
1

13th of March, 2003 Optimizing Compilers 1

Optimizing Compilers

Bernhard Scholz

Institut f. Computersprachen

Argentinierstr. 8
scholz@complang.tuwien.ac.at

13th of March, 2003 Optimizing Compilers 2

Objectives

• Overview of optimizing compilers

• Program analysis and transformations

• Algorithms and data structures for performing analysis
and transformation

• Hands-on exercise:
write your own optimizing compiler, i.e. MiniC

13th of March, 2003 Optimizing Compilers 3

References

• Material for this course
www.complang.tuwien.ac.at/scholz/lecture/

• Material for Übersetzerbau
www.complang.tuwien.ac.at/ublu/

• Books
Appel: Modern compiler implementation
Aho, Sethi, Ullman: Compilers
Muchnik: Advanced Compiler Design & Implementation
Zima: Supercompilers for Parallel and Vector Computing

2

13th of March, 2003 Optimizing Compilers 4

Compilers

compilersource
program

target
program

error
messages

• Optimizing compiler
- translation considering specific objectives,
e.g. run-time, code-size, power-consumption

- conflicting goals

13th of March, 2003 Optimizing Compilers 5

Intermediate Language(IL)

C

C++

Pascal

Ada

Sparc

MIPS

Pentium

Alpha

C

C++

Pascal

Ada

Sparc

MIPS

Pentium

Alpha

IL

• IL is an abstract machine language on high level
• Decouple front end from back end

• without IL

n languages, m targets n m compilers
• with IL

n front ends, m back ends
• Problem: loss of high-level information

13th of March, 2003 Optimizing Compilers 6

Intermediate Language(2)

• High-level
– quite close to source language
– e.g. abstract syntax tree.
– code generation issues are quite clumsy in high-level IL

• Medium-level
– have some low-level features for code-generation
– represent source variables, temporaries, and registers
– reduce control flow to conditional and unconditional

branches.
– adequate IL to perform machine-independent optimizations

• Low-level
– correspond to target-machine instruction

3

13th of March, 2003 Optimizing Compilers 7

Our Intermediate Language(OIL)

• only one data type (word)
• no global variables
• functions

– parameters
– return value
– no declaration for local

variables

• Statements
– assignments
– branches
– function calls
– return statements

// factorial number

fac(x)
{

b = x <= 1;

if (b) goto L1;
a = x - 1;

r = fac(a);

r = x * r;

return r;
L1:

return 1;

}

13th of March, 2003 Optimizing Compilers 8

Optimizing Compilers

Frontend Backend

lexical analysis

syntactic analysis

semantic analysis

translation

source
program

token
sequence

abstract
syntax tree

high-level
optimizations

medium-
level IL

code generation

assembly

low-level
ILlow-level

optimizations

13th of March, 2003 Optimizing Compilers 9

Optimization

• Analysis
– properties of programs
– safe, pessimistic assumptions

(input & paths not known a priori)

• Transformation: based on Analysis

Intermediate
Language

Intermediate
Language

Transformation

Analysis

Optimization

Intermediate
Language

Intermediate
Language

4

13th of March, 2003 Optimizing Compilers 10

A Brief Optimization Taxonomy

• Context
– expression (statement level/local)
– basic block (local)
– procedure (intra-procedural)

– whole program (inter-procedural)

• Type
– static (without runtime information)
– feed-back (with runtime information)
– dynamic (during runtime)

13th of March, 2003 Optimizing Compilers 11

Optimization Examples

• algebraic simplification: x+0
• constant propagation: x=2; ...; y = 2+x;
• common sub-expressions: x=(a*b)/c; y=(a*b)*2;
• dead variables: x=(a+b); …; x = 5;
• copy propagation: x = y; …; z = x;
• dead code: b=0; if(b)
• code motion: if(b) x=(a+b); else x=(a+b);
• function inlining: int inc(i) {return i+1;}

13th of March, 2003 Optimizing Compilers 12

Basic Blocks

• unit of translation, i.e. important data structure
• sequence of consecutive statements
• enters at the beginning and leaves at the end

1. Determine the set of leaders
• First statement of a function
• Any statement that is the target of a conditional or

unconditional jump

• Any statement that immediately follows a goto, conditional
jump, or return statement

2. For each leader: all statements up to but not including
the next leader or the end of the function.

Algorithm:

5

13th of March, 2003 Optimizing Compilers 13

Example for Basic Blocks

// factorial number

fac(x)

{
b = x <= 1;

if (b) goto L1;

a = x - 1;
r = fac(a);

r = x * r;

return r;
L1:

return 1;

}

Intermediate code

b = x <= 1;

if (b) goto L1;

a = x - 1;

r = fac(a);
r = x * r;

return r;

L1:
return 1;

B1:

B2:

B3:

Basic blocks of code

13th of March, 2003 Optimizing Compilers 14

Function Calls in Basic Blocks

• Can call instructions cause a problem?
– in most cases: need not be considered

• Fortran:
– alternate return can be programmed
– therefore: a call might be a basic block boundary

• C:
– features inter-procedural control-flow
– setjump/longjump
– watch out, this might have nasty side-effects

• Pascal:
– goto-statements leaving procedure-boundaries
– simplified setjump/longjump version

13th of March, 2003 Optimizing Compilers 15

Control-Flow Graph (CFG)

• Fundamental data structure
– for inter-procedural optimizations,
– for data flow analysis

• Control-flow graph
– rooted directed graph with nodes and edges
– nodes are basic blocks
– edge represents flow of control
– two unique nodes: start/end node
– add artificial end node if several exits exist

6

13th of March, 2003 Optimizing Compilers 16

Example for Control-Flow Graph

b = x <= 1;

if (b) goto L1;

a = x - 1;

r = fac(a);
r = x * r;

return r;

L1:
return 1;

B1:

B2:

B3:

Basic blocks start

end

B1

B2 B3

CFG

13th of March, 2003 Optimizing Compilers 17

Control-Flow Graph(2)

• CFG is a directed graph G N,E,start,end
– N set of nodes (basic blocks)
– E N N set of edges
– start node start

– end node end

• Predecessors
preds(x) = u (u,x) E

• Successors
succs(x) = u (x,u) E

• Start /end node properties
preds(start) = {} (start node has no predecessors)
succs(end) = {} (end node has no successors)

13th of March, 2003 Optimizing Compilers 18

Example(2)

start

end

B1

B2 B3

CFG

{}{B2, B3}end

{end}{B1}B3

{end}{B1}B2

{B2, B3}{start}B1

{B1}{}start

succs(u)preds(u)u

Predecessors and Successors

7

13th of March, 2003 Optimizing Compilers 19

Paths in Control-Flow Graphs

• Path
– sequence Nk of nodes
– nodes are connected by an edge

• Example
– start,B1,end , start,B1,B1,end

– start,end is not a path

• Definition
– A sequence of nodes u1, u2,…, uk is

a path iff (ui,ui+1) E for all 0<i<k.

– A program path is path start, u2,…, end .

start

end

B1

CFG

13th of March, 2003 Optimizing Compilers 20

Unreachable-Code Elimination

• Problem
– not all basic blocks are reachable from start node
– cannot be possibly be executed
– there are no paths from the entry to the block

• Effect
– no direct effect on the execution speed
– decreases code-size

• Analysis
– compute for all blocks reachability,

i.e. exists a path from start node to a node
– reverse analysis result for obtaining unreachable blocks

• Transformation:
– remove all unreachable basic blocks

13th of March, 2003 Optimizing Compilers 21

Example for UC-Elimination

L0:
b = x <= 1;

goto L3;

L2:

a = x - 1;

r = x * r;

if(b) goto L1;

L3:

if(b) goto L0;

B1:

B3:

B4:

Basic blocks of code start

end

B1

B3 B4

CFG

L1:

b = x <= 1;

goto L2;

B2:

B2

un-reachable
blocks: B2, B3

8

13th of March, 2003 Optimizing Compilers 22

Analysis for UC

• Approach
– work-list W

– reachable set of nodes R

– node n is reachable if
n R

– basic block delete-able if
n R

• Complexity
O(|N|^2)

R =

W = {start}

repeat

R = R W;

for all n W do

W=(W succs(n))-R

end for

until W = ;

Algorithm

13th of March, 2003 Optimizing Compilers 23

Example for UC-Elimination(2)

• Unreachable blocks

1. W={start} R={}
2. W={B1} R={start}
3. W={B4} R={start,B1}
4. W={end} R={start,B1,B4,end}
5. W={} R={start,B1,B4,end}

• Iteration steps
start

end

B1

B3 B4

CFG

B2

N-R={B2,B3}

• Remark
B1 is not added to W in step 4
(is already in R!)

13th of March, 2003 Optimizing Compilers 24

Stop

• Next lecture: 20.3.2003, 13:45 – 14:45

• Assignment: due to 20.3.2003

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

