Optimizing Compilers
3d Lecture

Bernhard Scholz
Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

Overview

« Domination Relation
« Back Edges

* Loops

« Loop Transformation

3rd of April, 2003 Optimizing Compilers 2

Loop Optimizations

* Why loops are so important?

— Typically programs spend most of their execution time inside
loops.

* Basic Idea:

— Improve performance of inner loops

— E.g., moving invariant computations outside of loops,
restructuring loops to eliminate cycles

« How can we detect loops?

3rd of April, 2003 Optimizing Compilers 3

What is a Loop?

« Goal
— Graph theoretical notion of loops

— Insensitive to syntactical constructs, e.g. do/while, if/goto
and uniform approach

¢ Intuition behind loops

— Single entry point
— There must be a cycle

3rd of April, 2003 Optimizing Compilers

What is a Loop? (cont’d)

* Aloop is a set of control flow nodes with an
distinctive header node such that:
— For any node in the loop there is a path to the header node.
— Every node in the loop can be reached by the header node.

— Exists a path from a node outside the loop to a node inside
the loop, then the path contains the loop header.

« Loop exit nodes: Some successor nodes of loop
nodes

3rd of April, 2003 Optimizing Compilers 5

Examples of Loops

3rd of April, 2003 Optimizing Compilers 6

How to Identify Loops?

« Restrict loops to natural loops

« For several concepts required

— domination relation: a node, i.e. dominator, dominates
another node n if every path from the start node to n goes
through the dominator.

— immediate dominator: there is a unique dominator (if there
exist one) for a node that does not dominate any other
dominator of n.

— dominator tree: immediate dominators form a dominator tree.
— back edges: an edge whose head dominates its tail.

— loop headers: entry nodes of natural loops

— loop nodes: all nodes of a loop

— loop forests: loop nests, e.g. loop in loops.

3rd of April, 2003 Optimizing Compilers 7

Domination Relation

« xdominates y (x domy):
— Xxis on every path from start node start to y
— reflexive, transitive, anti-symmetric
¢ Observation:
— If d dominates every predecessor p; of nthen d must

dominate n.
— If d dominates nthen d must dominate
all predecessors p, of n. o
¢ Proof: by contradiction @ m
3rd of April, 2003 Optimizing Compilers 8

Algo for Domination Relation

« Approach e Algorithm

— iterative approach for all neN don(n)=N;
— definition of dominators don(start) = {start};
dom(y)={xjx domy}
— local equations repeat
dom(y) = {y}u for all neN-{start} do
ﬂdom(p) X =don(pl) ndon(p2)... where
pepreds(y) preds(n)={pl,p2,...};
dom(n) = X U {n}
end for
until no changes in dom

3rd of April, 2003 Optimizing Compilers 9

Example

« Equations * CFG
. dom(start) = {start} @
dom(B1) {B1} U (dom(start) » dom(B4))

dom(B2) ={B2}udom(B1)
dom(B3) ={B3}u dom(B1l)

. dom(B4) ={B4}u (dom(B2) n dom(B3))
. dom(end) ={end}u dom(B4)
¢ Solution @ @

ERSEIARNET

1. dom(start) = {start}
2. dom(Bl) ={start,B1}
3. dom(B2) = {start,B1,B2}
4. dom(B3) ={start,B1,B3}
5. dom(B4) ={start,B1,B4}
6. dom(end) ={start,B1,B4,end} @
3rd of April, 2003 Optimizing Compilers 10

Dominator Tree

« Domination Relation

— expensive data structure, i.e. O(N"2)

— compressed as tree structure
« Immediate Dominator

— idom(y) dominates y

— no other dominator that dominates y and is dominated by

idom(y)

— only one immediate dominator of y (unique)
« Dominator Tree

— nodes are control flow graph nodes

— edges are given by (idom(y),y)

3rd of April, 2003 Optimizing Compilers 1

Algo for Immediate Dominator

« Approach e Algorithm
- iterative approach for all n e N{start}
— based on dom(n) s = don(n) — {n}
— removes all non- for all u e dom(n)-{n}
immediate dominators for all v e don(n)—{n,u}
— compute set s for node n: if v e dom(u) then
1. s=dom(n)—{v} s =s — {v}
2. forall: udomn, vdomn, fi
u#v,vdomu = end for
s=s-{¥ end for
— setsonly contains i dom(n) = <s>
immediate dominator end for

3rd of April, 2003 Optimizing Compilers 12

Dominator Tree Example

« Domination Relation * Dominator Tree
1. dom(start) ={start}
2. dom(Bl) ={start,B1} @
3. dom(B2) ={start,B1,B2}
4. dom(B3) = {start,B1,B3}
5. dom(B4) ={start,B1,B4)
6. dom(end) ={start,B1,B4,end} @

* Immediate Dominators @ @
idom(B1)=start

1

2. idom(B2)=B1

3. idom(B3)=B1

4. idom(B4)=B1

5. idom(end)=B4

3rd of April, 2003 Optimizing Compilers 13

Dominator Algorithms

¢ [Purdom and Moore, 1972]
— O(NXE) execution time

¢ [Lengauer and Tarjan, 1979]
— simple version: O(E x logN) execution time
— improved version: O (Exo(E,N)) execution time

¢ [Alstrup et al., 1997]
— O(N+E) execution time

3rd of April, 2003 Optimizing Compilers 14

Back Edges

« Definition: A back edge is an edge whose tail
dominates its source, i.e. an edge (n,d) where
ddomn.

¢ Set of back edges
B ={(n,d) | d domn}

(BL)
« Example
B ={(B3,B1),(B4,B1),(B5,B5)} ®$®
(B4

@)

3rd of April, 2003 Optimizing Compilers 15

Natural Loops & Loop Headers

« Def: The natural loop of back edge (n,d) is the set of
nodes where there exists a path to n without going
through d.

« Def: A loop header dominates all nodes in a loop.

— Header is unique for each loop
— Header is the unique entry point for a loop

®$

¢ Set of loop-headers

L={d|(nd) B} (B2) (B3
(B4

* Example:
L ={B1,B5}
3rd of April, 2003 Optimizing Compilers 16

Algorithm for Detecting Loops

. Approach + Algorithm

- simple work-list algorithm W= {n}
— Lis set of nodes inside loop. L ={d
— loop is formed by back-edge e
(nd) where d is loop-header. | S€lect u e W

* Example @ \I;\l: I(_ Wk{Jqued(u)) - L
until W= 0;
(B4,B1) @ @ . Steps

(B 1. W={B4}, L={B1}

2. W={B2,B3}, L={B1,B4}
(B5) 3. W={B3}, L={B1,B2,B4}
) 4. W={}, L=(B1,B2,B3,B4}

3rd of April, 2003 Optimizing Compilers 17

Inner Loops & Loop Forest

« If two loops do not have the same header

— they are either disjoint, or

— one is entirely contained (nested within) the other, or
« If two loops share the same header

— difficulties to state which is the inner one

— combine both loops (see example)

* Loop Nesting forest
— gives a nesting relation for loops
— the ancestor of a loop gives the nesting
— IfL,c L, thenloop L, isnested in L,.
— nodes: loops of CFG
— edges: immediate nesting relation

3rd of April, 2003 Optimizing Compilers 18

Example

CEG Loop Nesting Forest

o
(B2

(o
(85D

(B6

3rd of April, 2003 Optimizing Compilers 19

Reducible Flow Graphs

« Def. Aflow graph is called reducible iff we can
partition the edges into 2 sets:
1. back ward edges, i.e. (n,d) where d dominates n.

2. forward edges: should form a DAG in which every
node is reachable from start node.

¢ Areducible graph has only natural loops
« Every “cycle” has at least one back edge

3rd of April, 2003 Optimizing Compilers 20

What's wrong with natural loops?

¢ Irreducible CFGs
— CFG has loops that are not “natural”.
— i.e. more than one loop entry

%k
« Approach for irreducible CFGs:

— Tarjan’s interval analysis
— Drawback: not as intuitive as natural loops

3rd of April, 2003 Optimizing Compilers 21

3rd of April, 2003

— eliminate goto at the end

Loop Transformations

Loop Inversion

for(i=0;i<100;i++){
a[i] = 2*p[i];
}

Loop Unrolling

i =0;

dof
a[i] =2 * b[i];
i ++;

} while (i<100);

for (i=0;i<100;i++){
a[i] = 2*pb[i];

}

— eliminate gotos for several
iterations

for (i=0;i<100;i +=2){
a[i] = 2*b[i];

a[i+1] = 2*b[i+1];

}

Optimizing Compilers

3rd of April, 2003

Loop Transformations(2)

Loop Peeling

for(i=0;i<100;i++){

if (i<1) {
a[i] = 2*b[i];

} else {
ali] =

}

b[i]-1;

}

a[0] = 2*b[0];
for(i=1;i<100;i ++){
a[i] = b[i]-1;

- remove iteration anomalies at the begin and end

Optimizing Compilers

3rd of April, 2003

Loop Transformations(3)

Loop Fusion / Loop Jamming

for(i=0;i<100;i++){
afi] = 2*b[i];

}
for(i=0;i<100;i++){
c[i] =d[i]-1;

}

- dependence analysis required!

for(i=0;i<100;i++){
a[i] = 2*b[i];
c[i] =di]-1;

}

Optimizing Compilers

24

Stop

« Next lecture: 10.4.2003, 13:45 — 14:45
* 2nd Assignment!

3rd of April, 2003 Optimizing Compilers

25

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

