Optimizing Compilers 5th Lecture

Bernhard Scholz Institut f. Computersprachen Argentinierstr. 8 scholz@complang.tuwien.ac.at

Outline

- Introduction
- Basic Concepts
- Data Flow Equations
- Solver

Introduction

- Data flow analysis determines *static* properties of programs
- Data flow analysis is a unified theory
- Provides information for global analysis
- Examples of DFA Problems:
 - <u>Register Allocation</u>: Keep two non-overlapping temporaries in the same register.
 - <u>Common-Subexpression-Elimination</u>: Eliminate expressions which are computed more than once.
 - <u>Constant Folding</u>: Compute constant expressions at compile-time.
 - Dead-Code Elimination: Delete a useless computation
- "DFA solutions are pessimistic"
- DFA based on CFG and node properties

Reaching Definition

- Assignment of variable can directly affect the value at another point
- Unambiguous Definition *d* of variable *v*

d: $\mathbf{v} = \langle \mathbf{expression} \rangle$;

- Definition reaches a statement *u* if all paths from *d* to *u* does not contain any unambiguous statements of *v*
- Functions can have side-effects to variables (not in miniC!)

Liveness Analysis

- Any use of variable *v* makes *v* **alive**, and any definition kills *v*.
- Register allocation: Liveness for determining live ranges.
- Dead Code Elimination: Definitions of v can be eliminated if variable v is not alive on the path between definition and exit node.

Basic Concepts

- · Data flow information represented as semi-lattice
- · Elements of lattice abstract properties of program
- Various types of lattices (bit-vector, constants,...)
- Lattice induces partial ordered set(POR)
- Data flow functions model effect of basic blocks
- Data flow equations
- relations of control flow and effects of basic blocks
- · Data flow solutions

Semilattices

- Semi-lattice L for representing DFA information
- L is an algebraic structure $L\langle \wedge, \perp, ? \rangle$
- L consists of a set of values: L={x₁, x₂,...}
- L has a meet operator $z=x \land y$, where $x,y,z \in L$
- Two unique elements of L: \perp , ? (bottom,top)
- L might have infinite number of elements
- Height of semilattice is finite
- L can be an algebraic product: $L = L_1 \times L_2 \times \times L_k$

Properties of Meet Operator

- For all *x*, *y* ∈*L* there exists a unique *z* ∈*L z*=*x* ∧ *y* (closure)
- For all *x*,*y* ∈*L*:
 - $x \wedge y = y \wedge x$ (commutativity)
- For all *x*,*y*,*z* ∈*L*:
- $(x \land y) \land z = x \land (y \land z)$ (associativity)
- For all *x* ∈*L*:
 (*x*∧⊥) = ⊥
- For all *x* ∈*L*:
 (*x*∧?) = *x*

Partial Order

- Meet operator induces a partial order (\leq) on values in *L*: $x \leq y \Leftrightarrow x \land y = x$
- Interpretation: If $x \le y$ then value x has less information than value y.
- Partial order has following properties:
 - Transitivity (if $x \le y$ and $y \le z$, then $x \le z$)
 - Antisymmetry (if $x \le y$ and $y \le x$, then x = y)
 - Reflexivity (for all $x, x \le x$)
- Strict partial order: $x < y \Leftrightarrow x \land y = x$ and $x \neq y$

Data Flow Functions

- Effect of basic blocks is represented as function $f:L \rightarrow L$
- Useful properties for *f*
 - Distributivity: $f(x \land y) = f(x) \land f(y)$
 - Monotoncity: $f(x \land y) \le f(x) \land f(y)$
 - Closure: $f(g(\mathbf{x})) = fg(\mathbf{x})$
- Mapping between nodes in CFG and functions $M(n)[x] = f_n(\mathbf{x})$ where f is function of node n
- Basic blocks with no effects: identity function
- Mapping extension for paths:
- $M(\langle n_1, n_2, \dots, n_k \rangle)[x] = f_k \dots f_2 f_1(x)$

Meet Over All Path Solution

- Forward/Backward Problem
- E.g., reaching definition \Rightarrow forward problem liveness analysis \Rightarrow backward problem
- MOP solution for a forward problem

 $MOP(n) = \bigwedge_{\pi \in Path(start,n)} M(\pi)[c]$

MOP solution for a backward problem

 $MOP(n) = \bigwedge_{\pi \in ReversePath(end,n)} M(\pi)[c]$

- c is prescribed information for start node
- MOP is the composition of data flow functions along all possible paths by propagating *c* and applying the meet operator.

Gen/Kill Functions

- Most problems have a power set of a data flow fact set D as semilattice $(L=2^{D})$
- Meet operator: set-union, set-intersection
- DFA computes which facts hold at a program point
- Functions represented by two constant sets

 gen-set gen(n) of a node n (generated data facts)
 kill-set kill(n) of a node n (killed data facts)
- Algebraic relation: $M(n)[x] = (x-kill(n)) \cup gen(n)$
- Bit-vectors

Example cont'd					
CFG Gen/Kill sets and data flow equations					
start	Node	Gen	Kill	In	Out
B1 B2 B3 B4	Start	{}	{}		{}
	B1	{}	{}	$Out(start) \cup Out(B4)$	In(B1)
	B2	$\{d_I\}$	$\{d_2\}$	Out(B1)	$[In(B2)- \{d_2\}] \cup \{d_I\}$
	B3	$\{d_3\}$	{}	Out(B1)	$In(B3) \cup \{d_3\}$
	B4	$\{d_2\}$	$\{d_I\}$	$Out(B2) \cup Out(B3)$	$[\mathrm{In}(\mathrm{B4})\text{-} \{d_1\}] \cup \{d_2\}$
	end	{}	{}	Out(B4)	In(B4)
end					

Solvers

- How to solve data flow equations?
 - Iterative Approaches
 - Algebraic Approaches
- Which approach is better?
 - Algebraic properties of DFA
 - Complexity of solver
 - Implementation effort
 - Interprocedural/Intraprocedural Analysis

Iterative Solvers

- Solution Criteria
 - Semilattice with finite height
 - DFA problem must be monotone
 - For obtaining MOP problem must be distributive
- Iterative approach (Fix-Point-Algorithm)
 start with a non-solution for each node
 - Out(n)=?
 - Iterate computation of Out-values in arbitrary order
 - Stop if Out-values are stable for all nodes

Stop

• Next lecture: 15.5.2003, 13:45 - 14:45

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.