
1

Optimizing Compilers
6th Lecture

Bernhard Scholz

Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

15th of May, 2003 Optimizing Compilers 2

Outline

Machine-independent optimizations based on DFA

– Dead Computations based on Live Variable Analysis

– Constant Propagation

15th of May, 2003 Optimizing Compilers 3

Dead Computations

Goal:
Eliminate useless computations in basic blocks

Approach:
1. Global Analysis: DFA to determine useless

computations
• Compute Live Variable of all variables in a CFG
• Dual set of live variables => dead variables!

2. Transformation: Remove useless computations

2

15th of May, 2003 Optimizing Compilers 4

if(X<10)

If(X<0)

Example (cont‘d)

• three variables: X, Y, Z

• computation of Z in B2 is
not used

• analysis required to
determine whether
variable X and Y are alive

• if variable is not alive after
definition => remove it.

• What about Y?

X=X+1;
Z=2*Y;

Y=10;

X=1;

start

end

B1

B4

B3B2

15th of May, 2003 Optimizing Compilers 5

Liveness Analysis

• Definitions of v can be eliminated if variable v is not
alive on the path between definition and exit node.

• Alive-Information is computed by Data Flow Analysis

• Alive-Problem is a Gen/Kill Problem

• Conservative Assumptions
- functions can access globals and

can make them alive
- OIL does not have global variables!

15th of May, 2003 Optimizing Compilers 6

Liveness Analysis(2)

• How to compute Alive information?
1. Find type for Live Variable Problem

– gen/kill problem
– backward problem

– union problem

2. Get gen/kill sets for basic blocks
– use(n) set is the set of variables that are used in n, i.e. gen

– def(n) set is the set of variables that are killed in n, i.e. kill

3. Compute solution with DFA Solver
– a variable is alive at the entry of n if it is alive at the exit and

not in def(n) or in use(n).

4. Propagate solution for all statement
(DFA solution only at an entry or exit of a basic block).

3

15th of May, 2003 Optimizing Compilers 7

Liveness Analysis(3)

• DFA information
subset of variables V={v1,v2,..}

• Equations of Live Variables
LvOut(end) = {}
LvIn(n)= p succs(n) LvOut(p)
LvOut(n) = [LvIn(n)-def(n)] use(n)

where def(n) is the set of variables which are defined in basic
block n and use(n) are set of variables which are used in n.

• Meaning of the Solution
LvIn(n): alive variables at exit of n
LvOut(n): alive variables at entry of n
[V - LvOut(n)]: set of dead variables at entry
[V - LvIn(n)]: set of dead variables at exit

15th of May, 2003 Optimizing Compilers 8

Computation of Use/Def

For all statements in basic block n:
– Insert variable to use(n),

if variable occurs in an expression of n (i.e. read-access).
– Insert variable to def(n),

if variable is assigned a value of n (i.e. write-access).

Problem
– def-use situations in basic block
– For example X=1; Y=X+1;
– without precedence variable X would be alive before X=1

15th of May, 2003 Optimizing Compilers 9

Algorithm for Use/Def

for all n N-{start,end}
for all statements s in n
if s = <v=expr;> then

def(n) = def(n) {v}
use(n) = use(n)-{v}

endif
for all v used in s

use(n) = use(n) {v}
def(n) = def(n)-{v}
endfor

endfor

endfor

Algorithm
• Initialization

use(n)=def(n)=

• Process statements in
reverse order

4

15th of May, 2003 Optimizing Compilers 10

Example

{}

{}

{}

{X,Z}

{}

{}

def

{}end

{X}B4

{X}B3

{Y}B2

{X}B1

{}Start

useNode

Live Variable Problem Use/Def Sets

if(X<10)

if(X<0)

X=X+1;Z=2*Y;

Y=10;

X=1;

start

end

B1

B4

B3B2

• Variable X is defined
and used in B2!

15th of May, 2003 Optimizing Compilers 11

Example(2)

{}

{X,Y}

{X,Y}

{X,Y}

{X,Y}

{X,Y}

LvOut

{}end

{X,Y}B4

{X,Y}B3

{X,Y}B2

{X,Y}B1

{X,Y}Start

LvInNode

Live Variable Problem DFA Solution

if(X<10)

if(X<0)

X=X+1;Z=2*Y;

Y=10;

X=1;

start

end

B1

B4

B3B2

• Variable Z is not alive
• What about Y?

15th of May, 2003 Optimizing Compilers 12

Removing Dead Computations
for all n N-{start,end}
alive = LvIn(n)

for all statements s in n
if s = <v=expr;> then

if v alive then
remove statement s

endif
alive = alive – {v}

endif

if statement not removed
for all v used in s

alive = alive {v}
endfor

endfor

endfor

Algorithm

• Process statements in
reverse order!

• Uses DFA Solution

• Take care of local dead
computations

• Cannot remove transitive
dead computations =>
several iterations
required.

5

15th of May, 2003 Optimizing Compilers 13

Statement Removal

• Statement may contain function calls
• Without knowing side-effects of function,

call must be preserved
• Example (conservative approach):

• For complete removal:
functions must be side-effect free
(for OIL: no write-access to memory (*(x)=...;)

t = f(A)+f(B);

f(A); f(B);

15th of May, 2003 Optimizing Compilers 14

• Approach

• Eliminate unreachable basic blocks beforehand

• Captures transitive dead computations in several
iterations

Dead Code Elimination

Dead Computations

found
not found

Unreachable Basic Blocks

15th of May, 2003 Optimizing Compilers 15

Example (cont‘d)
Original Code:

if(X<10)

if(X<0)

X=X+1;
Z=2*Y;

Y=10;

X=1;

start

end

B1

B4

B3B2

if(X<10)

if(X<0)

X=X+1;Y=10;
X=1;

start

end

B1

B4

B3B2

First Iteration:

6

15th of May, 2003 Optimizing Compilers 16

Example (cont‘d)
Last Iteration:

if(X<10)

if(X<0)

X=X+1;X=1;

start

end

B1

B4

B3B2

15th of May, 2003 Optimizing Compilers 17

Constant Propagation(CP)

Goal:
Propagate constant values of variables for evaluating
expressions at compile time

Approach:
1. Determine which variables are constant at a point
2. Replace variables by their constant value
3. Evaluate and simplify expressions at compile-time

Analysis-Details:
– constant propagation problem is not distributive
– cannot be simply mapped to gen/kill-problems

15th of May, 2003 Optimizing Compilers 18

A=3;
B=2;

Example

C=A+B;

A=2;

B=3;

start

end

B1

B4

B2 B3

• problem is not distributive

• Solution of (B2 B4)
(B3 B4) (B2 B3) B4

• two paths needs to be
propagated to B4 for
folding C (=5)

• with loops infinite
different paths =>
undecideable in general

• not an easy problem
• find sufficient solution

(maximum fixpoint)

meet before
B4 => A,B are
no constants
after meet!

7

15th of May, 2003 Optimizing Compilers 19

• Simple Constants

• Copy Constants

• Complex Constants

Types of Constant Variables

X=10;; Z=A*X;

X=10;; Z= A*10;

Y=5;X=Y;; Z=A*X;

Y=5;X=5;........; Z= A*5;

Y=5;X=2*Y;; Z=A*X;

Y=5;X=10;........; Z= A*10;

15th of May, 2003 Optimizing Compilers 20

• Number lattice

– Bottom: not a constant
– Top: still unknown (either

constant or not).

DFA for CP

?

... –2 –1 0 1 2 ...

Dataflow Information:
• variable environment

env={(v1, c1),(v2, c2),.....}

• variable is associated with an
element of number lattice.

• not a simple bit-problem
anymore!

• more complex operations are
required

15th of May, 2003 Optimizing Compilers 21

• Meet operator of number lattice
– Numbers c1,c2 and c1 c2

– c1 c2=

– ? c=c

– c=

• Meet operator of variable environment
– join values of same variables

enva envb = {(v1, c1
a c1

b),(v2, c2
a c2

b),.....}

Number Lattice

?c2c1?

c2c2c2

c1c1c1

?c2c1

8

15th of May, 2003 Optimizing Compilers 22

f(C);B=2;

Example

C=A+B;

A=2;

B=A;

start

end

B1

B4

B2 B3

Initialization
start: {(A,),(B,), (C,)}

others: {(A, ?),(B, ?), (C, ?)}

Solve iteratively

In/Out solutions for basic blocks
out(start): {(A,),(B,), (C,)}

in(B1): {(A,),(B,), (C,)}

out(B1): {(A, 2),(B, 2), (C,)}

in(B2): {(A, 2),(B, 2), (C,)}

out(B2): {(A, 2),(B, 2), (C,)}

in(B3): {(A, 2),(B, 2), (C,)}

out(B3): {(A, 2),(B, 2), (C,)}

in(B4): {(A, 2),(B, 2), (C,)}

out(B4): {(A, 2),(B, 2), (C,)}

in(end): {(A, 2),(B, 2), (C, 4)}

15th of May, 2003 Optimizing Compilers 23

Stop

• Next lecture: 22.5.2003, 13:45 – 14:45

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

