

Cache Behavior Modeling of Codes with Data-Dependent Conditionals

- Introduction
- Model Concepts
- Formulation
- Validations
- Conclusions

Introduction (I)

• The growing difference between the processor and the main memory speeds : bottleneck for systems performance.

- Optimal usage of the memory hierarchy : very important in embedded systems.
- Approaches to study cache behavior :
 - Trace-driven simulations.
 - Built-in hardware counters.
 - Modeling.

Introduction (and II)

• Systematic modeling strategy that allows a fast automated analysis that provides good levels of accuracy [FDZ03].

• Extension that enables the model to analyze codes with data-dependent conditionals whose condition follows an uniform distribution.

Basic model concepts (I)

• Support : K-way associative caches with LRU replacement.

- Kinds of misses :
 - Cold or compulsory miss.
 - Interference miss.
- Essential idea : ' In a K-way set with LRU replacement policy, a given line is replaced when K or more different lines mapped to its same cache set have been referenced since its last access '

Area Vectors

• Given a data structure V,

$S_V = S_{V_0}, S_{V_1}, \dots, S_{V_K}$

where S_{V_0} it is the ratio of sets that have received k or more lines and S_{V_i} , $0 < i \le K$ is the ratio of sets that have received k-i lines from the structure.

• The area vector associated to a given structure is calculated as a function of the access pattern.

• Algoritmo de suma de vectores de área :

$$(S_U \cup S_V)_0 = \sum_{j=0}^{K} (S_U_j \sum_{i=0}^{K-j} S_{V_i})$$

 $(S_U \cup S_V)_i = \sum_{j=i}^{\kappa} S_{U_j} S_{V_{(k+i-j)}} \quad 0 < i \le K$

• It is based in the addition of independent probabilities. It does not take account the relative positions of data structures.

Probabilistic Miss Equations (I)

• Our method generates a Probabilistic Miss Equation (*PME*) for each reference in each nesting level.

• Loops are examined beginning in the innermost loop containing the reference and proceeds outwards.

• The PME for a given reference and nesting level is built recursively using the PME for that reference in the inmediately inner loop.

• In each nesting level, the equation depends on the area vector associated to the regions accessed since the last reference to a given line of the data structure referenced by R.

• If the reference is guarded by a conditional sentence, we need to know the probability p that the condition be true.

Condition Dependent Reference Formula

 $F_{i}(R, S(\text{RegInput}), p) = L_{R_{i}}TPR(p_{i}, S(\text{RegInput}), i, G_{R_{i}}, p)$

$$TPR(p_i, S(\text{RegInput}), i, n, p) = \sum_{j=1}^{n} PR(p_i, S(\text{RegInput}), i, j, p)$$

Validation (I)
DO I = 1,M X=A(I) DO J=1,N Y=B(J) IF (B(J).GT.K) THEN C(J) = X+Y ENDIF ENDDO ENDDO Synthetic Kernel

	Validation (II)									
м	N	р	Cs	Ls	к	ΔMR	ΔΝΜ	T.Sim.	T.Exec.	T.Mod.
50000	47500	0.2	65536	16	2	5.067	0.372	141	60	0.005
22000	14500	0.4	16384	8	4	1.260	0.239	21	6	0.005
18000	22000	0.1	4096	32	4	0.417	0.141	95	8	0.004
17500	17500	0.3	8192	8	4	0.341	0.063	22	7	0.004

Validation (III)
DO I=1,M DO J=1,P T=0 DO K=1,N IF (A(I,K).NEQ.0) THEN T=T+A(I,K)*B(K,J) ENDIF ENDDO C(I,J)=C(I,J)+T ENDDO ENDDO ENDDO
Matrix Product

Validation (and IV)											
М	N	Р	р	Cs	Ls	к	AMR	ΔNM	T.Sim.	T.Exec.	T.Mod.
1700	1600	1250	0.2	8192	8	4	0.018	0.017	342	162	0.023
750	750	1000	0.4	32768	4	2	0.260	0.040	56	31	0.019
900	850	900	0.1	65536	8	1	0.525	0.065	48	29	0.020
1000	850	900	0.3	4096	8	1	0.074	0.054	70	40	0.013

Conclusions and future work (I)

- Analytical modeling of codes with regular access patterns.
- We have extended the model to analyze codes with data dependent conditionals.
- The method is based in obtaining the PMEs.

Conclusions and future work (II)

- The model can be applied in an automated fashion: integrated in Polaris Compiler.
- It is a very valuable tool to guide the optimization process of a compiler
 Fast
 Accurate

Conclusions and future work (and III)

• We are currently developing tools to guide transformations of the code using our model.

• Future lines of research include the extension of

Future miles of research include the extension of the model to consider :
Non-uniform distributions.
Codes with irregular access patterns due to the use of indirections.