
1

Optimizing Compilers
5th Lecture

Bernhard Scholz

Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

Outline

• Introduction

• Basic Concepts

• Data Flow Equations

• Solver

Introduction
• Data flow analysis determines static properties of

programs
• Data flow analysis is a unified theory
• Provides information for global analysis
• Examples of DFA Problems:

– Register Allocation: Keep two non-overlapping
temporaries in the same register.

– Common-Subexpression-Elimination: Eliminate
expressions which are computed more than once.

– Constant Folding: Compute constant expressions at
compile-time.

– Dead-Code Elimination: Delete a useless computation
• “DFA solutions are pessimistic”
• DFA based on CFG and node properties

2

Reaching Definition
• Assignment of variable can directly affect the value at

another point
• Unambiguous Definition d of variable v

• Definition reaches a statement u if all paths from d to u
does not contain any unambiguous statements of v

• Functions can have side-effects to variables
(not in miniC!)

d: v = <expression>;

d2: v=…

…v…d1 : v=…

Example: Reaching Definition

• Unambiguous definitions
d1 and d2 of variable v

• Might reach d1 node B3?

• Might reach d2 node B3?

• Paths and effects of basic
blocks influence solution

• Forward problem

start

end

B1

B4

B2 B3

Liveness Analysis

• Any use of variable v makes v alive, and any
definition kills v.

• Register allocation:
Liveness for determining live ranges.

• Dead Code Elimination:
Definitions of v can be eliminated if variable v is not
alive on the path between definition and exit node.

3

Example: Liveness Analysis

t=v2;

v2=1;

v1=a;

v2=b;

start

end

B1

B5

B3

B4

• Use of variable v2 in B5 makes
v2 alive.

• v2 is killed in B3
• v2 is not alive in B2
• v2 is alive in B4

• Liveness information is
propagated backwards

• v1 is defined but never alive
• v1 might be eliminated!

B2

Constant Propagation
• Assignment of a variable v with a constant value c

• Variable v can be replaced in a statement u if there is
no other definition of v that reaches u.

• Replacement:

v = c;

u: t = …v…;

u: t = …c…;

t=v1+v2;

v1=1;

v1=10;

v2=20;

Example: Constant Propagation

• Assignments with constants in B1

• Assignment with constant in B2

• Has variable t a constant value?

• What is if t would become a
constant?

start

end

B1

B4

B2 B3

4

Basic Concepts
• Data flow information represented as semi-lattice
• Elements of lattice abstract properties of program
• Various types of lattices (bit-vector, constants,...)
• Lattice induces partial ordered set(POR)
• Data flow functions model effect of basic blocks
• Data flow equations
• relations of control flow and effects of basic blocks
• Data flow solutions

Semilattices

• Semi-lattice L for representing DFA information
• L is an algebraic structure L , ,?

• L consists of a set of values: L={x1, x2,...}

• L has a meet operator z=x y, where x,y,z L

• Two unique elements of L: , ? (bottom,top)

• L might have infinite number of elements
• Height of semilattice is finite
• L can be an algebraic product:

L= L1 L2 Lk

Properties of Meet Operator

• For all x,y L there exists a unique z L
z=x y (closure)

• For all x,y L:
x y = y x (commutativity)

• For all x,y,z L:
(x y) z = x (y z) (associativity)

• For all x L:
(x) =

• For all x L:
(x ?) = x

5

Partial Order
• Meet operator induces a partial order () on values in L:

x y x y = x

• Interpretation: If x y then value x has less information
than value y.

• Partial order has following properties:
– Transitivity (if x y and y z, then x z)
– Antisymmetry (if x y and y x, then x = y)
– Reflexivity (for all x, x x)

• Strict partial order: x<y x y=x and x y

Examples of Semilattices
Constant Propagation

?

... –2 –1 0 1 2 ...

Reaching Definition

={d1,d2,d3}

?={}

{d1,d2} {d1,d3} {d2,d3}

{d1} {d2} {d3}

• Infinite number of elements
• Top: Any constant
• Bottom: not a constant

• Meet operator: set union
• Top: no RD
• Bottom: all RD

Data Flow Functions
• Effect of basic blocks is represented as function f:L L

• Useful properties for f
– Distributivity: f(x y) = f(x) f(y)

– Monotoncity: f(x y) f(x) f(y)

– Closure: f (g(x)) = f g(x)

• Mapping between nodes in CFG and functions
M(n)[x] = fn(x)

where f is function of node n

• Basic blocks with no effects: identity function
• Mapping extension for paths:

M(n1,n2,..., nk)[x] = fkf2 f1 (x)

6

Meet Over All Path Solution
• Forward/Backward Problem

• E.g., reaching definition forward problem
liveness analysis backward problem

• MOP solution for a forward problem

MOP(n) = Path(start,n) M()[c]

• MOP solution for a backward problem

MOP(n) = ReversePath(end,n) M()[c]

• c is prescribed information for start node
• MOP is the composition of data flow functions along

all possible paths by propagating c and applying the
meet operator.

d2: v=…

d1 : v=…

Example: MOP
• Reaching Definition
• Data flow information: L=2D and

D={d1,d2}

• Meet Operator: set-union
• MOP describe solution of infinite

number of paths
• MOP for B1

M()[<start,B1>](c)

M()[<start,B1,B3,B4,B1>](c)

M()[<start,B1,B2,B4,B1>](c)
....

start

end

B1

B4

B2 B3

Data Flow Equations
• How can MOP be computed in finite steps?
• Data flow equations describe control flow and effect of

basic blocks

M(n)

In(n)

Out(n)

Out(start) = c

In(n)= p preds(n) Out(p)
Out(n) = M(n)[In(n)]

Out(end) = c

In(n)= s succs(n) Out(s)
Out(n) = M(n)[In(n)]

Forward problems Backward problems

Lemma: If monotone problem is distributive
[f(x y) = f(x) f(y)], then maximal fixpoint of data flow
equations is equal to MOP

7

Gen/Kill Functions
• Most problems have a power set of a data flow fact set D

as semilattice (L=2D)

• Meet operator: set-union, set-intersection
• DFA computes which facts hold at a program point

• Functions represented by two constant sets
– gen-set gen(n) of a node n (generated data facts)
– kill-set kill(n) of a node n (killed data facts)

• Algebraic relation: M(n)[x] = (x-kill(n)) gen(n)

• Bit-vectors

0110Bitvector:

d1 d2 d3 d4
Dataflow facts

{d2,d3}

d3 : w=…

d2: v=…

d1 : v=…

Example: Data Flow Equations

start

end

B1

B4

B2 B3

{}{}end

{d1}{d2}B4

{}{d3}B3

{d2}{d1}B2

{}{}B1

{}{}Start

KillGenNode
Reaching Definitions Gen/Kill Sets

Example cont‘d

{}

{d1}

{}

{d2}

{}

{}

Kill

{}

{d2}

{d3}

{d1}

{}

{}

Gen

In(B4)Out(B4)end

[In(B4)- {d1}] {d2}Out(B2) Out(B3)B4

In(B3) {d3}Out(B1)B3

[In(B2)- {d2}] {d1}Out(B1)B2

In(B1)Out(start) Out(B4)B1

{}Start

OutInNode

Gen/Kill sets and data flow equations

start

end

B1

B4

B2 B3

CFG

8

Solvers

• How to solve data flow equations?
– Iterative Approaches
– Algebraic Approaches

• Which approach is better?
– Algebraic properties of DFA
– Complexity of solver
– Implementation effort
– Interprocedural/Intraprocedural Analysis

Iterative Solvers
• Solution Criteria

– Semilattice with finite height
– DFA problem must be monotone
– For obtaining MOP problem must be distributive

• Iterative approach (Fix-Point-Algorithm)
– start with a non-solution for each node

Out(n)=?
– Iterate computation of Out-values in arbitrary order
– Stop if Out-values are stable for all nodes

Algorithm for Gen/Kill-Problems

Repeat

s = true;

for all u N-{start} do

for all v preds(u) do

In(u)=In(u) Out(v)
endfor

X=(In(u)-Kill(u))

Gen(u)

s = s and [Out(u) = X]

Out(u) = X

endfor

until s;

Algorithm• Meet Operator
– union() or

intersection()

• Initialization for
– Out(start)=c

– In(u)={}

– Out(u)=Gen(u)

• Initialization for
– Out(start)=c

– In(u)=L

– Out(u)=(L-Kill(u)) Gen(u)

• Backward problems
– preds succs

• Complexity: O(n3)

9

Example Reaching Definitions

{d2,d3}

{d1,d2,d3}

{d2,d3}

{d2,d3}

{d2,d3}

{}

Ink

{d2,d3}

{d2,d3}

{d2,d3}

{d1,d3}

{d2,d3}

{}

Outk

{}

{d2}

{d3}

{d1}

{}

{}

Out0

{}

{}

{}

{}

{}

{}

In0

end

B4

B3

B2

B1

Start

Node

d3:

d2:

d1 :

start

end

B1

B4

B2 B3

Iteration StepsCFG

• Stable after two iterations
• Solution equal to MOP

Stop

• Next lecture: 15.5.2003, 13:45 – 14:45

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

