
1

Optimizing Compilers
2nd Lecture

Bernhard Scholz

Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

20th of March, 2003 Optimizing Compilers 2

Overview

• Jump Optimization
• Basic Block Straightening
• Basic Block Reordering
• MiniC Framework
• Demo

20th of March, 2003 Optimizing Compilers 3

Jump Optimization

• Problem
Intermediate code generator produces
– jumps to jumps
– jumps to conditional jumps
– useless jumps
– conditional jumps to jumps

• Effect
– reduce code size
– improve run-time

• Approach
– search jump-templates
– code replacement

2

20th of March, 2003 Optimizing Compilers 4

Jump Elimination

goto L1;

....
L1: goto L2;

goto L2;

....

(L1: goto L2;)

if (b) goto L1;

....

L1: goto L2;

if (b) goto L2;

....

(L1: goto L2;)

• Jumps to jumps

• Conditinal jumps to jumps

If “L1:goto L2;“ is not further used , remove it!

If “L1:goto L2;“ is not further used , remove it!

20th of March, 2003 Optimizing Compilers 5

Example for Jump Elimination
loop:

b = i < 10;
if (b) goto l1;

goto exit;

l1:
goto l2;

exit:

goto not_here;

l2:
i:=i+1;

goto loop;

not_here:
…

loop:

b = i < 10;
if (b) goto l2;

goto not_here;

l2:
i:=i+1;

goto loop;

not_here:
…

Swapped condition: one “goto l2” can be eliminated!

20th of March, 2003 Optimizing Compilers 6

Jump Elimination(2)

...

goto L1;
L1:

...

(L1:)

• Useless Jumps

goto L1;

...

L1:if (b)goto L2;
L3:

if (b) goto L2;

goto L3;

...
(L1:if (b)goto L2;)

L3:

• Jumps to conditional jumps

“L1:“ might be still a target. If not, remove it!

“L1:“ might be still a target. If not, remove it!

3

20th of March, 2003 Optimizing Compilers 7

Approach for Jump Elimination

Find jump template

Replace jump destination found

not found

• Approach
– iterative recognition and replacement of jumps

– e.g. there can be jumps to jumps to jumps …..

(Eliminate dead jump)

20th of March, 2003 Optimizing Compilers 8

Example for Jump Elimination(2)

goto l1;
l1:

goto l2;

l2:
goto l3;

l3:

goto l4;

l4:

goto l4;
l1:

goto l4;

l2:
goto l4;

l3:

goto l4;

l4:

• Jumps to Jumps:

20th of March, 2003 Optimizing Compilers 9

Basic Block Straightening

• Problem
– connect two consecutive blocks

• Effect
– reduce code size (eliminate jumps)
– improve run-time

• Approach
– check control-flow graph for consecutive blocks
– aggregate blocks

4

20th of March, 2003 Optimizing Compilers 10

Basic Block Straightening(2)

• Analysis: find an edge (u,v) E such
that succs(u)={v} preds(v)={u}.

• Transformation: merge basic blocks and remove jump
• Iterative approach: until no basic block can be merged

u

v

u

v

20th of March, 2003 Optimizing Compilers 11

Example

• Analysis: find an edge (u,v) E such
that succs(u)={v} preds(v)={u}.

• Transformation: merge basic blocks and remove jump

a=10;

goto l2;

l1:
c=a*b;

goto l3;

l2:

b=a+2;
goto l1;

…

l3:

a=10;

b=a+2;
c=a*b;

goto l3;

...

l3:

20th of March, 2003 Optimizing Compilers 12

Basic Block Reordering

• Problem
– How can I order basic blocks such that the number of jumps

get minimal?
– Generalized approach for basic block straightening

• Effect of Basic Block Reodering
– reduce code size (eliminate jumps)
– improve run-time

• Approach
– Solve it and get the chocolate award!

5

20th of March, 2003 Optimizing Compilers 13

Sequences of Basic Blocks

• Different sequences of basic blocks yield different costs
• There are N! different sequences
• Obvious: brute force is too expensive.

start

end

B1

B2 B3

startstart B1B1 B2B2 B3B3 endend

startstart B1B1 B3B3 B2B2 endend

startstart B3B3 B2B2 B1B1 endend

S1:

S2:

S6:

20th of March, 2003 Optimizing Compilers 14

Costs of a Sequence

• Local costs
– jumps at the end of basic block cause costs
– at most two jumps at the end of a basic block
– suppose that the branch frequency is given, i.e

f: E Z+

– assume that there are constant costs for a jump
j: E Z+

– local costs constitutes of the decision which basic block is
the subsequent basic block

– introduce sequence predicate seq(n1,n2) for two basic blocks
– define local cost function depending on seq. predicate

cost: N Z+

– there are only three cases of basic blocks

20th of March, 2003 Optimizing Compilers 15

Case 1
• There is no successor of node n
• Successor is arbitrary

• Cost Function

...

return e;

n:

0)cost(n

6

20th of March, 2003 Optimizing Compilers 16

Case 2
• One successor node s of node n

• Cost Function

...

goto l1;

n: ...

l1:
...

s:

...

n:

s:

otherwise),,(),(

),(seq,0
)cost(

snfsnj

sn
n

seq(n,s): seq(n,s)

20th of March, 2003 Optimizing Compilers 17

Case 3
• Two successors s1 and s2 of node n

...

if(b) l2;

goto l1;

n: ...

if(b) l2;

l1:

...

s1:

n:

otherwise),,(),(

),(seq),(seq),,(),(

),(seq),(seq),,(),(),(),(

)cost(

11

2122

212211

snfsnj

snsnsnfsnj

snsnsnfsnjsnfsnj

n

seq(n,s1) seq(n,s2)

l2:

...

s2:

l1:
...

l2:
...

s1:

s2:

seq(n,s1) seq(n,s2)

...

if(!b) l1;

n:

l2:
...

l1:
...

s2:

s1:

seq(n,s1) seq(n,s2)

20th of March, 2003 Optimizing Compilers 18

Optimization Problem

• Global costs should be minimal

• Correctness issue
– only one node can be a subsequent node of another one

(except start node)

• Algorithm???
Try hard and get the chocolate award!!

minimal)cost(
Nn

n

7

20th of March, 2003 Optimizing Compilers 19

miniC Project

• OIL language features:
– intermediate language
– quad-code
– subset of C without types
– restricted control statements (if, goto, labels)
– no global variables, simple functions

• compiler already implemented (source-to-source)
• add optimizations (analysis/transformations)

minicOIL-
program

C-
program

20th of March, 2003 Optimizing Compilers 20

Translation

• MiniC compiler does not provide main() function
• write your own main-stub that calls OIL functions
• compile MiniC to C
• compile main-stub
• link generated C-code and main-stub
• use Makefiles to drive the whole code generation

minicOIL-
program

C-
program

Main-Stub
(C-program)

C-
Compiler Object

20th of March, 2003 Optimizing Compilers 21

miniC Example

// factorial number

fac(x)
{

b = x <= 1;

if (b) goto L1;

a = x - 1;
r = fac(a);

r = x * r;

return r;
L1:

return 1;

}

long fac(long __x)

{
long __r,__a,__b;

(__b = (__x <= 1));

if (__b) goto _L1;
(__a = (__x - 1));

(__r = fac (a));

(__r = (__x * __r));
return __r;

_L1: ;

return 1;
}

OIL C-Output

8

20th of March, 2003 Optimizing Compilers 22

miniC Framework

• basic functionality is implemented
• available as tarball

www.complang.tuwien.ac.at/scholz/lecture/

• not mandatory: you can develop from scratch
• untar: tar zxvf minic.tgz
• build miniC-compiler (in src/ directory): make

• compile miniC-testcode (in example/ directory):
./minic –otest.c test.mc

• compile produced C-Code in (example/ directory):
gcc test.c test_main.c

• execute (in example/ directory):
./a.out

20th of March, 2003 Optimizing Compilers 23

miniC Source Files

makefile to build minic

set library

Makefile

sbitmap.[c|h]

header fileminic.h

helper functions to allocate data structuresalloc.c

functions to produce C-code

build symbol table

output.c

symtab.c

scanner

syntax analysis, build internal data structure

scan.l

parser.y

DescriptionModule

• source directory src/

• example directory example/
– bubble.mc, fac.mc, and main-stubs

• script ./run for building framework and examples

20th of March, 2003 Optimizing Compilers 24

miniC Data Structures
• keep it as simple as possible
• efficiency is not (so) important
• data structures

– expressions (struct expr)
– statements (struct stmt)
– functions (struct func)
– symbol lists (struct sym)

• simply linked lists
• don‘t care about memory leaks

9

20th of March, 2003 Optimizing Compilers 25

Stop

• Next lecture: 3.4.2002, 13:45 – 14:45
• No lecture next week!!
• Hand in 1st assignment!

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

