
1

Optimizing Compilers
7th Lecture

Bernhard Scholz

Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

22th of May, 2003 Optimizing Compilers 2

Outline

Machine-independent optimizations based on DFA

– Common Sub-Expression Elimination

– Copy Propagation

22th of May, 2003 Optimizing Compilers 3

Common Sub-Expression
Eliminiaton (CSE)

Goal:
Eliminate common sub-exressions

Approach:
1. Global Analysis: DFA for analyzing which common sub-

expressions are available at a program point
2. Transformation: replace sub-expressions by first

computation

2

22th of May, 2003 Optimizing Compilers 4

Example

• Common sub-
expressions: a+b, i+1

• Which sub-expression
compute the same
value?a=a+b;

c=a+b;
t=i+1;

if(d<a)

d=a+b;

i=i+1;
k=a+b;

if(i<100)

start

end

B1:

B2: B3:

B4:

22th of May, 2003 Optimizing Compilers 5

• Given a statement s: w = x y;

where x y is available at s, the computation within s can
be eliminated.

• Find statements of the form t: v = x y; such that the
path from s to t does not compute x y or define x or y.

Approach

v = x y;

w = x y;

v = z;

z = x y;
w = z;CSE

s: s:

t: t:

22th of May, 2003 Optimizing Compilers 6

DFA Equations

• Gen/Kill-Equations (i.e. forward & intersection)
AeOut(start) = {}
AeIn(n) = p preds(n) AeOut(p)
AeOut(n) = [In(n)-Kill(n)] Eval(n)

• DFA sets
– AeIn(n): set of available expressions at entry
– AeOut(n): set of available expressions at exit

• Local sets
– Eval(n): set of expressions evaluated in block n
– Kill(n): set of expressions killed in block n

3

22th of May, 2003 Optimizing Compilers 7

Example (cont’d)

{}

{i+11,i+12}

{}

{a+b1,a+b2,
a+b3,a+b4}

{}

{}

Kill

{}end

{a+b4}B4

{a+b3}B3

{}B2

{a+b1,i+11}B1

{}Start

EvalNode

Eval/Kill Sets

a=a+b2;

c=a+b1;
t=i+11;

if(d<a)

d=a+b3;

i=i+12;
k=a+b4;

if(i<100)

start

end

B1:

B2: B3:

B4:

22th of May, 2003 Optimizing Compilers 8

Example (cont’d)

{}

{a+b4}

{a+b1,i+11,a+b3}

{i+11}

{a+b1,i+11}

{}

AeOut

{}end

{i+11}B4

{a+b1,i+11}B3

{a+b1,i+11}B2

{}B1

{}Start

AelnNode

DFA Sets

a=a+b2;

c=a+b1;
t=i+11;

if(d<a)

d=a+b3;

i=i+12;
k=a+b4;

if(i<100)

start

end

B1:

B2: B3:

B4:

22th of May, 2003 Optimizing Compilers 9

Example (cont’d)

CSE
a=a+b2;

c=a+b1;

t=i+11;

if(d<a)

d=a+b3;

i=i+12;

k=a+b4;
if(i<100)

start

end

B1:{}

B2:{a+b1,i+11} B3: {a+b1,i+11}

B4:{i+11}
a=x;

x=a+b;

c=x;

y=i+1;
t=y;

if(d<a)

d=x;

i=y;
k=a+b;

if(i<100)

start

end

B1:

B2:
B3:

B4:

4

22th of May, 2003 Optimizing Compilers 10

Implementation

• Every computation is potentially reused
– consider computations which occur at least twice for

keeping compile-time small.

• Watch out!
– Two instances of computations in a function might

compute different things

• Passes:
1. Compute Eval/Kill sets (consider precedence)
2. Run gen/kill solver (forward & intersection problem)
3. Perform transformation (scan through basic block)

• at least one instance must reach another instance

• Iterative approach to eliminate all CSE!

22th of May, 2003 Optimizing Compilers 11

Partial Redundancy Elimination

• Combines global common sub-expression elimination and
loop-invariant code motion.

• Partial Redundancy is a computation that is done more than
once on some incoming path.

• Example:

• PRE: inserts and deletes computation for minimizing partial
redundancies!

x:=a+b

y:=a+b

22th of May, 2003 Optimizing Compilers 12

Code Motion Transformation

• Transformation
– introduce a new temporary variable for computation
– delete redundant computations
– insert computations to preserve program semantics

• Example

x:=a+b

y:=a+b

Input Program:

h:=a+b

x:=h h:=a+b

y:=h

Optimised Program:

5

22th of May, 2003 Optimizing Compilers 13

Classical PRE

• Uni-directional approaches
– Busy Code Motion / Lazy Code Motion

(J. Knoop, O. Rüthing, B. Steffen)
– Problems: critical edges

• Bi-directional approaches
– Morel and Renvoise
– Problems: convergence

• Importance
– Many optimisations based on PRE

• load/store optimisation,
• communication optimisation, etc.

22th of May, 2003 Optimizing Compilers 14

Copy Propagation(CP)

Goal:
Propagate values of copy assignments

Approach:
1. Global Analysis: DFA for analyzing whether propagation

is valid.

2. Transformation: replace copy value

22th of May, 2003 Optimizing Compilers 15

a=c;

c=i;

d=c;

if(d<a)

Example

• Copy-Assignments:
c=i; a=c; d=c;

• Which copy values can
be replaced?

• Which copy assignment
can be eliminated?

d=4;

b=d+c;
i=i+a;

if(i<100)

start

end

6

22th of May, 2003 Optimizing Compilers 16

• Given a copy assignment s: w = x;
• Given another statement t: v = w y;

• If s reaches t and no other definition of w reaches t and there
is no definition of x on any path from s to t then:

Approach

v = w y;

w = x;

v = x y;

w = x;

CP

s: s:

t: t:

22th of May, 2003 Optimizing Compilers 17

DFA Equations

• Gen/Kill-Equations (i.e. forward & intersection)
CoOut(start) = {}
CoIn(n) = p preds(n) CoOut(p)
CoOut(n) = [CoIn(n)-Kill(n)] Copy(n)

• DFA sets
– CoIn(n): set of copies at entry of n
– CoOut(n): set of copies at exit of n

• Local sets
– Copy(n): set of copies generated in n

– Kill(n): set of copies killed in n

22th of May, 2003 Optimizing Compilers 18

d3:a=c;

d1:c=i;

d2:d=c;
if(d<a)

Example (cont’d)

d=4;

b=d+c;
i=i+a;

if(i<100)

start

end

{}

{d1}

{d2}

{}

{d3}

{}

Kill

{}end

{}B4

{}B3

{d3}B2

{d1,d2}B1

{}Start

CopyNode

Gen/Kill Sets

B1:

B2: B3:

B4:

7

22th of May, 2003 Optimizing Compilers 19

d3:a=c;

d1:c=i;

d2:d=c;
if(d<a)

Example (cont’d)

d=4;

b=d+c;
i=i+a;

if(i<100)

start

end

{}

{}

{d1}

{d1,d2,d3}

{d1,d2}

{}

CoOut

{}end

{d1}B4

{d1,d2}B3

{d1,d2}B2

{}B1

{}Start

CoInNode

DFA Sets

B1:

B2: B3:

B4:

22th of May, 2003 Optimizing Compilers 20

d3:a=c;

d1:c=i;

d2:d=c;
if(d<a)

Example (cont’d)

d=4;

b=d+c;
i=i+a;

if(i<100)

start

end

B1:

B2: B3:

B4:

{}

{d1,d2} {d1,d2}

{d1}

Copy
Prop.

a=i;

c=i;

d=i;

if(d<a)

d=4;

b=d+i;
i=i+a;

if(i<100)

start

end

B1:

B2: B3:

B4:

22th of May, 2003 Optimizing Compilers 21

Optimisation Approach

• Approach

• To capture all copies =>
iterative approach with dead computations

• Iterate as long as everything is stable

further changes
no changes

Copy Propagation

Dead Computation

CSE

8

22th of May, 2003 Optimizing Compilers 22

Stop

• Next lecture: 5.6.2003, 13:45 – 14:45

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

