Optimizing Compilers

\qquad
5th Lecture

Bernhard Scholz
Institut f. Computersprachen
Argentinierstr. 8
scholz@complang.tuwien.ac.at

Outline
- Introduction
- Basic Concepts
- Data Flow Equations
- Solver

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction

\qquad

- Data flow analysis determines static properties of programs
- Data flow analysis is a unified theory
- Provides information for global analysis
- Examples of DFA Problems:
- Register Allocation: Keep two non-overlapping temporaries in the same register.
- Common-Subexpression-Elimination: Eliminate expressions which are computed more than once.
- Constant Folding: Compute constant expressions at compile-time.
- Dead-Code Elimination: Delete a useless computation
- "DFA solutions are pessimistic"
- DFA based on CFG and node properties

Reaching Definition

- Assignment of variable can directly affect the value at another point
- Unambiguous Definition d of variable v

: v = <expression>;

- Definition reaches a statement u if all paths from d to u does not contain any unambiguous statements of v
- Functions can have side-effects to variables (not in miniC!)

Liveness Analysis

- Any use of variable v makes v alive, and any definition kills v.
- Register allocation:

Liveness for determining live ranges.

- Dead Code Elimination:

Definitions of v can be eliminated if variable v is not alive on the path between definition and exit node.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Constant Propagation

- Assignment of a variable v with a constant value c
- Variable v can be replaced in a statement u if there is no other definition of v that reaches u.
- Replacement:

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic Concepts

- Data flow information represented as semi-lattice
- Elements of lattice abstract properties of program \qquad
- Various types of lattices (bit-vector, constants,...)
- Lattice induces partial ordered set(POR) \qquad
- Data flow functions model effect of basic blocks
- Data flow equations
- relations of control flow and effects of basic blocks
- Data flow solutions \qquad
\qquad
\qquad

Semilattices

- Semi-lattice L for representing DFA information
- L is an algebraic structure $L\langle\wedge, \perp$,? \rangle
\qquad
- L consists of a set of values: $L=\left\{x_{1}, x_{2}, \ldots\right\}$
- L has a meet operator $z=x \wedge y$, where $x, y, z \in L$
\qquad
- Two unique elements of $\mathrm{L}: \perp$, ? (bottom,top)
- L might have infinite number of elements \qquad
- Height of semilattice is finite
- L can be an algebraic product: \qquad
$L=L_{l} \times L_{2} \times \ldots \times L_{k}$
\qquad
\qquad

Properties of Meet Operator

\qquad

- For all $x, y \in L$ there exists a unique $z \in L$
$z=x \wedge y$ (closure) \qquad
- For all $x, y \in L$:
$x \wedge y=y \wedge x$ (commutativity) \qquad
- For all $x, y, z \in L$.
$(x \wedge y) \wedge z=x \wedge(y \wedge z)$ (associativity)
- For all $x \in L$: \qquad
$(x \wedge \perp)=\perp$
- For all $x \in L$: \qquad
$(x \wedge ?)=x$
\qquad
\qquad

Partial Order

- Meet operator induces a partial order (\leq) on values in L :
$x \leq y \Leftrightarrow x \wedge y=x$
- Interpretation: If $x \leq y$ then value x has less information than value y.
\qquad
- Partial order has following properties: \qquad
- Transitivity (if $x \leq y$ and $y \leq z$, then $x \leq z$)
- Antisymmetry (if $x \leq y$ and $y \leq x$, then $x=y$)
- Reflexivity (for all $x, x \leq x$)
- Strict partial order: $x<y \Leftrightarrow x \wedge y=x$ and $x \neq y$

Examples of Semilattices

Constant Propagation

- Infinite number of elements
- Top: Any constant
- Bottom: not a constant

- Meet operator: set union
- Top: no RD
- Bottom: all RD

Data Flow Functions

- Effect of basic blocks is represented as function $f: L \rightarrow L$
- Useful properties for f
- Distributivity: $f(x \wedge y)=f(x) \wedge f(y)$
- Monotoncity: $f(x \wedge y) \leq f(x) \wedge f(y)$
- Closure: $f(g(\mathrm{x}))=f g(\mathrm{x})$
- Mapping between nodes in CFG and functions $M(n)[x]=f_{n}(\mathrm{x})$
where f is function of node n
- Basic blocks with no effects: identity function
- Mapping extension for paths:
$M\left(\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle\right)[x]=f_{k} \ldots . f_{2} f_{l}(x)$

Meet Over All Path Solution

- Forward/Backward Problem
- E.g., reaching definition \Rightarrow forward problem liveness analysis \Rightarrow backward problem
- MOP solution for a forward problem $M O P(n)=\wedge_{\pi \in P a t h(s t a r n, n)} M(\pi)[c]$
- MOP solution for a backward problem $M O P(n)=\wedge_{\pi \in R_{\text {everseseath }}(\text { end }, n)} M(\pi)[c]$
- c is prescribed information for start node
- MOP is the composition of data flow functions along all possible paths by propagating c and applying the meet operator.

Data Flow Equations

\qquad

- How can MOP be computed in finite steps?
- Data flow equations describe control flow and effect of \qquad basic blocks

Forward problems

Backward problems
$\operatorname{Out}($ start $)=\mathrm{c} \quad \operatorname{Out}($ end $)=\mathrm{c}$
$\operatorname{In}(n)=\wedge_{p \in \operatorname{rreds}(n)} \operatorname{Out}(p) \quad \operatorname{In}(n)=\wedge_{s \in \operatorname{succs}(n)} \operatorname{Out}(s)$ $\operatorname{Out}(n)=M(n)[\operatorname{In}(n)] \quad \operatorname{Out}(n)=M(n)[\operatorname{In}(n)]$

Lemma: If monotone problem is distributive

[$f(x \wedge y)=f(x) \wedge f(y)$], then maximal fixpoint of data flow equations is equal to MOP
\qquad
\qquad

Gen/Kill Functions

- Most problems have a power set of a data flow fact set D as semilattice $\left(L=2^{D}\right)$
- Meet operator: set-union, set-intersection
- DFA computes which facts hold at a program point
- Functions represented by two constant sets
- gen-set gen (n) of a node n (generated data facts)
- kill-set kill(n) of a node n (killed data facts)
- Algebraic relation: $M(n)[x]=(x-k i l l(n)) \cup \operatorname{gen}(n)$
- Bit-vectors

Dataflow facts	$d_{1} d_{2} d_{3} d_{4}$
Bitvector:	$0110 \Leftrightarrow\left\{d_{2}, d_{3}\right\}$

Example: Data Flow Equations

Example cont'd

CFG Gen/Kill sets and data flow equations

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solvers

- How to solve data flow equations?
- Iterative Approaches
- Algebraic Approaches
- Which approach is better?
- Algebraic properties of DFA
- Complexity of solver
- Implementation effort
- Interprocedural/Intraprocedural Analysis

Iterative Solvers

- Solution Criteria
- Semilattice with finite height
- DFA problem must be monotone
- For obtaining MOP problem must be distributive
- Iterative approach (Fix-Point-Algorithm)
- start with a non-solution for each node out $(n)=$?
- Iterate computation of Out-values in arbitrary order
- Stop if Out-values are stable for all nodes

Algorithm for Gen/Kill-Problems

\qquad

- Meet Operator \wedge
- union($(\mathrm{U}$) or
intersection($\cap)$
- Initialization for \cup
- Out(start)=c
- $\operatorname{In}(u)=\{ \}$
- Out $(u)=G e n(u)$
- Initialization for \cap
- Out(start)=c
- $\operatorname{In}(u)=L$
- Out $(u)=(L-K i l l(u)) \cup G e n(u)$
- Backward problems
- preds \Rightarrow succs

Algorithm
Repeat \qquad
s = true;
for all $\mathbf{u} \in \mathbf{N}$-\{start \} do
for all $v \in$ preds (u) do
$\operatorname{In}(u)=\operatorname{In}(u) \wedge O u t(v)$
endfor
$\mathrm{X}=(\operatorname{In}(\mathrm{u})-\operatorname{Kill}(\mathrm{u}))$
\cup Gen (u)
$s=s$ and [Out $(u)=X]$
Out (u) $=\mathbf{x}$
endfor

- Complexity: $O\left(n^{3}\right)$
until s;
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
- Next lecture: 15.5.2003, 13:45-14:45 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

