Control Flow Analysis
for
Recursion Removal

Stefaan Himpe, Geert Deconinck
K.U.Leuven ESAT/ELECTA

Francky Catthoor
IMEC

© ESAT/ electa 2003

Introduction

e Recursion removal

- Traditionally done to reduce resource consumption
(time and memory)

- Now meant as enabling step for other
transformations, typically on imperative or OO code
(C/C++/JAVA/...)

* Usually dependency removal transformations,
and parallelising transformations

* Hence, main goals:

- Try to introduce as little new dependencies in iterative
resulting algorithm implementation as possible

- Guarantee correctness in presence of side-effects

* However, it is still useful to evaluate impact on
execution time, memory usage

© ESAT/ electa 2003

Slide by Tanja Vanachteren, used with permission, copyright IMEC
Visual texture coding

High quality texture

Low quality texture - ® Part Of the
| MPEG-4 standard

Y

*Transmission of
still images

I II '- 22D texture
AV *Scalable
- Quality:
successive
quantisation

- Resolution:
Wavelet based

- Region of
Interest (ROI)
selection

AL = Arithimetic Coder
Tl = TextUrE marker

© ESAT/ electa 2003

Recursive part of the VTC algorithm

* MPEG 4 VTC VTC algorithm (partial)
A(li—level qu.a(.1 tree I)E‘C((()iiez(gs ? YA
SCOMPOSITION DecodePixel(x,y);
304 ! else {
o, --d; k=1<<d;
Decode(d,x,y);
g if (d==4) Check();
,2-level quad tree Decode(d,x+k,y);
decomposition it (d==4) Check();
11121516 Decode(d,x,y+k);
9101314 if (d==4) Check();
3478 Decode(d,x+k,y+k);
1121516 _ if (d= =4) Check();
h

© ESAT/ electa 2003

Recursive part of the VTC algorithm

* Time spentin this part VTC algorithm (partial)

of VTC is 50% of Decode (d, X, y) {
overall time if (d==0) {
e DecodePixel is Dle codePixel(x.y);
expensive compared i else {_
--d; k=1<<d;
to argument trafo and Dessiicdlse
E;ZCI;IL;rSIVG function if (d= =4) Check();
Decode(d,x+k,y);
* Between recursive if (d==4) Check();
calls extra functionality Decode(d,x,y+k);
IS present if (d==4) Check();
- It has side-effects Dzsadeld oy ik;

if (d==4) Check();
— It must be preserved !

© ESAT/ electa 2003

Recursive part of the VTC algorithm

* First step: VTC algorithm (partial)
- DecodePixel is D.ecocle_(d, X, ¥) 1
expensive i (0= =0) {
- DecodePixel(x,y);
- DecodePixel is \else {
actlvatedtwml\ o d: k=1<<d:
argument values tha DCCOde(d,X,Y);
are transformed o1 :
through recursion f (O =) CliEs s
Decode(d,x+k,y);
Hence if (d==4) Check();
- First collect argument Decode(d,x,y+k);
values, store in if (d==4) Check();
memory Decode(d,x+k,y+k);

— Then use in iteration 1if (d==4) Check();

with DecodePixel calls)

© ESAT/ electa 2003

Recursive part of the VTC algorithm

* Second step: VTC algorithm (partial)

- Storing collected Decode (d, %,) 4
values in memory is it (d==0) {
expensive DecodePixel(x,y);

} else {

Hence --d; k:1<<d;

- Replace recursive Decode(d,x,y);
information collection if (d==4) Check();
with a formula Decode(d,x+k,y);
producing these if (d==4) Check();
same argument Decode(d,x,y+k);
values if (d= =4) Check();

Decode(d,x+k,y+k);
if (d==4) Check();
;

© ESAT/ electa 2003

Step 1: separate base case calculation
from recursion

e Record all information that is needed in base
case, Iin the original recursive algorithm without
base case calculation

- Applied to VTC:

e | eave out call to DecodePixel
* Add recording of d, x, y values in algorithm

* Loop over all collected information

- Each time calling DecodePixel with correct
argument values retrieved from memory

— This loop is fully parallelizable, if the side-effects
iInside DecodePixel do not interfere

© ESAT/ electa 2003

Pseudo-code result

VTC algorithm (info collection) VTC algorithm (iterative part)
Decode (d, x, y) {

if (d==0) {
info[++cnt]=(X,y); [tDecode(d.x.y) {

! eils.ek{: . Decode(d,0,0);
Dejcode(d . X \ for (i=0;i<cnt;it++) {
Decode(d.x,y);, DecodePixel(info[i]);
if (d==4) deq4[cnt]=1; if (deq4[i])
Decode(d,x+k,y); !
if (d==4) deq4[cnt]=1; Check();
Decode(d,x,y+k); j
if (d==4) deq4[cnt]=1; !

Decode(d,x+k,y+k);
if (d==4) deq4[cnt]=1;
b

© ESAT/ electa 2003

What has happened up to now?

* Recursive part of algorithm

- Collects information

- No longer dominates execution time
* |terative part of algorithm

- Uses collected information

- Method itself does not impose inter-iteration
dependencies

* Hence: opportunity for parallelization
* Drawback

- Storing all information needs a lot of memory,
certainly a lot more than was needed in the
recursion; bad for energy consumption

© ESAT/ electa 2003

Step 2: replace recursive info collection with
iterative info generation

e Determine iteration bound

— Call to Decode(d, ,) results in 4 calls to
Decode(d-1, ,)

- Number of iterations easily found by solving
recurrence equation

I(d)=41(d—1)with 1(0)=1

© ESAT/ electa 2003

Step 2: replace recursive info collection with
iterative info generation

* Modeling of argument transformations

- Call to Decode(d,x,y) results in 4 calls:
Decode(d-1,x ,y);
Decode(d-1, x+k, y);
Decode(d-1, x , y+k);
Decode(d-1, x+k, y+k);

(with k = 27(d-1))

- Before base case is reached, arguments have
undergone a large amount of additions with different
k-values = argument transformations

© ESAT/ electa 2003

Copyright

Call tree ESAT/ELECTA
Example: call to Decode(2,X,y) results in 4 calls:

Decode(d-1,x ,y)
Decode
Decode
Decode(d-1,x+k,y+k)

i
@ @ @ @ @ @ @

Problem:

How is (d,x,y) transformed through the
recursion when reaching the base case ?

Copyright

Call tree ESAT/ELECTA
Example: call to Decode(2,X,y) results in 4 calls: O

Decode(d-1,x .,y)
Decode(d-1 xtly)
Decode(d-1.x v)
Decode(d-1,x+k,y+k)

> W o)
AN A A
o o AT &

Answer:
(for mathematical derivation: see paper)

What has happened up to now?

VTC algorithm (info collection) ® Formula for rj can be

Decode (d, x, y) { used to replace non-
if (d==0) { grayed out part of VTC
info[++cnt]=(x,y); with iteration
} else {

- Synthesize a loop that

~d; k=l<<d; calculates rj values for
Decode(d,x,y); =0 . 4rg
Decode(d,x+k,y); * We have ignored the
extra functionality
Decode(d,x,y+k); between the recursive

Decode calls
Decode(d,xtk,ytk); e Let's putit back in !

© ESAT/ electa 2003

Handling intermediate functionality

* Problem: when must activation of
“if (d==4) Check()”

be scheduled, to preserve correctness in
presence of side-effects inside Check()
function ?

e Strategy:

- We look for a relation R(j) between iteration counter
J (which calculates successive rj's)
and the result of condition (d == 4)

- Then iterative algorithm calculates rj, followed by
checking condition R(j) and possible activation of
intermediate functionality

© ESAT/ electa 2003

Handling intermediate functionality

e Consider call to Decode(4, ,)

— This results in 4 calls to Decode(3,_,)

— Each of these 4 calls results in 4 calls to
Decode (2, ,) =>4%4 =16 calls

- Results in 4*4*4*4 = 256 calls to Decode(0,_,)

(call to Decode(0,_,) is what activates base case calculation!)

e Conclusion:

- Between two calls to Decode(4, ,) there are
474 = 256 calls to Decode(d, ,)withd <4

- Hence (d == 4) is true if j is multiple of 256 !
— Similarly (d > 4) is true if j is multiple of 1024

© ESAT/ electa 2003

Handling intermediate functionality
* Hence the following relation has been found
d=4

N

jmod 256=0A jmod 1024 #0

* Because 256 and 1024 are powers of two, this is
cheaply implemented by bit masking

© ESAT/ electa 2003

Resulting iterative VTC core

* |terative version
forj=0to4"—1{
// calculate argument values

n—1
X_bc =D, 2'((jdiv2*)mod 2);
i=0

y bc =Y 2((jdiv22")mod 2),
/| activate base case calculation
DecodePixel(x _bc,y bc);

/[activation intermediate functionality
If ((jmod256=0|&& | jmod 1024+0))
Check();

;

© ESAT/ electa 2003

Intermediate conclusions

* What have we done up to now?

- Separate base case calculation from recursion

* To isolate dominant part from recursion

- Replace argument recording with argument
calculation

* To remove argument recording memory usage

e Solution to three sub-problems was required

- Determination of iteration bound
- Modeling argument transformations through the recursion

- Activation of intermediate functionality at correct moments
in time

© ESAT/ electa 2003

Intermediate conclusions

* How general is this approach ?

- Has been generalised and extended to handle
recursive algorithms with any combination of

* Multiple base cases
* Multiple recursive cases

* |[ntermediate functionality which depends on any
combination of recursive function arguments (or other
arguments, e.g. global variables)

* Any kind of argument transformation functions

* Functions with return values and functions to combine
return values to new return values

- In the most general case all functions may have
side-effects

- So, it is quite general!

© ESAT/ electa 2003

Comparison iterative - recursive

* |terative algorithm * Recursive algorithm

* Traverses each path * Performs depth-first

from root node to leaf traversal of call tree
e Arrows closer to root e Fach arrow Is

are evaluated more evaluated exactly

often than arrows once

nearer to leaf

© ESAT/ electa 2003

Comparison calculation requirements

* |terative algorithm * Recursive algorithm

* Each arrow represents ¢ Each arrow represents
— Function call — Argument trafo step

- Argument trafo step * Arrow from depth d to
depth d+1 is redone (at

* There are (at most) most) 37 times
5™ —1_, arrows * From depth d to d+1
B—1 there are B**' arrows

e Total #calcs = D,y B

© ESAT/ electa 2003

Comparison memory requirements

* |terative algorithm * Recursive algorithm

* Some fixed amount of ¢ Memory required is at
book keeping memory most
required

= stack frame size X

* No extra memory recursion depth

depending on
recursion depth

© ESAT/ electa 2003

Systematic trade-offs

* First trade-off:

- Trade-off argument transformation calculations
verus memory used

- By applying partial memoization

e Second trade-off

- Trade-off memoization memory for parallelizability
- By applying in-place optimization

© ESAT/ electa 2003

First trade-off: calculations vs. memory

* Storing results from argument transformation
step going from depth d to d+1 reduces number
of argument transformation steps with an
amount of B “—1

* Memoization of leaf does not have advantage
(leaf is needed only once, B”* " —1=()

* Storing each result in separate memory location

- Reduces amount of calculations to amount in
recursive algorithrr)) y

B—1

- Recursive version needs only D__ locations

- But uses up to —1 memory locations

* This version has potentially full parallelisability,
but this is usually not needed

© ESAT/ electa 2003

Effect of memoization on #calcs, #mem

!
!
!

|
|
|

|
|
|

\
w

H\HH
H\HH
\HHH

HHH
HHH
HHH

HHH\
HHH

M

1]

il
LI

w
|

|
|
|

|
I

|||||
H\H
HH\

u
H

N\N
HHH

Il
|

mmn

|
|

|
|

|
|

H\N
HHH
HHH

u
n

N“
W
HH\

I
i

mm
mm

I
!
\

N\N
IIN“
\HHH

I
I
HH

|
|
|

N“
I
\HH

sbuines#

340

#memoized arrows

Copyright

ESAT/ELECTA

Effect of memoization on #calcs, #mem
Hon an algorithm with B=3, Dmax=3

80
70
[Total Calcs
60 B Mem-loc no
InPlace
50 I Mem-Loc full
InPlace

0123456789111111111122222222223333333333
012345678901234567890123456789

#memoized arrows

© ESAT/ electa 2003

Second trade-off: memory vs. parallelisability

* Not all argument transformation results are
needed at the same time
(unless fully parallelised version is desired)

* Hence memory locations can be reused

* By full memoization and fully exploiting limited
life-times

- Can achieve same time and memory complexity as
recursive algorithm or better

- This depends on such factors as

* Known lack of side-effects in certain parts of the
algorithm

o Possibilities for symbolically simplifying r - equation

© ESAT/ electa 2003

Summary of trade-offs

Recursive Argument Memory Parallel.
calls trafo calcs locations oportunities
Recursive B 1 B w1
. ~1 —1
version B—1 B—1 S DM4X none
[terative D
: D, B " 0 full
VErsion 0 MAX
: Between Between 0
I
Iterative Dy B”™ and and
partial 0 full
. . BDMAX+1 . 1 1 BDMAX+1 . 1 1
memoization AT AT
. Between Full memo:
Iterative + Do B and between Between
memoization 0 - B 1 full and
. B maxt1l 1 —
+ in- -1 —1
in-place = and 5, none

© ESAT/ electa 2003

Summary and future work

* Method for removing and analysing recursion in
quite general cases

- Here applied on VTC algorithm

- Many other examples have been transformed as
well

* Recursion removal on VTC enabled further
transformation to get energy reduction of up to
factor 2 (without reduction of execution time). For
detalls, see:

Zhe Ma, Chun Wong, Stefaan Himpe, Eric Delfosse, Francky
Catthoor and Geert Deconinck, “Task concurrency analysis and
exploration of Visual Texture Coder on a Heterogeneous
Platform”, in: Proceedings of the 2003 IEEE workshop on signal
processing systems (SIPS03)

© ESAT/ electa 2003

The End...

...thank you!

© ESAT/ electa 2003

