

Control Flow Analysis for Recursion Removal

Stefaan Himpe, Geert Deconinck K.U.Leuven ESAT/ELECTA Francky Catthoor IMEC

Introduction

- Recursion removal
 - Traditionally done to reduce resource consumption (time and memory)
 - Now meant as enabling step for other transformations, typically on imperative or OO code (C/C++/JAVA/...)
 - Usually dependency removal transformations, and parallelising transformations
 - Hence, main goals:
 - Try to introduce as little new dependencies in iterative resulting algorithm implementation as possible
 - Guarantee correctness in presence of side-effects
 - However, it is still useful to evaluate impact on execution time, memory usage

Slide by Tanja Vanachteren, used with permission, copyright IMEC

Recursive part of the VTC algorithm

• MPEG 4 VTC

 1-level quad tree decomposition

 3
 4

 1
 2

© ESAT/ELECTA KULeuven'2003

Recursive part of the VTC algorithm

- Time spent in this part of VTC is 50% of overall time
- DecodePixel is expensive compared to argument trafo and recursive function calls

© FSAT/FI FCTA

KUI euven'2003

- Clecta
- Between recursive calls extra functionality is present
 - It has side-effects
 - It must be preserved

Recursive part of the VTC algorithm

- First step:
 - DecodePixel is expensive
 - DecodePixel is activated with argument values that are transformed through recursion

Hence

- First collect argument values, store in memory
- Then use in iteration with DecodePixel calls

Recursive part of the VTC algorithm

• Second step:

Storing collected values in memory is expensive

Hence

 Replace recursive information collection with a formula producing these same argument values

Step 1: separate base case calculation from recursion

- Record all information that is needed in base case, in the original recursive algorithm without base case calculation
 - Applied to VTC:
 - Leave out call to DecodePixel
 - Add recording of d, x, y values in algorithm
- Loop over all collected information
 - Each time calling DecodePixel with correct argument values retrieved from memory
 - This loop is fully parallelizable, if the side-effects inside DecodePixel do not interfere

Pseudo-code result

VTC algorithm (info collection) Decode (d, x, y) { if (d = = 0) { info[++cnt]=(x,y);} else { --d; k=1<<d; Decode(d,x,y); if (d==4) deg4[cnt]=1;Decode(d,x+k,y);if (d==4) deq4[cnt]=1;Decode(d,x,y+k); if (d==4) deg4[cnt]=1;Decode(d,x+k,y+k); if (d==4) deg4[cnt]=1; VTC algorithm (iterative part)

ItDecode(d,x,y) { Decode(d,0,0); for (i=0;i<cnt;i++) { DecodePixel(info[i]); if (deq4[i])

Check();

What has happened up to now?

- Recursive part of algorithm
 - Collects information
 - No longer dominates execution time
- Iterative part of algorithm
 - Uses collected information
 - Method itself does not impose inter-iteration dependencies
 - Hence: opportunity for parallelization
- Drawback
 - Storing all information needs a lot of memory, certainly a lot more than was needed in the recursion; bad for energy consumption

KUI euven'2003

Step 2: replace recursive info collection with iterative info generation

- Determine iteration bound
 - Call to Decode(d,_,_) results in 4 calls to Decode(d-1,_,_)
 - Number of iterations easily found by solving recurrence equation

$$I(d) = 4 I(d-1)$$
 with $I(0) = 1$

- With solution

$$I(d) = 4^d$$

Step 2: replace recursive info collection with iterative info generation

Modeling of argument transformations

Call to Decode(d,x,y) results in 4 calls:
Decode(d-1, x , y);
Decode(d-1, x+k, y);
Decode(d-1, x , y+k);
Decode(d-1, x+k, y+k);

(with $k = 2^{(d-1)}$)

 Before base case is reached, arguments have undergone a large amount of additions with different k-values = argument transformations

Copyright ESAT/ELECTA

How is (d,x,y) transformed through the recursion when reaching the base case ?

What has happened up to now?

- VTC algorithm (info collection) Decode (d, x, y) { if (d = = 0) { info[++cnt]=(x,y);} else { --d; k=1<<d; Decode(d,x,y); if (d==4) deg4[cnt]=1; Decode(d,x+k,y);if (d==4) deq4[cnt]=1; Decode(d,x,y+k); if (d==4) deg4[cnt]=1;Decode(d,x+k,y+k); if (d==4) deg4[cnt]=1;
- Formula for rj can be used to replace nongrayed out part of VTC with iteration
 - Synthesize a loop that calculates rj values for j = 0 .. 4[^]d
- We have ignored the extra functionality between the recursive Decode calls
- Let's put it back in !

KUI euven'2003

Handling intermediate functionality

• Problem: when must activation of

"if (d==4) Check()"

be scheduled, to preserve correctness in presence of side-effects inside Check() function ?

- Strategy:
 - We look for a relation R(j) between iteration counter
 j (which calculates successive rj's)
 and the result of condition (d == 4)
 - Then iterative algorithm calculates rj, followed by checking condition R(j) and possible activation of intermediate functionality

Handling intermediate functionality

- Consider call to Decode(4,_,_)
 - This results in 4 calls to Decode(3,_,_)
 - Each of these 4 calls results in 4 calls to Decode (2,_,_) => 4*4 = 16 calls
 - Results in 4*4*4*4 = 256 calls to Decode(0,__,_) (call to Decode(0,__,_) is what activates base case calculation!)
- Conclusion:
 - Between two calls to Decode(4, _, _) there are
 4^4 = 256 calls to Decode(d, _, _) with d < 4
 - Hence (d == 4) is true if j is multiple of 256 !
 - Similarly (d > 4) is true if j is multiple of 1024

Handling intermediate functionality

Hence the following relation has been found

d = 4 \Leftrightarrow $j \mod 256 = 0 \land j \mod 1024 \neq 0$

© ESAT/ELECTA KULeuven'2003

 Because 256 and 1024 are powers of two, this is cheaply implemented by bit masking

Resulting iterative VTC core

• Iterative version for j = 0 to $4^{n} - 1$ { // calculate argument values

$$x_bc = \sum_{i=0}^{i=0} 2^{i} ((j \operatorname{div} 2^{2^{i}}) \operatorname{mod} 2);$$

$$y_bc = \sum_{i=0}^{n-1} 2^{i} ((j \operatorname{div} 2^{2^{i+1}}) \operatorname{mod} 2);$$

KULeuven'2003

// activate base case calculation
DecodePixel(x_bc,y_bc);

// activation intermediate functionality if $(|j \mod 256=0) \&\& (j \mod 1024 \neq 0)$) Check();

Intermediate conclusions

- What have we done up to now?
 - Separate base case calculation from recursion
 - To isolate dominant part from recursion
 - Replace argument recording with argument calculation
 - To remove argument recording memory usage
 - Solution to three sub-problems was required
 - Determination of iteration bound
 - Modeling argument transformations through the recursion
 - Activation of intermediate functionality at correct moments in time

Intermediate conclusions

- How general is this approach ?
 - Has been generalised and extended to handle recursive algorithms with any combination of
 - Multiple base cases
 - Multiple recursive cases
 - Intermediate functionality which depends on any combination of recursive function arguments (or other arguments, e.g. global variables)
 - Any kind of argument transformation functions
 - Functions with return values and functions to combine return values to new return values
 - In the most general case all functions may have side-effects
 - So, it is quite general!

Comparison iterative - recursive

Recursive algorithm

- Traverses each path from root node to leaf
- Arrows closer to root are evaluated more often than arrows nearer to leaf
- Performs depth-first traversal of call tree
- Each arrow is evaluated exactly once

Comparison calculation requirements

- Iterative algorithm
- © ESAT/ELECTA KULeuven'2003

- Each arrow represents
 - Function call
 - Argument trafo step
- There are (at most) $\frac{B^{D_{MAX}+1}-1}{B-1} - 1$ arrows

• Recursive algorithm

- Each arrow represents
 - Argument trafo step
- Arrow from depth d to depth d+1 is redone (at most) $B^{D_{MAX}-1}$ times
- From depth d to d+1 there are B^{d+1} arrows
- Total #calcs = $D_{MAX} B^{D_{MAX}}$

Comparison memory requirements

- Iterative algorithm
- Some fixed amount of book keeping memory required
 - No extra memory depending on recursion depth

• Recursive algorithm

- Memory required is at most
 - = stack frame size X recursion depth

© ESAT/electa 2003

Systematic trade-offs

- First trade-off:
 - Trade-off argument transformation calculations verus memory used
 - By applying partial memoization
- Second trade-off
 - Trade-off memoization memory for parallelizability
 - By applying in-place optimization

KUI euven'2003

First trade-off: calculations vs. memory

- Storing results from argument transformation step going from depth d to d+1 reduces number of argument transformation steps with an amount of $B^{D_{MAX}-d}-1$
- Memoization of leaf does not have advantage (leaf is needed only once, $B^{D_{MAX}-D_{MAX}}-1=0$)
- Storing each result in separate memory location
 - Reduces amount of calculations to amount in recursive algorithm
 - But uses up to $\frac{B^{D_{MAX}+1}-1}{B-1}-1$ memory locations
 - Recursive version needs only $\mathsf{D}_{_{\text{max}}}$ locations
- This version has potentially full parallelisability, but this is usually not needed

Effect of memoization on #calcs, #mem

Copyright ESAT/ELECTA

Effect of memoization on #calcs, #mem _on an algorithm with B=3, Dmax=3

© ESAT/electa 2003

Second trade-off: memory vs. parallelisability

- Not all argument transformation results are needed at the same time (unless fully parallelised version is desired)
- Hence memory locations can be reused
- By full memoization and fully exploiting limited life-times

- Can achieve same time and memory complexity as recursive algorithm or better
- This depends on such factors as
 - Known lack of side-effects in certain parts of the algorithm
 - Possibilities for symbolically simplifying r_i equation

Summary of trade-offs

	Recursive calls	Argument trafo calcs	Memory locations	Parallel. oportunities
Recursive version	$\frac{B^{D_{MAX}+1}-1}{B-1}-1$	$\frac{B^{D_{MAX}+1}-1}{B-1}-1$	$S.D_{MAX}$	none
Iterative version	0	$D_{MAX} B^{D_{MAX}}$	0	full
Iterative + partial memoization	0	Between $D_{MAX} B^{D_{MAX}}$ and $\frac{B^{D_{MAX}+1}-1}{B-1}-1$	Between 0 and $\frac{B^{D_{MAX}+1}-1}{B-1}-1$	full
Iterative + memoization + in-place	0	Between $D_{MAX} B^{D_{MAX}}$ and $\frac{B^{D_{MAX}+1}-1}{B-1}-1$	Full memo: between $\frac{B^{D_{MAX}+1}-1}{B-1}-1$ and S'. D _{MAX}	Between full and none

Summary and future work

- Method for removing and analysing recursion in quite general cases
 - Here applied on VTC algorithm
 - Many other examples have been transformed as well
- Recursion removal on VTC enabled further transformation to get energy reduction of up to factor 2 (without reduction of execution time). For details, see:

Zhe Ma, Chun Wong, Stefaan Himpe, Eric Delfosse, Francky Catthoor and Geert Deconinck, "Task concurrency analysis and exploration of Visual Texture Coder on a Heterogeneous Platform", in: Proceedings of the 2003 IEEE workshop on signal processing systems (SIPS03)

The End...

© ESAT/ELECTA KULeuven'2003

...thank you!