
1

Optimizing Compilers
3rd Lecture

Bernhard Scholz

Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

3rd of April, 2003 Optimizing Compilers 2

Overview

• Domination Relation
• Back Edges
• Loops
• Loop Transformation

3rd of April, 2003 Optimizing Compilers 3

Loop Optimizations

• Why loops are so important?
– Typically programs spend most of their execution time inside

loops.

• Basic Idea:
– Improve performance of inner loops
– E.g., moving invariant computations outside of loops,

restructuring loops to eliminate cycles

• How can we detect loops?

2

3rd of April, 2003 Optimizing Compilers 4

What is a Loop?

• Goal
– Graph theoretical notion of loops
– Insensitive to syntactical constructs, e.g. do/while, if/goto

and uniform approach

• Intuition behind loops
– Single entry point
– There must be a cycle

B1

B4

B2 B3

3rd of April, 2003 Optimizing Compilers 5

What is a Loop? (cont’d)

• A loop is a set of control flow nodes with an
distinctive header node such that:
– For any node in the loop there is a path to the header node.
– Every node in the loop can be reached by the header node.
– Exists a path from a node outside the loop to a node inside

the loop, then the path contains the loop header.

• Loop exit nodes: Some successor nodes of loop
nodes

3rd of April, 2003 Optimizing Compilers 6

Examples of Loops

B1

B4

B2 B3
B2

B5

B3 B4

B1

B6
B5

3

3rd of April, 2003 Optimizing Compilers 7

How to Identify Loops?

• Restrict loops to natural loops
• For several concepts required

– domination relation: a node, i.e. dominator, dominates
another node n if every path from the start node to n goes
through the dominator.

– immediate dominator: there is a unique dominator (if there
exist one) for a node that does not dominate any other
dominator of n.

– dominator tree: immediate dominators form a dominator tree.
– back edges: an edge whose head dominates its tail.
– loop headers: entry nodes of natural loops
– loop nodes: all nodes of a loop
– loop forests: loop nests, e.g. loop in loops.

3rd of April, 2003 Optimizing Compilers 8

Domination Relation

• x dominates y (x dom y):
– x is on every path from start node start to y

– reflexive, transitive, anti-symmetric

• Observation:
– If d dominates every predecessor pi of n then d must

dominate n.
– If d dominates n then d must dominate

all predecessors pi of n.

• Proof: by contradiction

d

n

p1 pk

3rd of April, 2003 Optimizing Compilers 9

Algo for Domination Relation
• Approach

– iterative approach
– definition of dominators

dom(y)={x|x dom y}

– local equations

for all n N: dom(n)=N;

dom(start) = {start};

repeat

for all n N-{start} do

X =dom(p1) dom(p2)... where
preds(n)={p1,p2,...};

dom(n) = X {n}

end for

until no changes in dom;

• Algorithm

)(

)(

)(

ypredsp

pdom

yydom

4

3rd of April, 2003 Optimizing Compilers 10

Example

1. dom(start) = {start}
2. dom(B1) = {B1} (dom(start) dom(B4))
3. dom(B2) = {B2} dom(B1)
4. dom(B3) = {B3} dom(B1)
5. dom(B4) = {B4} (dom(B2) dom(B3))
6. dom(end) = {end} dom(B4)

• Equations

• Solution

• CFG

1. dom(start) = {start}
2. dom(B1) = {start,B1}
3. dom(B2) = {start,B1,B2}
4. dom(B3) = {start,B1,B3}
5. dom(B4) = {start,B1,B4}
6. dom(end) = {start,B1,B4,end}

start

end

B1

B4

B2 B3

3rd of April, 2003 Optimizing Compilers 11

Dominator Tree

• Domination Relation
– expensive data structure, i.e. O(N^2)
– compressed as tree structure

• Immediate Dominator
– idom(y) dominates y

– no other dominator that dominates y and is dominated by
idom(y)

– only one immediate dominator of y (unique)

• Dominator Tree
– nodes are control flow graph nodes
– edges are given by (idom(y),y)

3rd of April, 2003 Optimizing Compilers 12

Algo for Immediate Dominator
• Approach

– iterative approach
– based on dom(n)

– removes all non-
immediate dominators

– compute set s for node n:
1. s=dom(n) – {v}

2. for all: u dom n, v dom n,
u v, v dom u

s = s – {v}

– set s only contains
immediate dominator

for all n N-{start}
s = dom(n) – {n}

for all u dom(n)-{n}

for all v dom(n)–{n,u}

if v dom(u) then
s = s – {v}

fi

end for

end for
idom(n) = <s>

end for

• Algorithm

5

3rd of April, 2003 Optimizing Compilers 13

Dominator Tree Example
• Dominator Tree

1. idom(B1)=start
2. idom(B2)=B1
3. idom(B3)=B1
4. idom(B4)=B1
5. idom(end)=B4

start

end

B1

B4B2 B3

• Domination Relation
1. dom(start) = {start}
2. dom(B1) = {start,B1}
3. dom(B2) = {start,B1,B2}
4. dom(B3) = {start,B1,B3}
5. dom(B4) = {start,B1,B4)
6. dom(end) = {start,B1,B4,end}

• Immediate Dominators

3rd of April, 2003 Optimizing Compilers 14

Dominator Algorithms

• [Purdom and Moore, 1972]
– O(NxE) execution time

• [Lengauer and Tarjan, 1979]
– simple version: O(E x logN) execution time
– improved version: O (Ex (E,N)) execution time

• [Alstrup et al., 1997]
– O(N+E) execution time

3rd of April, 2003 Optimizing Compilers 15

Back Edges

• Definition: A back edge is an edge whose tail
dominates its source, i.e. an edge (n,d) where
d dom n.

• Set of back edges
B = {(n,d) | d dom n}

• Example
B = {(B3,B1),(B4,B1),(B5,B5)}

B1

B4

B2 B3

B5

6

3rd of April, 2003 Optimizing Compilers 16

Natural Loops & Loop Headers

• Def: The natural loop of back edge (n,d) is the set of
nodes where there exists a path to n without going
through d.

• Def: A loop header dominates all nodes in a loop.
– Header is unique for each loop
– Header is the unique entry point for a loop

• Set of loop-headers

L = {d | (n,d) B}

• Example:
L = {B1,B5}

B1

B4

B2 B3

B5

3rd of April, 2003 Optimizing Compilers 17

Algorithm for Detecting Loops
• Approach

– simple work-list algorithm
– L is set of nodes inside loop.
– loop is formed by back-edge

(n,d) where d is loop-header.

• Example

W = {n}

L = {d}

repeat

select u W
L = L {u}

W = (W pred(u)) - L;
until W = 0;

• Algorithm

• Steps
1. W={B4}, L={B1}
2. W={B2,B3}, L={B1,B4}
3. W={B3}, L={B1,B2,B4}
4. W={}, L={B1,B2,B3,B4}

B1

B4

B2 B3

B5

(B4,B1)

3rd of April, 2003 Optimizing Compilers 18

Inner Loops & Loop Forest
• If two loops do not have the same header

– they are either disjoint, or
– one is entirely contained (nested within) the other, or

• If two loops share the same header
– difficulties to state which is the inner one
– combine both loops (see example)

• Loop Nesting forest
– gives a nesting relation for loops
– the ancestor of a loop gives the nesting
– If L1 L2, then loop L1 is nested in L2.
– nodes: loops of CFG
– edges: immediate nesting relation

7

3rd of April, 2003 Optimizing Compilers 19

Example

B2

B5

B3 B4

B1

B6

B1,B2,B3,B4,B5,B6

B2,B3,B4,B5

B4

CFG Loop Nesting Forest

B3

3rd of April, 2003 Optimizing Compilers 20

Reducible Flow Graphs

• Def. A flow graph is called reducible iff we can
partition the edges into 2 sets:

1. back ward edges, i.e. (n,d) where d dominates n.
2. forward edges: should form a DAG in which every

node is reachable from start node.

• A reducible graph has only natural loops
• Every “cycle” has at least one back edge

3rd of April, 2003 Optimizing Compilers 21

What’s wrong with natural loops?

• Irreducible CFGs
– CFG has loops that are not “natural”.
– i.e. more than one loop entry

• Approach for irreducible CFGs:
– Tarjan’s interval analysis
– Drawback: not as intuitive as natural loops

B1

B2 B3

8

3rd of April, 2003 Optimizing Compilers 22

Loop Transformations

• Loop Inversion

– eliminate goto at the end

• Loop Unrolling

for(i=0;i<100;i++){
a[i] = 2*b[i];

}

i=0;
do{

a[i] = 2 * b[i];
i++;

} while (i<100);

for(i=0;i<100;i++){
a[i] = 2*b[i];

}

for(i=0;i<100;i+=2){
a[i] = 2*b[i];
a[i+1] = 2*b[i+1];

}
– eliminate gotos for several

iterations

3rd of April, 2003 Optimizing Compilers 23

Loop Transformations(2)

• Loop Peeling

for(i=0;i<100;i++){
if (i<1) {
a[i] = 2*b[i];

} else {
a[i] = b[i]-1;

}
}

a[0] = 2*b[0];
for(i=1;i<100;i++){

a[i] = b[i]-1;
}

- remove iteration anomalies at the begin and end

3rd of April, 2003 Optimizing Compilers 24

Loop Transformations(3)

• Loop Fusion / Loop Jamming

for(i=0;i<100;i++){
a[i] = 2*b[i];

}
for(i=0;i<100;i++){

c[i] = d[i]-1;
}

for(i=0;i<100;i++){
a[i] = 2*b[i];
c[i] = d[i]-1;

}

- dependence analysis required!

9

3rd of April, 2003 Optimizing Compilers 25

Stop

• Next lecture: 10.4.2003, 13:45 – 14:45
• 2nd Assignment!

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

