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Introduction

● Recursion removal

– Traditionally done to reduce resource consumption 
( time and memory)

– Now meant as enabling step for other 
transformations, typically on imperative or OO code 
(C/C++/JAVA/...)

● Usually dependency removal transformations, 
and parallelising transformations

● Hence, main goals: 
– Try to introduce as little new dependencies in iterative 

resulting algorithm implementation as possible
– Guarantee correctness in presence of side-effects

● However, it is still useful to evaluate impact on 
execution time, memory usage
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Visual texture coding
● Part of the  
MPEG-4 standard

●Transmission of 
still images

●Scalable
– Quality: 

successive 
quantisation

– Resolution: 
Wavelet based

– Region of 
Interest (ROI) 
selection

Slide by Tanja Vanachteren, used with permission, copyright IMEC
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Recursive part of the VTC algorithm

● MPEG 4 VTC VTC algorithm (partial)
Decode (d, x, y) {
  if (d= =0) {
    DecodePixel(x,y);
  } else {
    --d; k=1<<d;
    Decode(d,x,y);
    if (d= =4) Check();
    Decode(d,x+k,y);
    if (d= =4) Check();
    Decode(d,x,y+k);
    if (d= =4) Check();
    Decode(d,x+k,y+k);
    if (d= =4) Check();
}

3 4

1 2

1-level quad tree 
decomposition

11 12 15 16
9 10 13 14
3 4 7 8
1 2 5 6

2-level quad tree
decomposition
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Recursive part of the VTC algorithm

● Time spent in this part 
of VTC is 50% of 
overall time

● DecodePixel is 
expensive compared 
to argument trafo and 
recursive function 
calls

● Between recursive 
calls extra functionality 
is present

– It has side-effects

– It must be preserved

VTC algorithm (partial)
Decode (d, x, y) {
  if (d= =0) {
    DecodePixel(x,y);
  } else {
    --d; k=1<<d;
    Decode(d,x,y);
    if (d= =4) Check();
    Decode(d,x+k,y);
    if (d= =4) Check();
    Decode(d,x,y+k);
    if (d= =4) Check();
    Decode(d,x+k,y+k);
    if (d= =4) Check();
}
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Recursive part of the VTC algorithm

● First step:

– DecodePixel is 
expensive

– DecodePixel is 
activated with 
argument values that 
are transformed 
through recursion

Hence

– First collect argument 
values, store in 
memory

– Then use in iteration 
with DecodePixel calls

VTC algorithm (partial)
Decode (d, x, y) {
  if (d= =0) {
    DecodePixel(x,y);
  } else {
    --d; k=1<<d;
    Decode(d,x,y);
    if (d= =4) Check();
    Decode(d,x+k,y);
    if (d= =4) Check();
    Decode(d,x,y+k);
    if (d= =4) Check();
    Decode(d,x+k,y+k);
    if (d= =4) Check();
}
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Recursive part of the VTC algorithm

● Second step:

– Storing collected 
values in memory is 
expensive

Hence

– Replace recursive 
information collection 
with a formula 
producing these 
same argument 
values

VTC algorithm (partial)
Decode (d, x, y) {
  if (d= =0) {
    DecodePixel(x,y);
  } else {
    --d; k=1<<d;
    Decode(d,x,y);
    if (d= =4) Check();
    Decode(d,x+k,y);
    if (d= =4) Check();
    Decode(d,x,y+k);
    if (d= =4) Check();
    Decode(d,x+k,y+k);
    if (d= =4) Check();
}
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Step 1: separate base case calculation 
from recursion

● Record all information that is needed in base 
case, in the original recursive algorithm without 
base case calculation

– Applied to VTC:
● Leave out call to DecodePixel
● Add recording of d, x, y values in algorithm

● Loop over all collected information

– Each time calling DecodePixel with correct 
argument values retrieved from memory

– This loop is fully parallelizable, if the side-effects 
inside DecodePixel do not interfere
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Pseudo-code result

VTC algorithm (info collection)

Decode (d, x, y) {
  if (d= =0) {
    info[++cnt]=(x,y);
  } else {
    --d; k=1<<d;
    Decode(d,x,y);
    if (d==4) deq4[cnt]=1;
    Decode(d,x+k,y);
    if (d==4) deq4[cnt]=1;
    Decode(d,x,y+k);
    if (d==4) deq4[cnt]=1;
    Decode(d,x+k,y+k);
    if (d==4) deq4[cnt]=1;
}

VTC algorithm (iterative part)

ItDecode(d,x,y) {
  Decode(d,0,0);
  for (i=0;i<cnt;i++) {
    DecodePixel(info[i]);
    if (deq4[i])

           Check();
  }

   }
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What has happened up to now?

● Recursive part of algorithm

– Collects information

– No longer dominates execution time
● Iterative part of algorithm

– Uses collected information

– Method itself does not impose inter-iteration 
dependencies

● Hence: opportunity for parallelization
● Drawback

– Storing all information needs a lot of memory, 
certainly a lot more than was needed in the 
recursion; bad for energy consumption
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Step 2: replace recursive info collection with 
iterative info generation

● Determine iteration bound

– Call to Decode(d,_,_) results in 4 calls to 
Decode(d-1,_,_)

– Number of iterations easily found by solving 
recurrence equation

– With solution

I d =4 I d−1with I 0=1

I d =4d
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Step 2: replace recursive info collection with 
iterative info generation

● Modeling of argument transformations

– Call to Decode(d,x,y) results in 4 calls:
Decode(d-1, x    , y    );
Decode(d-1, x+k, y    );
Decode(d-1, x    , y+k);
Decode(d-1, x+k, y+k);

(with k = 2^(d-1))

– Before base case is reached, arguments have 
undergone a large amount of additions with different 
k-values = argument transformations



© ESAT/ elec ta  2003

© ESAT/ELECTA
KULeuven’2003

Problem:

Call tree

r0

r1 r2

r3 r4

r5 r6

r7 r8

r9 r10

r11 r12

r13 r14

r15

d,x,y

Example: call to Decode(2,x,y) results in 4 calls:

Decode(d-1,x    ,y    )
Decode(d-1,x+k,y    )
Decode(d-1,x    ,y     )
Decode(d-1,x+k,y+k)

How is (d,x,y) transformed through the 
recursion when reaching the base case ?

Copyright 
ESAT/ELECTA 
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Answer: 
(for mathematical derivation: see paper)

Call tree

r0
r1 r2

r3 r4
r5 r6

r7 r8
r9 r10

r11 r12
r13 r14

r15

Example: call to Decode(2,x,y) results in 4 calls:

Decode(d-1,x    ,y    )
Decode(d-1,x+k,y    )
Decode(d-1,x    ,y     )
Decode(d-1,x+k,y+k)

r j= [
0

∑
i=0

n−1

2i   j div 22 i  mod 2 

∑
i=0

n−1

2i   j div 22 i1  mod 2  ]

Copyright 
ESAT/ELECTA 
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What has happened up to now?

● Formula for rj can be 
used to replace non-
grayed out part of VTC 
with iteration

– Synthesize a loop that 
calculates rj values for 
j = 0 .. 4^d

● We have ignored the 
extra functionality 
between the recursive 
Decode calls

● Let's put it back in !

VTC algorithm (info collection)

Decode (d, x, y) {
  if (d= =0) {
    info[++cnt]=(x,y);
  } else {
    --d; k=1<<d;
    Decode(d,x,y);
    if (d==4) deq4[cnt]=1;
    Decode(d,x+k,y);
    if (d==4) deq4[cnt]=1;
    Decode(d,x,y+k);
    if (d==4) deq4[cnt]=1;
    Decode(d,x+k,y+k);
    if (d==4) deq4[cnt]=1;
}
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Handling intermediate functionality

● Problem: when must activation of

  “if (d==4) Check()”

be scheduled, to preserve correctness in 
presence of side-effects inside Check() 
function ?

● Strategy:

– We look for a relation R(j) between iteration counter 
j (which calculates successive rj's)
and the result of condition (d == 4) 

– Then iterative algorithm calculates rj, followed by 
checking condition R(j) and possible activation of 
intermediate functionality
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Handling intermediate functionality

● Consider call to Decode(4,_,_)

– This results in 4 calls to Decode(3,_,_)

– Each of these 4 calls results in 4 calls to 
Decode (2,_,_) => 4*4 = 16 calls

– ...

– Results in 4*4*4*4 = 256 calls to Decode(0,_,_)
(call to Decode(0,_,_) is what activates base case calculation!)

● Conclusion: 

– Between two calls to Decode(4,_,_) there are 
4^4 = 256 calls to Decode(d,_,_) with d < 4

– Hence (d == 4) is true if j is multiple of 256 !

– Similarly (d > 4) is true if j is multiple of 1024 
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Handling intermediate functionality

● Hence the following relation has been found

● Because 256 and 1024 are powers of two, this is 
cheaply implemented by bit masking

d=4
⇔

j mod 256=0∧ j mod 1024≠0
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Resulting iterative VTC core

● Iterative version
for j = 0 to            {
  // calculate argument values

  x_bc =                             ;
  
  y_bc =                               ;

  // activate base case calculation
  DecodePixel(x_bc,y_bc);

  // activation intermediate functionality
  if (                                           )
    Check();
}

4n−1

∑
i=0

n−1

2i  j div 22 imod 2

∑
i=0

n−1

2i  j div 22 i1mod 2

 jmod 256=0  &&  jmod 1024≠0 
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Intermediate conclusions

● What have we done up to now?

– Separate base case calculation from recursion
● To isolate dominant part from recursion

– Replace argument recording with argument 
calculation

● To remove argument recording memory usage
● Solution to three sub-problems was required

– Determination of iteration bound
– Modeling argument transformations through the recursion
– Activation of intermediate functionality at correct moments 

in time
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Intermediate conclusions

● How general is this approach ?

– Has been generalised and extended to handle 
recursive algorithms with any combination of

● Multiple base cases
● Multiple recursive cases
● Intermediate functionality which depends on any 

combination of recursive function arguments (or other 
arguments, e.g. global variables)

● Any kind of argument transformation functions
● Functions with return values and functions to combine 

return values to new return values

– In the most general case all functions may have 
side-effects

– So, it is quite general!
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Comparison iterative - recursive

● Iterative algorithm

● Traverses each path 
from root node to leaf

● Arrows closer to root 
are evaluated more 
often than arrows 
nearer to leaf

● Recursive algorithm

● Performs depth-first 
traversal of call tree

● Each arrow is 
evaluated exactly 
once



© ESAT/ elec ta  2003

© ESAT/ELECTA
KULeuven’2003

Comparison calculation requirements

● Iterative algorithm

● Each arrow represents
– Function call
– Argument trafo step

● There are (at most)
                    arrows

● Recursive algorithm

● Each arrow represents
– Argument trafo step

● Arrow from depth d to 
depth d+1 is redone (at 
most)           times 

● From depth d to d+1 
there are         arrows

● Total #calcs =

BDMAX1−1
B−1

−1

BDMAX−1

Bd1

DMAX B
DMAX
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Comparison memory requirements

● Iterative algorithm

● Some fixed amount of 
book keeping memory 
required

● No extra memory 
depending on 
recursion depth

● Recursive algorithm

● Memory required is at 
most 

 = stack frame size X
    recursion depth
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Systematic trade-offs

● First trade-off:

– Trade-off argument transformation calculations 
verus memory used

– By applying partial memoization

● Second trade-off

– Trade-off memoization memory for parallelizability

– By applying in-place optimization
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First trade-off: calculations vs. memory
● Storing results from argument transformation 

step going from depth d to d+1 reduces number 
of  argument transformation steps with an 
amount of 

● Memoization of leaf does not have advantage
(leaf is needed only once,                    )

● Storing each result in separate memory location 

– Reduces amount of calculations to amount in 
recursive algorithm

– But uses up to                       memory locations

– Recursive version needs only D
max

 locations

● This version has potentially full parallelisability, 
but this is usually not needed

BDMAX−d−1

BDMAX−DMAX−1=0

BDMAX1−1
B−1

−1
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Second trade-off: memory vs. parallelisability

● Not all argument transformation results are 
needed at the same time 
(unless fully parallelised version is desired)

● Hence memory locations can be reused
● By full memoization and fully exploiting limited 

life-times

– Can achieve same time and memory complexity as 
recursive algorithm or better

– This depends on such factors as
● Known lack of side-effects in certain parts of the 

algorithm

● Possibilities for symbolically simplifying r
j
 - equation
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Summary of trade-offs

Recursive 
calls

Argument 
trafo calcs

Memory 
locations

Parallel. 
oportunities

Recursive 
version

Iterative 
version

Iterative + 
partial 
memoization

Iterative + 
memoization
+ in-place

0

0

0

0

none

full

full

Between 
full and 

none

BDMAX1−1
B−1

−1
BDMAX1−1
B−1

−1

DMAX B
DMAX

DMAX B
DMAX

Between
               and
BDMAX1−1
B−1

−1

DMAX B
DMAX

Between
               and
BDMAX1−1
B−1

−1

S.DMAX

 Between 0
 and
BDMAX1−1
B−1

−1

Full memo:  
between

and

BDMAX1−1
B−1

−1

S ' .DMAX
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Summary and future work

● Method for removing and analysing recursion in 
quite general cases

– Here applied on VTC algorithm

– Many other examples have been transformed as 
well

● Recursion removal on VTC enabled further 
transformation to get energy reduction of up to 
factor 2 (without reduction of execution time). For 
details, see: 

Zhe Ma, Chun Wong, Stefaan Himpe, Eric Delfosse, Francky 
Catthoor and Geert Deconinck, “Task concurrency analysis and  
exploration of Visual Texture Coder on a Heterogeneous 
Platform”, in: Proceedings of the 2003 IEEE workshop on signal 
processing systems (SIPS03)
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The End...

...thank you!


