
Dynamic Binary Translation ∗

Mark Probst
CD Laboratory for Compilation Techniques

http://www.complang.tuwien.ac.at/schani/

Abstract

This paper presents an overview of dynamic binary
translation. Dynamic binary translation is the pro-
cess of translating code for one instruction set ar-
chitecture to code for another on the fly, i.e., dy-
namically. Dynamic binary translators are used for
emulation, migration, and recently for the economic
implementation of complex instruction set architec-
tures.

Most of the problems occuring in dynamic binary
translation are discussed and solutions are presented
and weighed against each other.

Finally, the dynamic binary translator bintrans,
developed by the author, is presented.

1 Introduction

Binary translation is the process of translating ma-
chine code (binaries) from one instruction set archi-
tecture to another, for the purpose of running a pro-
gram written for the one instruction set on the other
one. Systems doing this are usually referred to as
“emulators”. Binary translation, hence, is an effi-
cient form of emulation.

Most binary translation systems currently in use
are migration tools which aid the transition from old
architectures to newer ones. A recent prominent ex-
ample for binary translation not following this pat-
tern is the Transmeta Crusoe processor, which dy-
namically compiles x86 machine code to a proprietary
VLIW machine code.

Binary translation can be done statically by trans-
lating a whole binary to a new binary for the tar-

∗This work is partially supported by the Austrian Science
Fund as part of Project “Compiler Based Disjoint Eager Exe-
cution” under Contract P13444.

get platform, or dynamically, by translating code
on the fly. For von Neumann architectures, where
code and data reside in the same memory, static bi-
nary translation is never a complete solution, due to
problems such as dynamic linking and self-modifying
code. Dynamic binary translation overcomes these
problems, while at the same time creating new ones.
Most prominently, dynamic binary translators must
be fast. Otherwise the translation overhead would be
higher than the cost of running the translated code.

This paper discusses the most important issues
arising in the design of a dynamic binary transla-
tor. We will use the terms “foreign” and “native” to
distinguish between the platform which is to be em-
ulated and the platform on which the emulator is to
be run.

The paper is structured as follows. Section 2 de-
scribes the differences between emulating a whole
hardware platform and emulating the user-level envi-
ronment which an application sees. This paper does
not discuss in detail issues of the former approach.
Section 3 lays out the overall architecture of a dy-
namic binary translator. Section 4 discusses instruc-
tion selection, which means choosing which native in-
structions to use to implement a foreign instruction.
Section 5 describes how to handle the issue of dif-
ferent byte order between the foreign and the native
platforms. Section 6 discusses several issues regard-
ing the emulated address space. Section 7 presents
several ways of mapping foreign registers to the na-
tive register set. Section 8 argues why self-modifying
code is a problem for a binary translator and presents
solutions. Finally, section 9 briefly presents the dy-
namic binary translator bintrans, developed by the
author at the Vienna University of Technology and
hopefully released as Free Software by the time you
read this.



2 Emulation at System-Level
versus at Application-Level

There are two common ways of making an applica-
tion run under a foreign system (hardware/operating
system combination).

The first one is to emulate the complete foreign
hardware and let the foreign operating system run
under this emulation. Systems taking this approach
include VirtualPC [5], VMWare [9], and Bochs [1].
Emulating a hardware platform usually involves em-
ulating that hardware’s memory management unit
(MMU), it’s peripherals (including, for example,
graphics hardware), as well as emulating the foreign
instruction set. Most of the latter is not necessary
when the foreign instruction set architecture is the
same as the native one. VMWare is an example for
such a system.

The second way of running a foreign application is
emulating only what the application sees of the sys-
tem. This usually means emulating the system call
interface as well as the foreign instruction set archi-
tecture. A prime example of this approach are Dig-
ital’s VAX and MIPS to Alpha migration tools mx
and vest [7]. An example which only involves emu-
lating the system call interface is FreeBSD’s ability
to run Linux i386 binaries on i386 systems. Wine
takes an even higher-level approach in not emulating
the Windows system call interface (native ABI) but
in providing its own implementation of the system
libraries (DLLs).

Both approaches have their merits and disadvan-
tages. System-level emulation makes it possible to
run arbitrary operating systems running on the for-
eign hardware. It also makes sandboxing the emu-
lated system very easy.

Application-level emulation, on the other hand,
provides much nicer integration of the foreign appli-
cation into the native environment. Also, since only
the system call interface has to be emulated, as op-
posed to the whole hardware platform, application-
level emulation is usually easier to implement as well
as more efficient, if only for the reason that the op-
erating system runs natively, i.e. at full speed.

This paper does not discuss issues of system-level
emulation.

3 Overall Architecture

The architecture of a dynamic binary translator is
very similar to that of other Just-in-time compilers.

In the simplest case, the binary translator is a pro-
cess running the foreign application in its own address
space. For more elaborate schemes, see section 6.
The first step is loading the foreign application.

After that, several initialization steps must be
taken. In the case of UNIX-like foreign platforms,
the stack of the foreign application must be initial-
ized to hold the environment variables, command line
parameters and other information in a specific for-
mat. Furthermore, the registers of the foreign ma-
chine must be initialized.

Now, the foreign application can be started, which
means beginning to execute its machine code, start-
ing at the start address (which is specified in the ex-
ecutable file). The obvious strategy for a dynamic
binary translator is to always translate foreign code
to be executed and to execute the generated target
code. It could, for example, translate from the first
instruction to be executed up to and including the
next jump. More elaborate schemes are discussed in
section 3.4.

The jump would be translated into target code
jumping to a so-called “dispatcher”. The dispatcher
is given an address in the foreign application and has
the duty of resuming execution of the foreign appli-
cation at that address. It usually does this by first
checking whether the code at that address has already
been translated. If it has, the corresponding target
code is executed. If it hasn’t, it will be translated
first. That way, control switches back and forth be-
tween the dispatcher and the generated native code,
with the dispatcher sometimes calling the compiler
to translate yet-unknown foreign code.

3.1 System Calls

To be useful, an application must have some contact
to the “outside world”. In modern operating systems,
this is achieved via system calls. A system call is ini-
tiated via some special instruction. On the i386 un-
der Linux, this is the “int $0x80” instruction. That
instruction performs a context switch into the oper-
ating system kernel. The kernel’s system call handler
examines the application’s state (usually its register

2



contents) to determine which system call to perform
and to get its parameters, if any. The encoding of
information to be passed from the application to the
kernel and vice versa is referred to as the “system call
interface”.

The system call interfaces between the foreign and
the native platform usually differs. Differences can
range from different system call numbers, over differ-
ent structure layout, to foreign system calls which are
not available on the native platform. That alone is
reason enough why the binary translator must handle
system calls of the foreign application. Another rea-
son is that some system calls must be handled differ-
ently in the presence of a dynamic binary translator,
for example because they could allow the foreign ap-
plication to meddle with the binary translator’s state.
Memory management system calls are an example of
this kind (see section 6).

In order to handle foreign system calls, the trans-
lator must make the code generated for a system call
instruction jump to a system call handler. That sys-
tem call handler is similar to the handler in a kernel.
First, it must determine which system call is to be
invoked. Depending on the system call, it must de-
code the paramaters passed by the application. The
actual handling of the system call depends very much
on its nature. Some system calls (like write) can be
passed directly to the native kernel, while others (like
mmap) must be handled by the binary translator. In
that sense, the dynamic binary translator takes over
the role of the operating system kernel from the point
of view of the foreign application.

3.2 Patching of Direct Jumps

We previously layed out that the generated code
would have to jump to the dispatcher whenever the
foreign application performed a jump instruction.
The dispatcher would then have to look up the na-
tive address corresponding to the foreign address to
be jumped to (or compile the foreign code first, if
necessary). Then it could jump to the native code.

Given that jump instructions are executed very fre-
quently (once every ten instructions is a good esti-
mate for many programs), the dispatcher can easily
become a tight bottleneck.

A simple solution to this problem is to modify the
code for a direct jump once the target code has been

translated. Instead of transferring control to the dis-
patcher, the new code simply jumps to the native
code corresponding to the foreign target code.

It is possible to do this with very little overhead.
If the dispatcher can be passed the native address
from where it was jumped to, i.e., the address of the
jump that has to be modified, it can easily perform
that modification after having looked up or translated
the target code. An easy way of providing the dis-
patcher with that information is to use a subroutine
call instruction (like call on the i386 or bl on the
PowerPC) to transfer control to it from the native
code.

3.3 Translation Cache

The memory region where generated code is placed
is commonly called the “translation cache”. Usually,
this is a memory block which is filled in a linear fash-
ion. Sometimes, the generated code fills up the trans-
lation cache. In such a situation, several strategies
are possible.

The simplest one is to discard the contents and to
start translation anew. This can become a problem
when the native code for the working set of the for-
eign application is larger than the translation cache.
In that case, the dynamic binary translator would
thrash, much like an operating system does when
a program’s working set is larger than the physical
amount of memory.

Hence, the binary translator should include some
heuristic for determining when the translation cache
needs to be enlarged. One indication is that the time
the cache takes to get filled up is short.

It might seem a good idea to never purge the trans-
lation cache and simply enlarge it whenever neces-
sary. This might, however, lead to excessive memory
usage for large foreign applications. When running a
large application, eventually nearly every part of the
application will have executed at least once, but the
working set at any given time during execution will
usually be much smaller than the size of the whole
application.

3.4 Unit of Translation

One of the major design decisions for a dynamic bi-
nary translator is when to translate and what (or how

3



much).
The answer to the first question seems obvious:

translate whenever code has to be executed which
has not already been translated. This is not strictly
necessary, however.

A different solution is to use an interpreter by
default and to only translate pieces of foreign code
which are executed frequently, using some appropri-
ate definition of “piece of code” and “frequently”.
Such an approach has several advantages. First, less
target code is produced, resulting in more efficient
use of the translation cache and possibly a smaller
working set, which improves cache performance. Sec-
ond, since the compiler is used less frequently and the
code it translates is likely to execute very often, it can
spend more time generating better target code.

A promising new technique for choosing which
pieces of code to translate has been pioneered by Dy-
namo [4], which is a dynamic optimization frame-
work. Although Dynamo does not translate between
different architectures, the technique used there can
be applied to dynamic binary translators as well. The
unit of translation is a trace. A trace is a sequence
of instructions likely to be executed as a whole. It
has a single entry-point and one or more exit points.
One way to think of a trace is as a path through a
control flow graph. If that path is executed very of-
ten, the spatial locality of the trace alone can speed
up execution significantly due to better cache usage.
Furthermore, several optimizations can be applied to
traces. See the paper on Dynamo [4] for a detailed
discussion.

We will subsequently refer to the unit of translation
as “fragment”.

4 Instruction Selection

Instruction selection is the process of selecting ma-
chine instructions for a source program. In our case,
the source program is the foreign machine code.

A very simple instruction selector in a binary trans-
lator would have a fixed sequence of native instruc-
tions for each foreign instruction, which is generated
whenever that foreign instruction has to be trans-
lated. This approach may work well if the native in-
struction set is semantically very rich or the foreign
instruction set semantically poor. For example, an

add instruction can usually be translated directly to
a native instruction doing the same thing. In general,
though, this will not give good results.

Take, for example, rlwinm on the PowerPC. The
instruction “rlwinm r3,r4,8,5,15” has the follow-
ing meaning: Rotate the contents of register r4 8 bits
to the left, then do a bit-wise AND with a bit-mask
which has bits 5 to 15 set, and put the result in reg-
ister r3. Doing the very same thing on the Alpha
takes 6 instructions, not counting the generation of
the bit-mask. However, there are lots of special cases
of rlwinm which can be handled quite efficiently on
machines like the Alpha. For example, logical right
and left shifts are implemented using rlwinm on the
PowerPC. Hence, an instruction selector should iden-
tify special cases of instructions which can be imple-
mented more efficiently than the general case.

4.1 Operands

The operand forms of foreign architecture instruc-
tions are an important consideration when writing
an instruction selector. In fact, when translating an
instruction set with complex operand forms, like the
i386, handling operands correctly is one of the hard-
est parts.

The easiest operand to handle is a register. Given
that the foreign register value somehow materializes
in a native register (see section 7 for details on reg-
ister allocation), that native register is simply given
as an operand to the native instruction.

Immediates, although seemingly easy, are a bit
more difficult to handle. The reason is that the sizes
of immediates differ between instruction set architec-
tures. The i386, for example, supports immediates
ranging from 8 to 32 bits. On the PowerPC, imme-
diates are most often 16 bits long. Depending on
the instruction, they are sign extended or zero ex-
tended1. When confronted with a 32 bit immediate,
which, for example, needs to be used in a native in-
struction which only supports 16 bit immediates, one
should check whether that immediate fits into 16 bits.
If it does, the immediate can be used without further

1Extension refers to the process of transforming an n bit
number into an n + m bit number. Zero extension simply
prefixes the number with m zero bits, while sign extension
prefixes the number with m bits, the value of which is the
most significant (i.e. left-most) bit of the original number. Sign
extension preserves the value of a two’s complement number.

4



ado, otherwise it must be loaded into a register first.
On most RISC architectures, loading a 32 bit value
into a register costs either a load instruction or two
non-memory instruction. Usually, two non-memory
instruction will perform better.

More complex operand forms, like an i386 scale-
index-base operand, usually require one or more na-
tive instructions to generate the operand.

4.2 Condition Bits

One of the most difficult aspects to implement cor-
rectly and efficiently in the translation of an instruc-
tion set architecture to another is the handling of
conditionals and status bits.

In this section, we will first describe condition han-
dling on the PowerPC, the Alpha, and the i386. Then
we will discuss how such systems can be mapped to
one another.

The Alpha’s condition handling is by far the sim-
plest of the three. Compare instructions compare
the contents of two registers and produce either 1
or 0 in a target register, depending on whether the
tested relation holds between the two registers or not.
For example, the instruction “cmpeq $1,$2,$3” tests
whether the registers $1 and $2 are equal. If they
are, register $3 is set to 1. If they are not, it is
set to 0. Conditional branch instructions branch de-
pending on the value in a register. The instruction
“beq $3,target” branches to target if the value of
the register $3 is equal to zero. If it is not, it falls
through.

The PowerPC has a special purpose register called
the “condition register”, which can be seen as 8 sep-
arate 4 bit fields. Each comparison instruction sets
one of those fields. Three of the four bits are set to
the results of the comparison (less than, greater than,
equal). The fourth bit is set to a copy of a specific
bit of another register, the purpose of which is not
relevant for our discussion. A conditional branch in-
struction branches on an individual bit (specified as
an immediate operand of the instruction) in the con-
dition register. Many PowerPC instructions have an
alternative form which automatically compares the
result of their operation with zero and set the first
condition register field (the four most significant bits
of the condition register) accordingly. For example,
the instruction “addi. r3,r3,-1” decrements the

register r3 by one and compares the result to zero.
Bits 0, 1, and 2 of the condition register2 are set
to whether the result is less than, greater than, or
equal zero. The instruction “bs 2,target” branches
to target if bit 2 in the condition register is set (in
our case corresponding to whether the result of the
addi. instruction was equal to zero), otherwise it
falls through. Additionally, the PowerPC has an in-
teger exception register (XER) holding, amongst oth-
ers, two bits which can be set to the carry and over-
flow of arithmetic operations.

The i386 has four condition bits3 of interest, which
reside in the flags register. Their contents reflect
whether a value has its sign bit set, whether it is
equal to zero, and whether an arithmetic operation
generated carry and overflow. A compare instruc-
tion is just a subtract operation setting those bits
depending on the result. Arithmetic relations can be
determined by examining these bits.

Deciding how to generate code for setting and ex-
amining these bits on the native architecture depends
very much on the foreign-native combination. Fortu-
nately, it is not always necessary to compute all con-
dition bits whenever a foreign instruction would do
that. Especially on the i386, condition bits are very
often computed and not used afterwards, i.e., written
over without being read. Simple liveness analysis [3]
can determine lots of such dead computations.

For an i386 to PowerPC translator, the four i386
condition bits can be mapped to two bits in the con-
dition register (equal and less than) and to the carry
and overflow bits in the integer exception register.
That way, computing them costs little extra effort.
An addition of two registers correctly setting all four
bits, for example, requires only an addco. instruc-
tion. Examining the bits sometimes requires moving
bits out of the integer exception register into the con-
dition register, which costs an extra instruction.

On the Alpha, generating the i386 condition bits
costs much more effort. In such a translator, it is
beneficial to reserve a native register for each of the
four bits.

The PowerPC condition bits can be surprisingly

2Bits are counted starting with the most significant one in
the PowerPC architecture. Hence, bit 0 is the most significant
bit.

3There are two others, namely the parity bit and the aux-
iliary carry bit, but they are used extremely rarely these days.

5



efficiently mapped to the Alpha. It helps to observe
that the first (leftmost) condition register field is by
far the one used most often. Efficient handling of the
other 28 bits is not crucial for good emulation speed.
An approach giving good results is to use a native
register for each of the four bits in the field. That
way, computation and access of a bit costs only one
instruction each. It might be still better to keep all
four bits in a single Alpha register. By virtue of the
Alpha’s conditional move instruction, each bit com-
putation still costs only one instruction. However,
accessing a bit costs two instructions in the general
case, because the correct bit has to be selected first.
This cost might be returned by the fact that it re-
quires three native registers less than the other ap-
proach, hence requiring less loads and stores for reg-
ister mapping (see section 7).

It is unclear how PowerPC condition bits can be
efficiently mapped to the i386. To our knowledge,
there is no published example of such a system.

4.3 Intermediate Representations

So far, we have focused on generating native code di-
rectly from foreign machine code. In classic compiler
design [3], however, source code is first transformed
into some intermediate representation (IR), which is
then optimized. Afterwards, a code generator gener-
ates target assembler or machine code from the opti-
mized IR.

IRs have at least two important advantages. First,
it is easier to perform optimizations on IRs than to
transform either the source or the target code. Sec-
ond, IRs separate the front end, the optimizer, and
the back end. Once there is a back end for, say,
the Alpha and the SPARC, it would suffice to write
a front end translating i386 code to the IR to get
full-blown i386 to Alpha and i386 to SPARC trans-
lators. Furthermore, optimizations could be written
independently from source or target machine.

In the context of dynamic binary translation, how-
ever, IRs have two distinct disadvantages. First, go-
ing through an IR is slower than translating directly
from source to target code. The dynamic binary
translator UQDBT [8], for example, reportedly uses
180,000 machine cycles to translate one byte of Pen-
tium code to SPARC code, on average. Second, it is
hard to come up with an IR which can capture all

architecture idiosynchrasies, like condition bits, and
at the same time making generation of efficient target
code possible for these specialities. These difficulties
make IRs for dynamic binary translation an interest-
ing area for future research.

5 Byte Order

Today, there are two common ways of storing multi-
byte entities to memory. Little-endian byte order
stores less significant bytes on lower addresses while
big-endian does it the opposite way. Say we wanted
to store the 4-byte word 0x00010203 at address 0x80.
This is how the memory contents would be after the
store:

Address 80 81 82 83
Little Endian 03 02 01 00
Big Endian 00 01 02 03

Processors using little-endian order4 are the i386
and the Alpha, while big-endian machines include the
PowerPC and the SPARC.

Clearly, binary translators must somehow make
byte order differences between the native and foreign
systems disappear, should they exist. This section
examines ways to do this.

5.1 Byte Swapping

The most obvious technique for dealing with different
byte order is to change the byte order before stores
and after loads. Newer processores in the i386 line,
for example, provide a byte swap instruction which
handles that task quickly. Similarly, the PowerPC
provides load and store instructions which automati-
cally reverse the byte order. On systems which have
such support, this is a good solution.

5.2 Address Space Swapping

On some architectures, swapping the bytes in a word
may be a quite expensive operation. This can result
in the run-time of a binary translated program to be
dominated by the byte swapping process. On such

4Some processors, like the Alpha and the PowerPC can be
configured to use either byte order. The enumeration states
the configuration they are usually used with.

6



machines, it may be better to do the swapping the
other way around. Instead of swapping the bytes in
a word, one can turn the whole address space upside
down so that the native byte order may be used.

Swapping the address space simply means using
decreasing native addresses for increasing foreign ad-
dresses. The address 0 would be mapped to the high-
est available address, for example, and vice versa.
Hence, byte addresses are simply inverted, which usu-
ally costs one instruction.

For loading and storing words it does not suffice to
invert the address, however. The reason is that when
a memory access instruction is given the address a,
it uses the addresses a, . . . , a + (n − 1) to access an
n byte word, while this technique requires using the
words a, . . . , a−(n−1), where a is the inverted foreign
address. The solution is obviously to subtract n − 1
from the inverted address, which can usually be done
by giving an offset to the memory access instruction
and hence requires no extra instruction.

Most operating systems reserve some portion of an
application’s address space for their use, usually at
the top of the address space. It is quite common, for
example, for an application only having control over
the lower 2 GB of its address space on 32 bit ma-
chines. In such a case a solution would be to invert
all bits of foreign addresses but the most significant
one. If one register can be spared for holding the re-
quired bitmask, this only costs one XOR instruction.

5.3 Address Munging

On some target machines there is a solution available
more efficient than the two discussed above. Assume
we want to emulate a 32 bit system. There are two
observation we are very likely to make (even when
emulating the i386). First, 32 bit memory accesses
are much more frequent than 16 bit and 8 bit ones.
Second, there are very few, if any, unaligned memory
accesses5.

If we had the luck of emulating a machine where all
memory accesses were aligned and for 32 bit words,
we had to do nothing at all and could store the words
in the native byte order. The application had no way
of knowing we were storing the words in a different
byte order.

5Accessing an n byte quantity at address a is an aligned
access if a is a multiple of n.

The situation is more difficult when 16 bit (aligned)
and 8 bit accesses are allowed. Fortunately, all we
have to do to make 16 bit accesses access the correct
half of a 32 bit word, is make it access the other
half than it would access with a given foreign address
without our intervention. This can be accomplished
by inverting the second least significant bit of the
address. The same technique can be applied to 8 bit
addresses: Inverting the two least significant bits of
an address is sufficient.

This leaves us with the case of unaligned addresses.
Assume we are emulating a big-endian machine on
a little-endian machine with the technique just de-
scribed. After storing 0x00010203 at address 0 and
0x04050607 at address 4, the application assumes the
memory contents to be thus:

00 01 02 03 04 05 06 07

while in fact they are

03 02 01 00 07 06 05 04

A load at address 2 would be expected to fetch the
word 0x02030405, but we would load 0x06070001.
Somehow, we need to catch unaligned memory ac-
cesses.

Fortunately, some machines, like the Alphas do
not handle unaligned memory accesses at all. In-
stead, they treat them as exceptions and let the soft-
ware handle them. On such machines, it is easy to
catch such an exception, examine the instruction that
caused it, and fix up the memory access, i.e., per-
form the correct operation and resume execution of
the code.

6 Address Space

Unless the dynamic binary translator is part of the
operating system kernel, it seems that both the for-
eign application and the binary translator must some-
how coexist in the same address space. This is no
problem if the native platform has a larger address
space than the foreign platform, for example when
emulating a 32 bit platform on a 64 bit one. How-
ever, it has to be dealt with if the address spaces have
the same size.

A simple but for most applications sufficient solu-
tion is to look for some part in the foreign address

7



space which is usually not used. The binary transla-
tor can be compiled and linked to map itself to that
region of memory. It is likely that the foreign and the
native stacks collide, so the stack will usually have to
be relocated as well, which is a simple matter. Addi-
tionally, the binary translator will have to take care
that the foreign application does not meddle with the
translator’s memory region. This will usually involve
forbidding write access to the pages in that region as
well as designing the system call handler in such a
way that attempts to somehow change those pages
or their memory protection will fail.

By using two processes—one for the translator and
one for the foreign application—the binary transla-
tor’s data and code can exist in a different address
space than the foreign application’s. A similar ap-
proach is used by User Mode Linux [2] to give the
user mode kernel and it’s processes different address
spaces. There is one problem, however, which di-
minishes this technique’s attractiveness: Even if the
binary translator existed in a separate process, the
native code generated by it must be in the address
space of the foreign application.

There is a solution to even this problem, albeit
requiring a more difficult strategy. The translator
can be designed so as to generate position indepen-
dent code. Then, whenever the foreign application
needs access to the region occupied by the transla-
tion cache, it can be relocated to another free re-
gion. Since it is highly unlikely that the whole ad-
dress space is used by the foreign application, this
solution can handle all situations occuring in prac-
tice.

There is one caveat, however, to using two sepa-
rate processes. Whenever the generated native code
must transfer control to the dynamic binary transla-
tor, two context switches must take place (one from
the foreign application process to the operating sys-
tem kernel and one from the kernel to the binary
translator process). Context switches are expensive,
hence such control transfer should be avoided.

6.1 Page Sizes

The foreign platform may have a different page size
than the native platform. This can lead to problems
if the foreign application’s workings depend on the
page size.

Page sizes are almost always powers of two, so two
different cases can arise.

If the native page size is smaller than the foreign
page size, there is no problem. The binary translator
can simply treat a number of native pages as a unit.

If it is the other way around, the following prob-
lem can arise. Assume that the foreign pages f1 and
f2 share the same native page n. The foreign ap-
plication may now request that f1 and f2 have two
different memory protection masks. For example, it
could request that f1 be write-enabled, while f2 be
write-protected. The page n, however, can only ei-
ther be write-enabled or write-protected as a whole.

Two solutions exist to this problem. The first one is
very simple, but assumes that the foreign application
is well-behaved and does not actually violate memory
protection. It simply protects a native page with the
bitwise conjunction of the protection masks of the
corresponding foreign pages. In our example, page n
would be write-enabled.

If that approach can not be used, i.e., if the for-
eign application is not well-behaved, a native page
must be protected with the bitwise disjunction of
the protection masks of its foreign pages. In our
example, page n would be write-protected. In that
case, however, whenever the foreign application tried
to write to page f1, which is a legal operation, the
binary translator would violate memory protection,
and hence be delivered a SIGSEGV signal. The sig-
nal handler would have to check whether the access
causing the signal was legal, and if so, would have
to carry out the access by itself. That would require
changing memory protection first to enable the ac-
cess, and then changing it back. All in all, such an
access would involve three kernel traps. This makes it
obvious that this strategy, although correct, is slow.

7 Register Mapping

Different architectures have different register sets. A
binary translator has to somehow map the foreign
architecture’s registers to the native architecture’s.
This section first describes the register sets of three
different architectures and then presents several so-
lutions to the problem of register mapping.

8



7.1 Register Sets

Let us begin with the most widely used
architecture—the i386. This architecture has 8
general purpose registers. Most of these registers
additionally have some special purpose. The esp
register, for example, is used by the instructions push
and pop, acting as a stack pointer. The ecx register
is used as a counter in the repeat instructions, and
registers eax and edx serve a special role in the
multiplication and division instructions. This list
is not exhaustive. A special purpose register called
eflags holds some flag bits, most importantly the
status bits cf, zf, sf, and of, which are discussed in
section 4.2. The i386’s floating point stack will not
be discussed here.

The Alpha, in contrast, has a very simple register
set. It has 31 general purpose integer and 31 gen-
eral purpose floating point registers. Apart from the
floating point status register, it has no user-visible
special purpose registers.

The PowerPC has 32 general purpose integer regis-
ters, 32 general purpose floating point registers, and
five special purpose registers. The link register holds
the return address after subroutine call instructions
(called “branch and link”). The counter register can
be used in conjunction with “decrement counter and
branch” instructions to implement fast loops. The in-
teger exception register holds several status bits for
integer operations, as does the floating point condi-
tion register for floating point operations. Finally, the
condition register holds results of comparisons and is
discussed in section 4.2.

7.2 Direct Mapping

Register mapping is trivial when the native archi-
tecture provides more general purpose registers than
the foreign architecture has registers. Foreign regis-
ters can simply be statically mapped to fixed native
registers for the whole run time. This is usually the
best approach to take whenever possible.

7.3 Registers in Memory

The other extreme is to not statically assign any reg-
ister, but to keep registers in memory by default.
Within fragments, they are loaded into native reg-
isters when needed and stored back to memory at

the end of the fragment. Within fragments, there-
fore, standard local register allocation techniques can
be used. If the native architecture supports memory
operands, like the i386, it may sometimes not be nec-
essary to explicitly load and store a foreign register,
since its memory location can be given as an operand
to a native instruction

The problem with keeping registers in memory is
that because registers are only allocated locally in
fragments, large numbers of loads and stores have to
be executed to get the values of foreign registers into
and out memory. This can become a bottleneck.

7.4 Hybrid Approach

In some circumstances, a hybrid approach may prove
beneficial. Some foreign registers are statically as-
signed to native registers while the others are locally
allocated in fragments as described in the previous
section. Obviously, the registers chosen for static al-
location should be those used most frequently in for-
eign applications.

Unfortunately, not much research has been done
in the area of register allocation for dynamic bi-
nary translators, so there are few results demonstrat-
ing the usefulness—or lack thereof—of a hybrid ap-
proach. One project [10] reports having used this
technique, resulting in good performance. Few de-
tails are given, however.

7.5 Allocating between Fragments

The main problem with keeping registers in memory
by default is that they must be loaded anew in each
fragment and stored at the end if they have been
modified. A better solution would be to carry over
a register allocation from the end of one fragment to
the start of the next one, to save loading and storing
registers which are used by both fragments. In some
way, this would be a global register allocation scheme
acting only on local knowledge, since a dynamic bi-
nary translator does not usually maintain a control
flow graph and live ranges.

Unfortunately, we know of no work in this direc-
tion. Future research will show if and how this can
be made to work.

9



8 Self-Modifying Code

Programs which modify parts of itself present a spe-
cial problem for binary translators. The problem
arises when code which has already been translated is
changed by the foreign program. If the binary trans-
lator is not aware of this change, it will execute the
native code for the previously translated, old version
of the foreign code instead of the modified one.

Self-modifying code occurs in programs which dy-
namically generate code, like just-in-time compilers
and, of course, dynamic binary translators. A spe-
cial case of self-modifying code can occur as a side-
effect of using shared libraries. A shared library may
be loaded dynamically at a certain address. After a
while, it may be unloaded and after that, a different
shared library could be loaded at the same address.
That address would now contain different code than
before. Such cases can arise in applications with plug-
in systems.

8.1 Identifying Modified Code

Depending on the foreign architecture and on the re-
quired accuracy of identification, recognizing modi-
fied code can be very simple to moderately complex.

Most architectures provide instructions for inform-
ing the processor about changed code. This is nec-
essary because modern processors usually have sep-
arate instruction and data caches which may not
be kept in synch automatically. Even on machines
which do keep them synchronized, the processor may
have fetched an instruction which was modified sub-
sequently.

The Alpha, for example, implements a PAL code6

which must be called whenever code has been modi-
fied. It applies to the whole memory contents.

The SPARC takes a more fine-grained approach. It
provides an instruction informing the processor that
an 8 byte block of memory has been modified and
may contain instructions to be executed. This in-
struction usually has to be called several times to
ensure that all modified code is announced.

Due to its history, the i386 architecture does not
provide any such instruction. Instead, the processor
has to identify modified code by itself.

6PAL codes can be thought of as instructions which are
handled in software.

Obviously, recognizing that code has been mod-
ified is easy for foreign architectures which require
that special instructions be called under such circum-
stances.

For foreign architectures like the i386, identifying
modified code is usually done by write-protecting all
pages containing code which has already been trans-
lated. Whenever such a page is written to, the binary
translator traps to a signal handler which can, given
the address to be written to, identify the page with
the to-be-modified code. It is usually not worthwhile
to use a finer granularity than pages. This approach
is also worthwhile for architectures which provide no
fine-grain synchronization instructions, like the Al-
pha, when such fine-grain information is needed.

8.2 Adapting to Modified Code

Given that we know that code has been modified,
and possibly even have a range for the modified code
(e.g., a page), what do we do about it?

Clearly, the simplest solution is to invalidate all
generated native code and start from scratch. This
is also the only viable solution if we cannot identify
which code has been modified and hence must assume
that all code was modified.

A more sensible implementation would only invali-
date native code corresponding to foreign code lying
within the determined range. In the easiest case all
that is necessary is to remove the entries for the frag-
ments in question from the fragment look-up table.

On systems which patch direct jumps (see sec-
tion 3.2), this is not sufficient, however, because code
jumping to the obsolete fragments will still jump
there. There are two solutions to this problem. First,
we could patch the patched jumps back to their origi-
nal form, i.e., to calls to the dispatcher. This requires
knowledge about all jumps in the native code to a
given foreign address. Essentially this means main-
taining a come-from table, containing all addresses of
jumps to a given target address. If such a table can-
not be maintained, or if the overhead is too large, a
better solution is available. Instead of redirecting all
jumps to the invalidated fragments, we can change
the code of the fragment itself (which is no longer
relevant anyway) to simply call the dispatcher. That
means that a jump to the modified code, once it is
translated again, involves two native jumps (first to

10



the obsolete fragment code and from there to the new
native code) when coming from code which was trans-
lated before the code was modified. In practice, this
is usually not a big problem, though. Note however,
that in special cases this strategy might lead to a
chain of jumps through obsolete native code. Malev-
olent foreign code could use this to slow down a dy-
namic binary translator.

9 bintrans

bintrans is a dynamic binary translator developed
by the author at the Vienna University of Technol-
ogy. Its primary aim is to serve as a vehicle for re-
search in dynamic binary translation, with a priority
on supporting multiple foreign-native combinations.
Already, three such combinations are supported:

• PowerPC to Alpha

• i386 to PowerPC

• i386 to Alpha

The best supported combination is currently Pow-
erPC to Alpha, but i386 to PowerPC is quickly gain-
ing ground. This section discusses some of the design
points of the bintrans system.

First of all, bintrans is an application-level bi-
nary translator. Currently, the only supported for-
eign system call interface is Linux’s, but adding oth-
ers is mostly simple, though tedious, work. An effort
is under way, however, to automate most of the tasks
involved in implementing a system call handler.

The unit of translation in bintrans is usually a
sequential block of instructions, ending with a jump.
We have also implemented a method which trans-
lates traces, very similar to Dynamo. It currently
only works with the PowerPC to Alpha translator,
however.

We have experimented with automatically gener-
ating instruction selectors [6]. For regular instruc-
tions, this approach works fairly well. Unfortunately,
it does a bad job dealing with conditions and sta-
tus bits. Two of the three instruction selectors are
currently hand-coded. It turned out that writing an
instruction selector is not as much work as one would
expect. A fairly complete instruction selector can be

implemented in about a month, if there are no un-
usual problems.

Nonetheless, machine descriptions, which describe
instruction formats and instruction semantics, are
still very important in bintrans. We have developed
several programs (or rather, Lisp functions) which
read machine descriptions and produce code operat-
ing on the described instruction set. One such pro-
gram is an interpreter generator. Given a machine
description, it generates an interpreter for the de-
scribed instruction set. Such an interpreter can be
used to get the infrastructure running (for example,
the system call handler) before the instruction se-
lector is implemented. Furthermore, it serves as an
indispensable debugging aid. bintrans has a mode
of operation which runs a program concurrently un-
der the interpreter and with native code generated
by the instruction selector. After each executed frag-
ment, the state of both virtual machines is compared,
and if there is a difference, the process stops. The er-
ror can then usually be found in the fragment trans-
lated most recently. Other things generated from
machine descriptions are disassemblers, composers
(macros which assemble machine instructions, given
the operands), and liveness analyzers.

Byte order is dealt with in bintrans depending
on the native platform. On the PowerPC, we simply
swap bytes when accessing memory, which is very ef-
ficient, since the PowerPC has load and store instruc-
tions which do that implicitly. On the Alpha, we use
address munging. For unaligned accesses, bintrans
receives a SIGBUS signal and fixes up the access.

Register allocation depends on the foreign-native
combination. The only combination supported by
bintrans which does not use direct mapping is Pow-
erPC to Alpha. For this combination, we keep reg-
isters in memory and do simple register allocation
within fragments. We have also experimented with
register allocation between fragments, but have not
achieved significant speed-up yet.

9.1 Availability

The bintrans system will soon be available
under the GNU General Public Licence from
http://www.complang.tuwien.ac.at/schani/bintrans.
Contributors are very welcome.

11



10 Acknowledgements

I thank Eric Traut, from whom I have learned a few
things about dynamic binary translation, and Andi
Krall for supporting me and for his comments on an
early draft of this paper.

References

[1] Bochs. http://bochs.sourceforge.net/.

[2] User mode linux.
http://user-mode-linux.sourceforge.net/.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia. Dynamo: A transparent dynamic op-
timization system. In SIGPLAN ’00 Conference
on Programming Language Design and Imple-
mentation, pages 1–12, 2000.

[5] Connectix Corporation. Virtual PC for Mac.
http://www.connectix.com/products/vpc5m.html.

[6] Mark Probst. Fast machine-adaptable dynamic
binary translation. In Proceedings of the Work-
shop on Binary Translation 2001, September
2001.

[7] R. L. Sites, A. Chernoff, M. B. Kirk, M. P.
Marks, and S. G. Robinson. Binary transla-
tion. Communications of the ACM, 36(2):69–81,
February 1993.

[8] David Ung and Cristina Cifuentes. Machine-
adaptable dynamic binary translation. In Pro-
ceedings of the ACM Sigplan Workshop on Dy-
namic and Adaptive Compilation and Optimiza-
tion (DYNAMO-00), volume 35.7 of ACM SIG-
PLAN NOTICES, pages 41–51, N.Y., Jan-
uary 18–18 2000. ACM Press.

[9] VMWare Inc. VMWare.
http://www.vmware.com/.

[10] Jianwen Zhu and Daniel D. Gajski. A retar-
getable, ultra-fast instruction set simulator. In
Proceedings of the Design Automation and Test
Conference In Europe, 1999.

12


