
© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Control Flow Analysis
 for

Recursion Removal

Stefaan Himpe, Geert Deconinck
K.U.Leuven ESAT/ELECTA

Francky Catthoor
IMEC

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Introduction

● Recursion removal

– Traditionally done to reduce resource consumption
(time and memory)

– Now meant as enabling step for other
transformations, typically on imperative or OO code
(C/C++/JAVA/...)

● Usually dependency removal transformations,
and parallelising transformations

● Hence, main goals:
– Try to introduce as little new dependencies in iterative

resulting algorithm implementation as possible
– Guarantee correctness in presence of side-effects

● However, it is still useful to evaluate impact on
execution time, memory usage

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Visual texture coding
● Part of the
MPEG-4 standard

●Transmission of
still images

●Scalable
– Quality:

successive
quantisation

– Resolution:
Wavelet based

– Region of
Interest (ROI)
selection

Slide by Tanja Vanachteren, used with permission, copyright IMEC

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Recursive part of the VTC algorithm

● MPEG 4 VTC VTC algorithm (partial)
Decode (d, x, y) {
 if (d= =0) {
 DecodePixel(x,y);
 } else {
 --d; k=1<<d;
 Decode(d,x,y);
 if (d= =4) Check();
 Decode(d,x+k,y);
 if (d= =4) Check();
 Decode(d,x,y+k);
 if (d= =4) Check();
 Decode(d,x+k,y+k);
 if (d= =4) Check();
}

3 4

1 2

1-level quad tree
decomposition

11 12 15 16
9 10 13 14
3 4 7 8
1 2 5 6

2-level quad tree
decomposition

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Recursive part of the VTC algorithm

● Time spent in this part
of VTC is 50% of
overall time

● DecodePixel is
expensive compared
to argument trafo and
recursive function
calls

● Between recursive
calls extra functionality
is present

– It has side-effects

– It must be preserved

VTC algorithm (partial)
Decode (d, x, y) {
 if (d= =0) {
 DecodePixel(x,y);
 } else {
 --d; k=1<<d;
 Decode(d,x,y);
 if (d= =4) Check();
 Decode(d,x+k,y);
 if (d= =4) Check();
 Decode(d,x,y+k);
 if (d= =4) Check();
 Decode(d,x+k,y+k);
 if (d= =4) Check();
}

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Recursive part of the VTC algorithm

● First step:

– DecodePixel is
expensive

– DecodePixel is
activated with
argument values that
are transformed
through recursion

Hence

– First collect argument
values, store in
memory

– Then use in iteration
with DecodePixel calls

VTC algorithm (partial)
Decode (d, x, y) {
 if (d= =0) {
 DecodePixel(x,y);
 } else {
 --d; k=1<<d;
 Decode(d,x,y);
 if (d= =4) Check();
 Decode(d,x+k,y);
 if (d= =4) Check();
 Decode(d,x,y+k);
 if (d= =4) Check();
 Decode(d,x+k,y+k);
 if (d= =4) Check();
}

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Recursive part of the VTC algorithm

● Second step:

– Storing collected
values in memory is
expensive

Hence

– Replace recursive
information collection
with a formula
producing these
same argument
values

VTC algorithm (partial)
Decode (d, x, y) {
 if (d= =0) {
 DecodePixel(x,y);
 } else {
 --d; k=1<<d;
 Decode(d,x,y);
 if (d= =4) Check();
 Decode(d,x+k,y);
 if (d= =4) Check();
 Decode(d,x,y+k);
 if (d= =4) Check();
 Decode(d,x+k,y+k);
 if (d= =4) Check();
}

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Step 1: separate base case calculation
from recursion

● Record all information that is needed in base
case, in the original recursive algorithm without
base case calculation

– Applied to VTC:
● Leave out call to DecodePixel
● Add recording of d, x, y values in algorithm

● Loop over all collected information

– Each time calling DecodePixel with correct
argument values retrieved from memory

– This loop is fully parallelizable, if the side-effects
inside DecodePixel do not interfere

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Pseudo-code result

VTC algorithm (info collection)

Decode (d, x, y) {
 if (d= =0) {
 info[++cnt]=(x,y);
 } else {
 --d; k=1<<d;
 Decode(d,x,y);
 if (d==4) deq4[cnt]=1;
 Decode(d,x+k,y);
 if (d==4) deq4[cnt]=1;
 Decode(d,x,y+k);
 if (d==4) deq4[cnt]=1;
 Decode(d,x+k,y+k);
 if (d==4) deq4[cnt]=1;
}

VTC algorithm (iterative part)

ItDecode(d,x,y) {
 Decode(d,0,0);
 for (i=0;i<cnt;i++) {
 DecodePixel(info[i]);
 if (deq4[i])

 Check();
 }

 }

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

What has happened up to now?

● Recursive part of algorithm

– Collects information

– No longer dominates execution time
● Iterative part of algorithm

– Uses collected information

– Method itself does not impose inter-iteration
dependencies

● Hence: opportunity for parallelization
● Drawback

– Storing all information needs a lot of memory,
certainly a lot more than was needed in the
recursion; bad for energy consumption

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Step 2: replace recursive info collection with
iterative info generation

● Determine iteration bound

– Call to Decode(d,_,_) results in 4 calls to
Decode(d-1,_,_)

– Number of iterations easily found by solving
recurrence equation

– With solution

I d =4 I d−1with I 0=1

I d =4d

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Step 2: replace recursive info collection with
iterative info generation

● Modeling of argument transformations

– Call to Decode(d,x,y) results in 4 calls:
Decode(d-1, x , y);
Decode(d-1, x+k, y);
Decode(d-1, x , y+k);
Decode(d-1, x+k, y+k);

(with k = 2^(d-1))

– Before base case is reached, arguments have
undergone a large amount of additions with different
k-values = argument transformations

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Problem:

Call tree

r0

r1 r2

r3 r4

r5 r6

r7 r8

r9 r10

r11 r12

r13 r14

r15

d,x,y

Example: call to Decode(2,x,y) results in 4 calls:

Decode(d-1,x ,y)
Decode(d-1,x+k,y)
Decode(d-1,x ,y)
Decode(d-1,x+k,y+k)

How is (d,x,y) transformed through the
recursion when reaching the base case ?

Copyright
ESAT/ELECTA

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Answer:
(for mathematical derivation: see paper)

Call tree

r0
r1 r2

r3 r4
r5 r6

r7 r8
r9 r10

r11 r12
r13 r14

r15

Example: call to Decode(2,x,y) results in 4 calls:

Decode(d-1,x ,y)
Decode(d-1,x+k,y)
Decode(d-1,x ,y)
Decode(d-1,x+k,y+k)

r j= [
0

∑
i=0

n−1

2i   j div 22 i  mod 2 

∑
i=0

n−1

2i   j div 22 i1  mod 2 ]

Copyright
ESAT/ELECTA

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

What has happened up to now?

● Formula for rj can be
used to replace non-
grayed out part of VTC
with iteration

– Synthesize a loop that
calculates rj values for
j = 0 .. 4^d

● We have ignored the
extra functionality
between the recursive
Decode calls

● Let's put it back in !

VTC algorithm (info collection)

Decode (d, x, y) {
 if (d= =0) {
 info[++cnt]=(x,y);
 } else {
 --d; k=1<<d;
 Decode(d,x,y);
 if (d==4) deq4[cnt]=1;
 Decode(d,x+k,y);
 if (d==4) deq4[cnt]=1;
 Decode(d,x,y+k);
 if (d==4) deq4[cnt]=1;
 Decode(d,x+k,y+k);
 if (d==4) deq4[cnt]=1;
}

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Handling intermediate functionality

● Problem: when must activation of

 “if (d==4) Check()”

be scheduled, to preserve correctness in
presence of side-effects inside Check()
function ?

● Strategy:

– We look for a relation R(j) between iteration counter
j (which calculates successive rj's)
and the result of condition (d == 4)

– Then iterative algorithm calculates rj, followed by
checking condition R(j) and possible activation of
intermediate functionality

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Handling intermediate functionality

● Consider call to Decode(4,_,_)

– This results in 4 calls to Decode(3,_,_)

– Each of these 4 calls results in 4 calls to
Decode (2,_,_) => 4*4 = 16 calls

– ...

– Results in 4*4*4*4 = 256 calls to Decode(0,_,_)
(call to Decode(0,_,_) is what activates base case calculation!)

● Conclusion:

– Between two calls to Decode(4,_,_) there are
4^4 = 256 calls to Decode(d,_,_) with d < 4

– Hence (d == 4) is true if j is multiple of 256 !

– Similarly (d > 4) is true if j is multiple of 1024

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Handling intermediate functionality

● Hence the following relation has been found

● Because 256 and 1024 are powers of two, this is
cheaply implemented by bit masking

d=4
⇔

j mod 256=0∧ j mod 1024≠0

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Resulting iterative VTC core

● Iterative version
for j = 0 to {
 // calculate argument values

 x_bc = ;

 y_bc = ;

 // activate base case calculation
 DecodePixel(x_bc,y_bc);

 // activation intermediate functionality
 if ()
 Check();
}

4n−1

∑
i=0

n−1

2i  j div 22 imod 2

∑
i=0

n−1

2i  j div 22 i1mod 2

 jmod 256=0  &&  jmod 1024≠0 

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Intermediate conclusions

● What have we done up to now?

– Separate base case calculation from recursion
● To isolate dominant part from recursion

– Replace argument recording with argument
calculation

● To remove argument recording memory usage
● Solution to three sub-problems was required

– Determination of iteration bound
– Modeling argument transformations through the recursion
– Activation of intermediate functionality at correct moments

in time

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Intermediate conclusions

● How general is this approach ?

– Has been generalised and extended to handle
recursive algorithms with any combination of

● Multiple base cases
● Multiple recursive cases
● Intermediate functionality which depends on any

combination of recursive function arguments (or other
arguments, e.g. global variables)

● Any kind of argument transformation functions
● Functions with return values and functions to combine

return values to new return values

– In the most general case all functions may have
side-effects

– So, it is quite general!

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Comparison iterative - recursive

● Iterative algorithm

● Traverses each path
from root node to leaf

● Arrows closer to root
are evaluated more
often than arrows
nearer to leaf

● Recursive algorithm

● Performs depth-first
traversal of call tree

● Each arrow is
evaluated exactly
once

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Comparison calculation requirements

● Iterative algorithm

● Each arrow represents
– Function call
– Argument trafo step

● There are (at most)
 arrows

● Recursive algorithm

● Each arrow represents
– Argument trafo step

● Arrow from depth d to
depth d+1 is redone (at
most) times

● From depth d to d+1
there are arrows

● Total #calcs =

BDMAX1−1
B−1

−1

BDMAX−1

Bd1

DMAX B
DMAX

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Comparison memory requirements

● Iterative algorithm

● Some fixed amount of
book keeping memory
required

● No extra memory
depending on
recursion depth

● Recursive algorithm

● Memory required is at
most

 = stack frame size X
 recursion depth

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Systematic trade-offs

● First trade-off:

– Trade-off argument transformation calculations
verus memory used

– By applying partial memoization

● Second trade-off

– Trade-off memoization memory for parallelizability

– By applying in-place optimization

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

First trade-off: calculations vs. memory
● Storing results from argument transformation

step going from depth d to d+1 reduces number
of argument transformation steps with an
amount of

● Memoization of leaf does not have advantage
(leaf is needed only once,)

● Storing each result in separate memory location

– Reduces amount of calculations to amount in
recursive algorithm

– But uses up to memory locations

– Recursive version needs only D
max

 locations

● This version has potentially full parallelisability,
but this is usually not needed

BDMAX−d−1

BDMAX−DMAX−1=0

BDMAX1−1
B−1

−1

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

0

100

200

300

400

500

600

700

800

900

1000

1100

Effect of memoization on #calcs, #mem

Nr. Arrows

Savings

Total Calcs

Mem NoInpl

Mem Inpl

#memoized arrows

#s
av

in
gs

3400

Copyright
ESAT/ELECTA

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

01234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

0

10

20

30

40

50

60

70

80

90

Effect of memoization on #calcs, #mem
on an algorithm with B=3, Dmax=3

Total Calcs

Mem-loc no
InPlace

Mem-Loc full
InPlace

#memoized arrows

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Second trade-off: memory vs. parallelisability

● Not all argument transformation results are
needed at the same time
(unless fully parallelised version is desired)

● Hence memory locations can be reused
● By full memoization and fully exploiting limited

life-times

– Can achieve same time and memory complexity as
recursive algorithm or better

– This depends on such factors as
● Known lack of side-effects in certain parts of the

algorithm

● Possibilities for symbolically simplifying r
j
 - equation

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Summary of trade-offs

Recursive
calls

Argument
trafo calcs

Memory
locations

Parallel.
oportunities

Recursive
version

Iterative
version

Iterative +
partial
memoization

Iterative +
memoization
+ in-place

0

0

0

0

none

full

full

Between
full and

none

BDMAX1−1
B−1

−1
BDMAX1−1
B−1

−1

DMAX B
DMAX

DMAX B
DMAX

Between
 and
BDMAX1−1
B−1

−1

DMAX B
DMAX

Between
 and
BDMAX1−1
B−1

−1

S.DMAX

 Between 0
 and
BDMAX1−1
B−1

−1

Full memo:
between

and

BDMAX1−1
B−1

−1

S ' .DMAX

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

Summary and future work

● Method for removing and analysing recursion in
quite general cases

– Here applied on VTC algorithm

– Many other examples have been transformed as
well

● Recursion removal on VTC enabled further
transformation to get energy reduction of up to
factor 2 (without reduction of execution time). For
details, see:

Zhe Ma, Chun Wong, Stefaan Himpe, Eric Delfosse, Francky
Catthoor and Geert Deconinck, “Task concurrency analysis and
exploration of Visual Texture Coder on a Heterogeneous
Platform”, in: Proceedings of the 2003 IEEE workshop on signal
processing systems (SIPS03)

© ESAT/ elec ta 2003

© ESAT/ELECTA
KULeuven’2003

The End...

...thank you!

