
1

Optimizing Compilers
4th Lecture

Bernhard Scholz

Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

10th of April, 2003 Optimizing Compilers 2

Profiling

• Why ?
– to produce high-quality code based on runtime behavior
– superior to static analysis

• Different types of profiling
– profiling for control flow graphs

• basic block, edges, acyclic paths, whole program paths

– memory accesses (for cache analysis, etc.)
– domain specific profiles depending on language and

application

• In dynamic environments (e.g. JITs) profiling is
crucial!

10th of April, 2003 Optimizing Compilers 3

Feedback-Directed Optimization

2. Instrumented execution:

1. Instrumented compilation:

ProfileProfile
Optimized
program

Optimized
program

SourceSource
CompilerCompiler

CompilerCompiler Instrumented
executable

Instrumented
executable

SourceSource

3. Feedback compilation:

Instrumented
executable

Instrumented
executable ProfileProfile

InputInput

2

10th of April, 2003 Optimizing Compilers 4

FDO(2)
• Feedback-Directed Optimization is expensive to

implement.

• Instrumented program can be significantly slower
than optimized program.

• Solution: A small training input-set is used for
obtaining profile information.

• Problem: Which training set is representative?
– open research topic
– statistical techniques are currently employed
– several executables depending on input?

10th of April, 2003 Optimizing Compilers 5

ProgramProgram

Classical Approach

• Drawback:

• Classical Program Optimization:

transformation

static analysis

optimizer

Optimized
program

Optimized
program

OptimizerOptimizer

heavily rarely never

10th of April, 2003 Optimizing Compilers 6

ProgramProgram

Profiling Approach

• Advantage:

• Optimization based on profiling

transformation

profile based analysis

optimizer

Optimized
program

Optimized
program

OptimizerOptimizer

heavily rarely never

ProfileProfile

3

10th of April, 2003 Optimizing Compilers 7

Phase Ordering for Profiling

Problem: Transformations modify input program and
invalidate profile information. When and where should
be profiled?

lexical analysis

syntactic analysis

semantic analysis

translation

source
program

token
sequence

abstract
syntax tree

high-level
optimizations

code generation

assembly

low-level
ILlow-level

optimizations

Instrumentation?

10th of April, 2003 Optimizing Compilers 8

Phase Ordering(2)

• There is only one optimization that uses profile
information (e.g. Optimization k) and the optimization
is only performed once:

Optimization(k-1)

Instrumentation

......

Optimization(k)

Optimization(k-1)

Read Profile

......

Optimization(k)

Instrumentation Pass Optimization Pass

no profile info
is available.
(disable opt-

imization)

10th of April, 2003 Optimizing Compilers 9

Phase Ordering(3)

• Alternative: Transformations are profile-aware.
• Every transformation updates profile information

– Is that possible for all transformations?

high-level
optimizations

code generation

assembly

low-level
optimizations

Instrumentation Read Profile

instrumentation compile with profile-information

translation

4

10th of April, 2003 Optimizing Compilers 10

Basic Block Profiling

• Measure execution frequencies of basic blocks
• Instrumentation Pass

– introduce for each basic block a basic block counter
– increment counter when block is executed
– dump profile information at the end of program execution

• Optimization Pass
– read profile information
– annotate basic blocks with frequency information
– run optimization based on frequency information

• Applications
– code generation issues, register allocation, etc.

10th of April, 2003 Optimizing Compilers 11

Example

• Control Flow
– 9 times left branch
– 1 times right branch
– terminate loop

• Profiling Result

s:=a+b

if C1

t:=a+b a:=f(b)

if C2

1x

10x

9x 1x

10x

B5

B4

B3

B2

B1

Node

10

1

9

10

1

Freq

B1:

B2:

B3: B4:

B5:

10th of April, 2003 Optimizing Compilers 12

Implementation

• Implementation details:
– Introduce for each function an array

number __freq_<func>[NUM_BB];

– insert code for each basic block at the entry
__freq_<func>[<block>] ++;

where every basic block has a unique index.
– a finalize handler dumps the basic block information in a file.

• Problem: counter overflows might happen
– either 64-bit number (overflow is quite unlikely) or
– an overflow-check: if(f < (unsigned)(-1)) f++;

5

10th of April, 2003 Optimizing Compilers 13

Edge Profiling

• Measure execution frequencies of edges
• Instrumentation

– introduce for each jump (or transition between basic blocks)
a counter

– increment counter when edge (jump) is executed
– dump profile information at the end of program execution

• Edge profiling is more expensive than block profiling -
- still moderate costs!

• Edge profiling is superior to basic block profiling
– basic block counts can be derived
– more optimization applications, e.g. basic block reordering

10th of April, 2003 Optimizing Compilers 14

Flow Properties

• Frequency of a node / flow conditions

– the incoming flow amount must be equal to the outgoing one

• Refinement
– not all edges need be instrumented to determine flow
– speed up execution time of instrumented program

)(

)()(
upredv

uvfuf

)(

)()(
usuccv

vufuf

for all nodes v N\{start}

for all nodes u N\{end}

)()(

)()(
usuccvupredv

vufuvf for all nodes u N\{start,end}

10th of April, 2003 Optimizing Compilers 15

Refinement

Lemma: Not-measured edge frequencies can be
determined if not-measured edges form a spanning
tree.
Example:

1

2

43

5

7

6

1

2

43

5

7

6

CFG Spanning Tree

6

10th of April, 2003 Optimizing Compilers 16

Refinement(2)

• Flow Properties allow to compute not-measured
edges, i.e. linear equation system.

• Solved by substitution
• Example:

1

2

43

5

7

6

CFG

)()()(

)()()(

)()(

)()()(

)()(

)()(

711721

757117

6526

545365

4254

3253

bbfbbfbbf

bbfbbfbbf

bbfbbf

bbfbbfbbf

bbfbbf

bbfbbf
Equations:

10th of April, 2003 Optimizing Compilers 17

Static Profiling

• What is if feed-back loop cannot be set in place?

• Approach based on heuristics to assess frequencies

• Advantage:
– There is no phase-ordering problem, i.e. re-computations of

frequencies after every program transformation.

• Two phases:
1. Compute branch probabilities based on heuristics
2. Use Markov model to compute frequencies

10th of April, 2003 Optimizing Compilers 18

Markov Chains

• A Markov Model consists of
– set of states, i.e. S={s1,s2,...,sk}

– transitions between states with a certain probability p(s1 s2)

• Properties
– the sum of the probabilities for outgoing transitions must be

one:

– the transitions are independent of each other, such that

1)(
)(usuccv

vup

)()()(

)(

13221

321

kk

k

sspsspssp

ssssp

7

10th of April, 2003 Optimizing Compilers 19

Markov Chains(2)

• Expected frequency of going from one state to another
one is defined as:

where and

• Computed by a linear equation system

),(

)(),(ˆ
vuPath

pvuf

)()()(

)(

13221

321

kk

k

sspsspssp

ssssp

kssss 321

10th of April, 2003 Optimizing Compilers 20

Markov Chains & CFG

• Control-flow graph as Markov model
– we need heuristics to estimate branch probabilities
– imprecise: jumps are not independent of each other

(who cares we estimate!)
– compute expected frequency for all nodes u.
– linear equation system for expected frequencies

),start(ˆ uf

)(ˆ)()(ˆ
)(

vfuvpuf
upredv

1)start(f̂

for all nodes u N\{start}

10th of April, 2003 Optimizing Compilers 21

Branch Probabilities

• Simple loop heuristic
– back edges are taken with a probability of 0.88
– if no outgoing edge is a back edge => distribute equally

• Cases for OIL

• Special case:
– both outgoing edges are back edges => inner loop 88%
– i.e. B2 dom B3

B1

B2

1.0
B1

B2

.5

B3

.5
B1

B2

.88

B3

.12

one successor
node

two successor
nodes w/o back-
edge

two successor
nodes with back-
edge

8

10th of April, 2003 Optimizing Compilers 22

Example

Given CFG with branch probabilities:

Solution:

s

1

32

4

5

1.0

.5 .5

1.0 1.0

.12
.88

)(ˆ12.0)(ˆ

)(ˆ0.1)(ˆ0.1)(ˆ

)(ˆ5.0)(ˆ

)(ˆ5.0)(ˆ

)(ˆ88.0)(ˆ0.1)(ˆ

1)(ˆ

45

324

13

12

41

bfbf

bfbfbf

bfbf

bfbf

bfsfbf

sf

0.1)(ˆ,33.8)(ˆ,167.4)(ˆ

,167.4)(ˆ,33.8)(ˆ,0.1)(ˆ

543

21

bfbfbf

bfbfsf

Equations:

10th of April, 2003 Optimizing Compilers 23

Edge Frequencies

• Based on branch probability and basic block frequency

• Example:

)()(ˆ)(ˆ vupufvuf

s

1

32

4

5

1.0

.5 .5

1.0
1.0

.12
.88

1x

8.33x

8.33x

4.17x4.17x

1x 1.04-5

7.334-1

3-4

2-4

1-3

1-2

s-1

Edges

4.17

4.17

4.17

4.17

1.0

Freq

10th of April, 2003 Optimizing Compilers 24

Refinement

• Add additional heuristics
– predict that a comparison of a pointer against null or of two

pointers will fail => 60%
– Predict that a comparison of an integer for less than (or equal

to) zero will fail => 84%
– Return as a successor will not be taken => 72%
– etc....

• How can we compose one probability for an edge based
on several heuristics?

9

10th of April, 2003 Optimizing Compilers 25

Refinement(2)

• Theory of Dempster-Shafer [Shafer-76]
• Several heuristics

– heuristic H
– two probabilities pH(e1) and pH(e2) for successors

• Algorithm
p(b-s1)=0.5;
p(b-s2)=0.5;

for all heuristics H

d=p(b-s1)*pH(b-s1)+

p(b-s2)*pH(b-s2);
p(b-s1)=p(b-s1)*pH(b-s1)/d;

p(b-s2)=p(b-s2)*pH(b-s2)/d;

10th of April, 2003 Optimizing Compilers 26

Stop

• Next lecture: 8.5.2003, 13:45 – 14:45
• 3rd Assignment!

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

