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Overview

• Domination Relation
• Back Edges
• Loops
• Loop Transformation
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Loop Optimizations

• Why loops are so important?
– Typically programs spend most of their execution time inside 

loops. 

• Basic Idea:
– Improve performance of inner loops
– E.g., moving invariant computations outside of  loops, 

restructuring loops to eliminate cycles

• How can we detect loops?
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What is a Loop? 

• Goal
– Graph theoretical notion of loops
– Insensitive to syntactical constructs, e.g. do/while, if/goto

and uniform approach 

• Intuition behind loops
– Single entry point 
– There must be a cycle
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What is a Loop? (cont’d)

• A loop is a set of control flow nodes with an 
distinctive header node such that:
– For any node in the loop there is  a path to the header node.
– Every node in the loop can be reached by the header node.
– Exists a path from a node outside the loop to a node inside 

the loop, then the path contains the loop header.

• Loop exit nodes: Some successor nodes of loop 
nodes 
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Examples of Loops
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How to Identify Loops?

• Restrict loops to natural loops
• For several concepts required

– domination relation: a node, i.e. dominator, dominates 
another node n if every path from the start node to n goes 
through the dominator. 

– immediate dominator: there is a unique dominator (if there 
exist one) for a node that does not dominate any other 
dominator of n.

– dominator tree: immediate dominators form a dominator tree. 
– back edges: an edge whose head dominates its tail.
– loop headers: entry nodes of natural loops
– loop nodes: all nodes of a loop
– loop forests: loop nests, e.g. loop in loops.
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Domination Relation

• x dominates y (x dom y):
– x is on every path from start node start to y

– reflexive, transitive, anti-symmetric

• Observation:
– If d dominates every predecessor pi of n then d must 

dominate n. 
– If d dominates n then d must dominate

all predecessors  pi of n.

• Proof: by contradiction

d

n

p1 pk
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Algo for Domination Relation
• Approach

– iterative approach
– definition of dominators 

dom(y)={x|x dom y}

– local equations

for all n N: dom(n)=N;

dom(start) = {start};

repeat

for all n N-{start} do

X =dom(p1) dom(p2)... where
preds(n)={p1,p2,...};

dom(n) = X {n}

end for

until no changes in dom;

• Algorithm
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Example

1. dom(start) = {start}
2. dom(B1) = {B1} (dom(start) dom(B4))
3. dom(B2) = {B2} dom(B1)
4. dom(B3) = {B3} dom(B1)
5. dom(B4) = {B4} (dom(B2) dom(B3))
6. dom(end) = {end} dom(B4)

• Equations

• Solution

• CFG

1. dom(start) = {start}
2. dom(B1) = {start,B1}
3. dom(B2) = {start,B1,B2}
4. dom(B3) = {start,B1,B3}
5. dom(B4) = {start,B1,B4}
6. dom(end) = {start,B1,B4,end}

start

end
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Dominator Tree

• Domination Relation
– expensive data structure, i.e. O(N^2)
– compressed as tree structure

• Immediate Dominator 
– idom(y) dominates y

– no other dominator that dominates y and is dominated by 
idom(y)

– only one immediate dominator of y (unique)

• Dominator Tree
– nodes are control flow graph nodes
– edges are given by (idom(y),y)
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Algo for Immediate Dominator
• Approach

– iterative approach
– based on dom(n)

– removes all non-
immediate dominators

– compute set s for node n:
1. s=dom(n) – {v}

2. for all: u dom n, v dom n,
u v, v dom u 

s = s – {v}

– set s only contains  
immediate dominator

for all n N-{start}
s = dom(n) – {n} 

for all u dom(n)-{n}

for all v dom(n)–{n,u}

if v dom(u) then
s = s – {v}

fi

end for

end for
idom(n) = <s>

end for

• Algorithm
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Dominator Tree Example
• Dominator Tree

1. idom(B1)=start
2. idom(B2)=B1
3. idom(B3)=B1
4. idom(B4)=B1
5. idom(end)=B4

start

end
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• Domination Relation
1. dom(start) = {start}
2. dom(B1) = {start,B1}
3. dom(B2) = {start,B1,B2}
4. dom(B3) = {start,B1,B3}
5. dom(B4) = {start,B1,B4)
6. dom(end) = {start,B1,B4,end}

• Immediate Dominators
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Dominator Algorithms

• [Purdom and Moore, 1972] 
– O(NxE) execution time

• [Lengauer and Tarjan, 1979] 
– simple version: O(E x logN) execution time
– improved version: O (Ex (E,N)) execution time

• [Alstrup et al., 1997] 
– O(N+E) execution time 
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Back Edges

• Definition: A back edge is an edge whose tail 
dominates its source, i.e. an edge (n,d) where 
d dom n.

• Set of back edges
B = {(n,d) | d dom n}

• Example
B = {(B3,B1),(B4,B1),(B5,B5)}
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Natural Loops & Loop Headers

• Def: The natural loop of back edge (n,d) is the set of 
nodes where there exists a path to n without going 
through d.

• Def: A loop header dominates all nodes in a loop.  
– Header is unique for each loop
– Header is the unique entry point for a loop

• Set of loop-headers

L = {d | (n,d) B}

• Example: 
L = {B1,B5}
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Algorithm for Detecting Loops
• Approach

– simple work-list algorithm
– L is set of nodes inside loop.
– loop is formed by  back-edge 

(n,d) where d is loop-header. 

• Example 

W = {n}

L = {d}

repeat 

select u W
L = L {u}

W = ( W pred(u)) - L;
until W = 0;

• Algorithm

• Steps
1. W={B4}, L={B1}
2. W={B2,B3}, L={B1,B4}
3. W={B3}, L={B1,B2,B4}
4. W={}, L={B1,B2,B3,B4}
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Inner Loops  & Loop  Forest
• If two loops do not have the same header 

– they are either disjoint, or 
– one is entirely contained (nested within) the other, or

• If two loops share the same header 
– difficulties to state which is the inner one
– combine both loops (see example)

• Loop Nesting forest
– gives a nesting relation for loops
– the ancestor of a loop gives the nesting
– If L1 L2, then loop L1 is nested in L2.
– nodes: loops of CFG
– edges: immediate nesting relation
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Example

B2
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B3 B4
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CFG Loop Nesting Forest
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Reducible Flow Graphs

• Def. A flow graph is called reducible iff we can 
partition the edges into 2 sets:

1. back ward edges, i.e. (n,d) where d dominates n.
2. forward edges: should form a DAG in which every 

node is reachable from start node.

• A reducible graph has only natural loops
• Every “cycle” has at least one back edge
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What’s wrong with natural loops?

• Irreducible CFGs 
– CFG has loops that are not “natural”.
– i.e. more than one loop entry

• Approach for irreducible CFGs:
– Tarjan’s interval analysis
– Drawback: not as intuitive as natural loops

B1
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Loop Transformations

• Loop Inversion

– eliminate goto at the end

• Loop Unrolling

for(i=0;i<100;i++){
a[i] = 2*b[i];

}

i=0;
do{

a[i] = 2 * b[i];
i++;

} while (i<100);   

for(i=0;i<100;i++){
a[i] = 2*b[i];

}

for(i=0;i<100;i+=2){
a[i] = 2*b[i];
a[i+1] = 2*b[i+1];

}
– eliminate gotos for several

iterations
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Loop Transformations(2)

• Loop Peeling

for(i=0;i<100;i++){
if (i<1) {
a[i] = 2*b[i];

} else {
a[i] = b[i]-1;

}
}

a[0] = 2*b[0];
for(i=1;i<100;i++){

a[i] = b[i]-1;
}

- remove iteration anomalies at the begin and end  
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Loop Transformations(3)

• Loop Fusion / Loop Jamming

for(i=0;i<100;i++){
a[i] = 2*b[i];

}
for(i=0;i<100;i++){

c[i] = d[i]-1;
}

for(i=0;i<100;i++){
a[i] = 2*b[i];
c[i] = d[i]-1;

}

- dependence analysis required!
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Stop

• Next lecture: 10.4.2003, 13:45 – 14:45
• 2nd Assignment!
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