Optimizing Compilers

 $3^{\text {rd }}$ LectureBernhard Scholz
Institut f. Computersprachen
Argentinierstr. 8
scholz@complang.tuwien.ac.at

Overview	
• Domination Relation	
• Back Edges	
• Loops	
• Loop Transformation	
3rd of April, 2003	

\qquad

- Domination Relation
- Back Edges
\qquad
- Loops

Loop Transformation

Loop Optimizations

\qquad

- Why loops are so important?
- Typically programs spend most of their execution time inside loops.
- Basic Idea:
- Improve performance of inner loops
- E.g., moving invariant computations outside of loops, restructuring loops to eliminate cycles
- How can we detect loops?
\qquad
\qquad
\qquad
\qquad
\qquad Opheng

What is a Loop?

- Goal
- Graph theoretical notion of loops
- Insensitive to syntactical constructs, e.g. do/while, if/goto and uniform approach
- Intuition behind loops
- Single entry point
- There must be a cycle

What is a Loop? (cont'd)

- A loop is a set of control flow nodes with an distinctive header node such that:
- For any node in the loop there is a path to the header node.
- Every node in the loop can be reached by the header node.
- Exists a path from a node outside the loop to a node inside the loop, then the path contains the loop header
- Loop exit nodes: Some successor nodes of loop nodes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How to Identify Loops?

- Restrict loops to natural loops
- For several concepts required
- domination relation: a node, i.e. dominator, dominates another node n if every path from the start node to n goes through the dominator.
- immediate dominator: there is a unique dominator (if there exist one) for a node that does not dominate any other dominator of n.
- dominator tree: immediate dominators form a dominator tree.
- back edges: an edge whose head dominates its tail.
- loop headers: entry nodes of natural loops
- loop nodes: all nodes of a loop
- loop forests: loop nests, e.g. loop in loops.

Domination Relation

- x dominates $y(x$ dom $y)$:
- $\quad x$ is on every path from start node start to y
- reflexive, transitive, anti-symmetric
- Observation:
- If d dominates every predecessor p_{i} of n then d must dominate n.
- If d dominates n then d must dominate all predecessors p_{i} of n.
- Proof: by contradiction

3rd of April, 2003
Optimizing Compilers
${ }^{8}$

Algo for Domination Relation

\qquad

- Approach
- iterative approach
- definition of dominators
$\operatorname{dom}(y)=\{x \mid x \operatorname{dom} y\}$
- local equations
$\operatorname{dom}(y)=\{y\} \cup$
$\bigcap \operatorname{dom}(p)$
$p \in \operatorname{preds}(y)$
- Algorithm

for all $n \in N: \operatorname{dom}(n)=N ;$
$\operatorname{dom}($ start $)=\{$ start $;$
repeat
for all $n \in N-\{$ start $\}$ do
$x=\operatorname{dom}(p 1) \cap \operatorname{dom}(p 2) \ldots$ where
preds $(n)=\{p 1, p 2, \ldots\} ;$
$\operatorname{dom}(n)=X \cup\{n\}$
end for
until no changes in dom;

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

- Equations

1. dom(start) $=\{$ start $\}$
2. $\operatorname{dom}(B 1)=\{B 1\} \cup($ dom $($ start $) \cap \operatorname{dom}(B 4))$
3. $\operatorname{dom}(B 2)=\{B 2\} \cup \operatorname{dom}(B 1)$
4. $\operatorname{dom}(B 3)=\{B 3\} \cup \operatorname{dom}(B 1)$
5. $\operatorname{dom}(B 4)=\{B 4\} \cup(\operatorname{dom}(B 2) \cap \operatorname{dom}(B 3))$
6. $\operatorname{dom}(e n d)=\{e n d\} \cup \operatorname{dom}(B 4)$

- Solution

1. dom(start) $=\{$ start $\}$
2. dom(B1) $=\{$ start, B1 $\}$
3. $\operatorname{dom}(\mathrm{B} 2)=\{$ start, $\mathrm{B} 1, \mathrm{~B} 2\}$
4. $\operatorname{dom}(B 3)=\{$ start $, B 1, B 3\}$
5. dom(B4) $=\{$ start,B1,B4\}
6. dom(end) $=\{$ start,B1,B4,end $\}$

3rd of April, 2003
Optimizing Compilers

Dominator Tree

- Domination Relation

- expensive data structure, i.e. $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$
- compressed as tree structure
- Immediate Dominator
- idom(y) dominates y
- no other dominator that dominates y and is dominated by idom(y)
- only one immediate dominator of y (unique)
- Dominator Tree
- nodes are control flow graph nodes
- edges are given by $(\operatorname{idom}(y), y)$

Algo for Immediate Dominator

\qquad

- Approach
- iterative approach
- based on $\operatorname{dom}(n)$
- removes all non-
immediate dominators
- compute set s for node n :

1. $s=\operatorname{dom}(n)-\{v\}$
2. for all: u dom n, v dom n,
$u \neq v, v$ dom $u \Rightarrow$
$s=s-\{v\}$

- set s only contains
immediate dominator
- Algorithm
for all $n \in N-\{$ start $\}$
$s=\operatorname{dom}(n)-\{n\}$
for all $u \in \operatorname{dom}(n)-\{n\}$
for all $v \in \operatorname{dom}(n)-\{n, u\}$
if $v \in \operatorname{dom}(u)$ then
$s=s-\{v\}$
fi
end for
end for
idom $(n)=<s>$
end for
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dominator Tree Example

- Domination Relation

1. dom(start) $=\{$ start $\}$
2. $\operatorname{dom}(B 1)=\{$ start, B1 $\}$
3. dom(B2) $=\{$ start, $\mathrm{B} 1, \mathrm{~B} 2\}$
4. $\operatorname{dom}(\mathrm{B} 3)=\{$ start, $\mathrm{B} 1, \mathrm{~B} 3\}$
5. $\operatorname{dom}(\mathrm{B} 4)=\{$ start $, \mathrm{B} 1, \mathrm{~B} 4)$
6. dom(end) $=\{$ start,B1,B4,end $\}$

- Immediate Dominators

1. idom(B1)=start
idom $(\mathrm{B} 2)=\mathrm{B} 1$
. idom $(B 3)=B 1$
2. idom(B4) $=\mathrm{B} 1$
3. idom(end)=B4

3rd of April, 2003

Dominator Algorithms

- [Purdom and Moore, 1972]
- O(NxE) execution time
- [Lengauer and Tarjan, 1979]
- simple version: $O(E \times \log N)$ execution time
- improved version: O (Exa(E,N)) execution time
- [Alstrup et al., 1997]
- $\mathrm{O}(\mathrm{N}+\mathrm{E})$ execution time \qquad
\qquad

Back Edges

\qquad

- Definition: A back edge is an edge whose tail dominates its source, i.e. an edge (n, d) where d dom n.
- Set of back edges
$B=\{(n, d) \mid d$ dom $n\}$
- Example
$B=\{(\mathrm{B} 3, \mathrm{~B} 1),(\mathrm{B} 4, \mathrm{~B} 1),(\mathrm{B} 5, \mathrm{~B} 5)\}$
 15

Natural Loops \& Loop Headers

- Def: The natural loop of back edge (n, d) is the set of nodes where there exists a path to n without going through d.
- Def: A loop header dominates all nodes in a loop.
- Header is unique for each loop
- Header is the unique entry point for a loop
- Set of loop-headers

\qquad
$L=\{d \mid(n, d) \in B\}$
- Example:
$L=\{$ B1,B5 $\}$

3rd of April, 2003

Algorithm for Detecting Loops

- Approach
- simple work-list algorithm
- $\quad L$ is set of nodes inside loop.
- loop is formed by back-edge (n, d) where d is loop-header.

Algorithm
$\mathrm{W}=\{\mathrm{n}\}$
$\mathrm{L}=\{\mathrm{d}\}$

repeat

select $\mathbf{u} \in \mathbf{W}$
$\mathrm{L}=\mathrm{L} \cup\{\mathrm{u}\}$
$\mathrm{W}=(\mathrm{W} \cup \operatorname{pred}(\mathrm{u}))-\mathrm{L}$; until $\mathrm{W}=0$;

- Steps

1. $W=\{B 4\}, L=\{B 1\}$
2. $W=\{B 2, B 3\}, L=\{B 1, B 4\}$
3. $W=\{B 3\}, L=\{B 1, B 2, B 4\}$
4. $W=\{ \}, L=\{B 1, B 2, B 3, B 4\}$

3rd of April, 2003
Optimizing Compilers

Inner Loops \& Loop Forest

\qquad

- If two loops do not have the same header
- they are either disjoint, or
- one is entirely contained (nested within) the other, or
- If two loops share the same header
- difficulties to state which is the inner one
- combine both loops (see example)
- Loop Nesting forest
- gives a nesting relation for loops
- the ancestor of a loop gives the nesting
- If $L_{1} \subseteq L_{2}$, then loop L_{1} is nested in L_{2}.
- nodes: loops of CFG
- edges: immediate nesting relation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Reducible Flow Graphs

- Def. A flow graph is called reducible iff we can partition the edges into 2 sets:

1. back ward edges, i.e. (n, d) where d dominates n.
2. forward edges: should form a DAG in which every node is reachable from start node.

- A reducible graph has only natural loops
- Every "cycle" has at least one back edge
\qquad

What's wrong with natural loops?

\qquad

- Irreducible CFGs
- CFG has loops that are not "natural". \qquad
- i.e. more than one loop entry

\qquad
\qquad
- Approach for irreducible CFGs:
- Tarjan's interval analysis
- Drawback: not as intuitive as natural loops
\qquad
\qquad
\qquad
- Loop Inversion

for $(i=0 ; i<100 ; i++)\{$ $a[i]=2 * b[i] ;$ $\}$

- eliminate goto at the end
- Loop Unrolling
for $(i=0 ; i<100 ; i++)\{$
$a[i]=2 * b[i] ;$
$\} \quad$
- eliminate gotos for several iterations

3rd of April, 2003
Optimizing Compilers
22
\qquad

Loop Transformations(2)

- Loop Peeling

> if $(i<1)\{$
> a[i] $=2 * b[i] ;$
> $\}$ else \{
> a[i] $=b[i]-1 ;$
\}
$\mathrm{a}[0]=2 * \mathrm{~b}[0]$; for (i=1;i<100;i++) \{ $\mathrm{a}[\mathrm{i}]=\mathrm{b}[\mathrm{i}]-1$;

- remove iteration anomalies at the begin and end \qquad
\qquad

Loop Transformations(3)

\qquad

- Loop Fusion / Loop Jamming

\qquad
\qquad
\qquad
- dependence analysis required! \qquad
\qquad
\qquad

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

