machine)

 Safety specification SSPEC
 Fault class F

£ Obtain fail-safe F-tolerant program P’
P’ always satisfy SSPEC in presence of F +
P’ has minimal detection latency for F

10/14/2003 Arshad Jhumka 9 10/14/2003 Arshad Jhumka 10
Graphical lllustration Example
P P
¢ Transform fault-intolerant program P into a fail- Var X: {10..100} Var X: {10..100}
safe fault-tolerant program P’, with minimal
detection latency. X := read() t i;erfﬁ(f)oc X <100)
Fail-safe fault-tolerant Yi=X+1 F: (X = 200) S
) b . .
Fault intolerant program output (v) output ()
program P
Fault class F
—
p L I I SSPEC: V: {11..101}
—
+ SSPEC t —

Detectors to detect
effects of fault F

10/14/2003 Arshad Jhumka 11

10/14/2003 Arshad Jhumka 12

Some Advantages

» Separation of concern between design for
functionality (P) and for fault tolerance (P’)

* Modular — different fault classes can be considered

10/14/2003 Arshad Jhumka 13

Detector Role

» Harmful event: e.g., output > 100.

 Safety specification: defines a set of
harmful events.

* Prevent the occurrence of harmful events.

10/14/2003 Arshad Jhumka 14

Safety Specification

SSPEC: 10 <= output <= 100

p output

Example of a bad event: Any program transition that
allows output to violate SSPEC, (<output = 90>, <output = 110>)

10/14/2003 Arshad Jhumka 15

Formal Design Approach

* Given:
Program P, safety specification SSPEC, and fault class F.

» Goal: Compose P with a set of detectors D
such that P’ = P[]D (i) is fail-safe F-
tolerant, and (ii) has minimal detection
latency for F.

10/14/2003 Arshad Jhumka 16

Detector Design (1)

A detector can be too strong — it filters out
harmless events.

Allowed range of

values Detector with smaller

value range.

 Leads to false alarms!

10/14/2003 Arshad Jhumka 17

Detector Design (2)

» A detector can be too weak — it does not
filter out all harmful events.

Detector with a

wider value range llowed range of values

« Can have catastrophic consequences!

10/14/2003 Arshad Jhumka 18

Perfect Detectors

oimlowed range of values
Detector with a

Allowed range of
values

Detector with smaller wider value range
value range.
Allowed range of Detector with given
values value range.
10/14/2003 Arshad Jhumka 19

Detector Design (3)

» We want a detector to (i) detect all harmful
events, (ii) have no false positives.

» Such a detector is perfect.
» Thus, we need a set of perfect detectors D.

£ We compose P with a set D of perfect
detectors, yielding P’.

10/14/2003 Arshad Jhumka 20

Detector Design (4)

« Given program P, its safety spec. (set of
harmful events) SSPEC, and fault class F.

« Perform a backward propagation operation
along information flow to yield potentially
harmful events, i.e., events that can lead
to occurrence of harmful events.

« A set of perfect detectors is obtained.

10/14/2003 Arshad Jhumka 21

Approach - Graphically

— Safety specification
D<— < 100 < out < 500
— - "_
J% out
—
RN g _
10/14/2003 Arshad Jhumka 22

Backward Propagation

°© 9 © 90

VY S
a4

Safety specification
(set of harmful events)

10/14/2003 Arshad Jhumka 23

Backward Propagation (1)

Consider the state transition view of a program

Potentially
harmful events
Harmful event

Fau.I.E ,%O%

O >
Initial state ’O

10/14/2003 Arshad Jhumka 24

Backward Propagation (2)

We prevent this event
from occuring (to achieve
minimal latency)

Faul II,O—’OHO—FO

O >
Initial state »O

Fail-safe fault tolerance + minimal latency achieved

10/14/2003 Arshad Jhumka 25

Properties of P’

« Perfect coverage
£ No false alarm, rejects all harmful events.

« Minimal detection latency.

10/14/2003 Arshad Jhumka 26

Where are we?

» Objective: Design of fail-safe fault-tolerant
program with minimal detection latency.

« Perfect detectors are important.

« Use of a backward propagation operation
to generate a set of perfect detectors.

10/14/2003 Arshad Jhumka 27

What next?

» Have to ascertain that what we have is right
(validation), i.e., check if program is indeed fail-
safe fault-tolerant, with minimal detection
latency.

» Different methods:
(i) Testing
(i) Fault injection

* Need test cases for this.

10/14/2003 Arshad Jhumka 28

Test Case Generation

 Early: ad-hoc approach, random sampling.

e Our approach: We use detector design
decisions to generate test cases.

10/14/2003 Arshad Jhumka 29

Test Case Generation

Output detectors Inpyt detectors

Assume that detectors are used to 1

monitor the input and output actions
of different modules, i.e, faults can c2 out
occur at either input or output. 12

Coarse detectors Perfect detectors

Detector for 11: 0 <= 11 <=50 Detector for |1 & 12:
25<=2*1+12 <=120

K for 11

BAD oK BAD P
0 50

Detector for 12: 10<=12<=75

BAD OK BAD
75

10/14/2003 Arshad Jhumka 30

Summary

« Program-transformation based approach
to design fail-safe fault-tolerant program +
minimal latency.

« Addition of perfect detectors.
« Use of perfect detector design for test

case generation.

10/14/2003 Arshad Jhumka 31

