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Profiling

• Why ?
– to produce high-quality code based on runtime behavior
– superior to static analysis

• Different types of profiling
– profiling for control flow graphs

• basic block, edges, acyclic paths, whole program paths

– memory accesses (for cache analysis, etc.)
– domain specific profiles depending on language and 

application

• In dynamic environments (e.g. JITs) profiling is 
crucial!
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Feedback-Directed Optimization

2. Instrumented execution:

1. Instrumented compilation:
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FDO(2)
• Feedback-Directed Optimization is expensive to 

implement. 

• Instrumented program can be significantly slower 
than optimized program.

• Solution: A small training input-set is used for 
obtaining profile information.

• Problem: Which training set is representative? 
– open research topic 
– statistical techniques are currently employed
– several executables depending on input?
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ProgramProgram

Classical Approach

• Drawback:

• Classical Program Optimization:
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ProgramProgram

Profiling Approach

• Advantage:

• Optimization based on profiling
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Phase Ordering for Profiling

Problem: Transformations modify input program and 
invalidate profile information. When and where should
be profiled?
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Phase Ordering(2)

• There is only one optimization that uses profile 
information (e.g. Optimization k ) and the optimization 
is only performed once:

Optimization(k-1)

Instrumentation

......

Optimization(k)
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Read Profile

......
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Instrumentation Pass Optimization Pass

no profile info
is available.
(disable opt-

imization)
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Phase Ordering(3)

• Alternative: Transformations are profile-aware.
• Every transformation updates profile information

– Is that possible for all transformations?
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Basic Block Profiling

• Measure execution frequencies of basic blocks
• Instrumentation Pass

– introduce for each basic block a basic block counter
– increment counter when block is executed
– dump profile information at the end of program execution

• Optimization Pass
– read profile information 
– annotate basic blocks with frequency information 
– run optimization based on frequency information

• Applications
– code generation issues, register allocation, etc.

10th of April, 2003 Optimizing Compilers 11

Example

• Control Flow
– 9 times left branch
– 1 times right branch
– terminate loop

• Profiling Result

s:=a+b

if C1

t:=a+b a:=f(b)

if C2
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Implementation

• Implementation details:
– Introduce for each function an array

number __freq_<func>[NUM_BB];

– insert code for each basic block at the entry
__freq_<func>[<block>] ++;

where every basic block has a unique index.
– a finalize handler dumps the basic block information in a file. 

• Problem: counter overflows might happen
– either 64-bit number (overflow is quite unlikely) or
– an overflow-check: if(f < (unsigned)(-1)) f++;



5

10th of April, 2003 Optimizing Compilers 13

Edge Profiling

• Measure execution frequencies of edges
• Instrumentation

– introduce for each jump (or transition between basic blocks) 
a counter

– increment counter when edge (jump) is executed
– dump profile information at the end of program execution

• Edge profiling is more expensive than block profiling -
- still moderate costs!

• Edge profiling is superior to basic block profiling
– basic block counts can be derived
– more optimization applications, e.g. basic block reordering
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Flow Properties

• Frequency of a node / flow conditions

– the incoming flow amount must be equal to the outgoing one

• Refinement
– not all edges need be instrumented to determine flow
– speed up execution time of instrumented program
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Refinement

Lemma: Not-measured edge frequencies can be 
determined if not-measured edges form a spanning
tree. 
Example:
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Refinement(2)

• Flow Properties allow to compute not-measured 
edges, i.e. linear equation system.

• Solved by substitution
• Example:
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Static Profiling

• What is if feed-back loop cannot be set in place?

• Approach based on heuristics to assess frequencies

• Advantage:
– There is no phase-ordering problem, i.e. re-computations of 

frequencies after every program transformation.

• Two phases:
1. Compute branch probabilities based on heuristics 
2. Use Markov model to compute frequencies
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Markov Chains

• A Markov Model consists of 
– set of states, i.e. S={s1,s2,...,sk}

– transitions between states with a certain probability p(s1 s2)

• Properties
– the sum of the probabilities for outgoing transitions  must be 

one:

– the transitions are independent of each other, such that
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Markov Chains(2)

• Expected frequency of going from one state to another 
one is defined as:

where                                   and

• Computed by a linear equation system
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Markov Chains & CFG

• Control-flow graph as Markov model
– we need heuristics to estimate branch probabilities
– imprecise:  jumps are not independent of each other

(who cares we estimate!)
– compute expected frequency                for all nodes u.
– linear equation system for expected frequencies
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Branch Probabilities

• Simple loop heuristic
– back edges are taken with a probability of 0.88
– if no outgoing edge is a back edge => distribute equally

• Cases for OIL

• Special case: 
– both outgoing edges are back edges => inner loop 88%
– i.e. B2 dom B3
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Example

Given CFG with branch probabilities:

Solution:
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Edge Frequencies

• Based on branch probability and basic block frequency

• Example:
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Refinement

• Add additional heuristics
– predict that a comparison of a pointer against null or of two 

pointers will fail => 60%
– Predict that a comparison of an integer for less than (or equal 

to) zero will fail => 84%
– Return as a successor will not be taken => 72%
– etc....

• How can we compose one probability for an edge based 
on several heuristics?
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Refinement(2)

• Theory of Dempster-Shafer [Shafer-76]
• Several heuristics

– heuristic H 
– two probabilities  pH(e1) and pH(e2) for successors

• Algorithm
p(b-s1)=0.5;
p(b-s2)=0.5;

for all heuristics H

d=p(b-s1)*pH(b-s1)+

p(b-s2)*pH(b-s2);
p(b-s1)=p(b-s1)*pH(b-s1)/d;

p(b-s2)=p(b-s2)*pH(b-s2)/d;
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Stop

• Next lecture: 8.5.2003, 13:45 – 14:45
• 3rd Assignment!
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