2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

Towards an Architectural Framework for Agile Software Development

Richard Mordinyi, Eva Kiihn
Space-based Computing Group
Vienna University of Technology

1040 Vienna, Austria
{rm,ek} @complang.tuwien.ac.at

Abstract—One of the ideas of agile software development
is to respond to changes rather than following a plan. Con-
stantly changing businesses result in changing requirements,
to be handled in the development process. Therefore, it is
essential that the underlying software architecture is capable
of managing agile business processes. However, criticism on
agile software development states that it fails to pay attention
to architectural and design issues and therefore is bound to
engender suboptimal design-decisions.

In this paper we propose an architectural framework for
agile software development, that by explicitly separating com-
putational, coordinational, and communicational models offers
a high degree of flexibility regarding architectural and design
changes introduced by agile business processes. The framework
strength is facilitated by combining the characteristics and
properties of state-of-the-art middleware architectural styles
captured in a simple APIL

The benefit of our approach is a clear architectural design
with minimized effects of changes the models have on each
other, accompanied by an efficient realization of new business
requirements.

Keywords-Architectural Styles, Agile Business Requirements,
Agile Software Development, Decoupling, Abstraction

I. INTRODUCTION

Business constantly changes. Therefore, software archi-
tectures should be able to manage agile business processes
and need to have the ability to meet future changes and busi-
ness needs. The field of agile software development [1], [2]
(ASD) addresses exactly the challenges of an unpredictable,
turbulent business and technology environment. Thus, the
question is how to better handle architectural changes, while
still achieving high quality.

For distributed systems it is essential to make use of a
flexible and adaptable platform that can respond to new
requirements in an efficient way. Consequently, the usage
of appropriate architectural styles for the design of software
systems is a challenge. A common approach towards creat-
ing flexible, dynamic business processes and agile applica-
tions is the service-oriented computing style (SOA) [3]. For
instance, the Enterprise Service Bus (ESB) [4] promises to
interconnect and route services in a loosely coupled manner
for a clear separation of business logic and integration logic.
However, an ESB routes service data from one application

978-0-7695-4005-4/10 $26.00 © 2010 IEEE
DOI 10.1109/ECBS.2010.38

276

Alexander Schatten
Complex Systems Desing & Engineering Lab
Vienna University of Technology
1040 Vienna, Austria
alexander.schatten @tuwien.ac.at

to another and usually does not keep the history of messages
and service interaction, i.e. does not maintain a global state.

Thus, the main question in software development regard-
ing software architecture still remains [5]. On the one hand
how many various numbers of eventualities have to be taken
into consideration, and therefore how much time and effort
should be invested into design and implementation of com-
ponents with respect of a good architectural design to cover
all these circumstances, which eventually at the end may be
not used at all. On the other hand, no or hardly any planning
ahead, and at the same time bearing the risk of redesigning
the existing architectural design from the scratch, once it
is not capable of handling the latest requirement. All in
all, it means that architecture and business do not evolve
in the same way and same “’speed” [6]. Problems regarding
architectural and design issues in ASD have been discussed
in several papers, like [7], [8], [9], [10], stating that ASD
fails to pay attention to architectural and design issues and
therefore is bound to engender suboptimal design-decisions.

In previous work [11], we argued that although, soft-
ware systems are usually not built by means of a single
architectural style, there is a tight coupling between the
application and the used style. This implies adaptations of
the application in case the middleware has to be altered due
to changing business requirements.

Extending the ideas in [11], in this paper we propose
the Architecture Framework for Agile processes (AFA)!, in
which it is explicitly distinguished between computational
logic, coordinational and communicational models. The
three models are independent of each other and therefore
AFA offers a high degree of flexibility regarding archi-
tectural and design changes introduced by agile business
processes. Like in [11], our approach combines and includes
the characteristics and properties of the major architectural
styles found in distributed middleware (section IV) captured
in a simple API. AFA can be seen as an abstraction layer
between applications and architectural styles, and as such
it provides loosely coupling between the applications and
their way of coordinating each other, between applications

'an implementation of the framework, called Mozartspaces, can be

downloaded at www.mozartspaces.org

IEEE
computer
® psouety

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on August 03,2010 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

and architectural styles, between the applications and the
way they exchange information.

The benefits of the proposed AFA approach are a) the
efficient realization of changing business requirements af-
fecting the underlying architecture; and b) adaptations of
the architecture transparent to the application resulting in
less complex application logic since it can entirely focus on
its business process.

The remainder of this paper is structured as the following:
section II pictures the use case, section III defines research
questions, section IV summarizes related work, section V
describes the concept and the architecture, while section
VI discusses the proposed concept. Finally section VII
concludes the paper and proposes further work.

II. SCENARIO

In this section, we introduce a fictive scenario, based on
an insurance company and its agents in field services, which
should demonstrate the need for a change in the architecture
due to new business requirements. In section V-C we explain
how AFA abstracts these transitions.

As a starting point let’s assume that agents visiting
potential customers fill in insurance related forms at the cus-
tomer. Due to technical and economical reasons the mobile
agent needs a permanent connection to the main insurance
server of the company, both physically via e.g., UMTS and
logically to its services. However, the required permanent
connection between the agents and the main server hinders
the agents to work efficiently with their customers. The
agents cannot be sure whether the transmission capabilities
of the provider cover the area where the customer lives,
leading to an unreliable customer information management.
This brings in a new requirement demanding the agent capa-
bility of working offline as well, without being dependable
on a permanent connection. However, this leads to a break
in the architecture in the sense that data stored before on
the main server only, has to be partially replicated to the
agents’ mobile devices and persisted there. Therefore, both
the server and the application need to manage their own
data and need to have the capability of synchronizing data
changes.

III. RESEARCH QUESTIONS

Inspired by agile software development and based on
the limitations of traditional middleware technologies with
respect to introduction of new business requirements and
their effects, we wanted to investigate a) the advantages and
limitations of the proposed approach with respect to chang-
ing business requirements, b) what are the advantages of
decoupling the three models, and c) how to realize changing
business requirements transparent to the participating clients.

IV. RELATED WORK

This section summarizes related work on architectural
styles and agile software development.

271

A. Architectural Styles

Distributed middleware are mostly based on either
dataflow style, such as pipes-and-filters, on data-centered
style, i.e. a repository, or on implicit invocations, like
publish-subscribe or event-based [12].

1) Dataflow Architectural Style: Pipes-and-filters, repre-
senting the dataflow style, define independent components
(filters) that can be connected with each other but which
do not know about the existence of other filters [13]. The
connections between filters determine the pipeline. Sharing
data between filters is only possible by passing it from one
filter to the next, even if it is not needed in an intermediary
step. SOA [3] typically makes use of the pipes-and-filters
style. Services can be implemented as filters and the way of
routing messages determines the pipeline that represents the
business logic. The ESB [4] is the major platform used in
SOA offering the necessary functionality in order to make
use of SOA. The ESB discards any service-relevant data after
message delivery. Thus, it cannot offer a shared repository
that clients can use in order to coordinate themselves.

2) Data-centered Architectural Style: The essence of
data-centered styles is that multiple components have access
to the same data store, and communicate through that data
store. A shared repository does provide its clients with ac-
cess to shared data. Databases are the typical representation
of this data-centered architectural style. Active repositories
tie together the shared repository with another architectural
style, which are event-based systems [14]. An active repos-
itory is able to notify registered clients about changes [13].
A repository does not provide the means for specifying in
which order its shared data needs to be processed by its
clients. Thus, repositories cannot offer routing capabilities
in order to determine the processing sequence among its
clients. Thus, it is irrelevant for the usage in pipes-and-filters.

Another data-centered architectural style is the blackboard
based one, in which the state of the information on the
blackboard determines the order of execution. A represen-
tative of the style is e.g., the Linda coordination model by
David Gelernter [15]. It describes the usage of a logically
shared memory, called tuple space, by means of simple
operations (out, in, rd, eval) as a communication mechanism
for parallel and distributed processes.Unlike Linda, AFA
(section V) allows e.g., storing shared data in a customizable
structured way. This facilitates the efficient implementation
of coordination concerns among middleware clients.

In [16] an extension to the pipes-and-filters style was
proposed, where a shared repository is also supported. How-
ever, the hybrid framework does not offer the abstraction of
the pipes-and-filters style but rather adds shared data to the
pipeline.

3) Implicit Invocation Architectural Style: This style is
characterized by calls that are invoked indirectly and im-
plicitly as a response to a notification or an event. The

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on August 03,2010 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

group is represented by the publish/subscribe [17] and
event-based [14] architectural styles.

B. Agile Software Development

Concepts for agile software development (ASD) have
been created by experienced practitioners and can be seen
as a reaction to e.g., plan-based methods, which attach
value to “a rationalized, engineering-based approach” [18].
There, problems are seen to be fully specifiable and solvable
with an optimal and predictable solution. By means of
extensive planning and codified processes development can
be made efficient and predictable. By contrast, ASD has
been proposed as a solution to problems resulting from an
unpredictable world. Several agile methods have evolved
over time, like XP [19] or Scrum [20]. However, there is also
skepticism [2] regarding ASD with respect to architecture
design and implementation issues. One of them is that
agile development is an excuse for developers to implement
as they like, coding away without proper planning or de-
sign [7], [5] and consequently causing suboptimal design-
decisions [8], [9].

V. ARCHITECTURE

This section pictures the idea of AFA in detail. It gives
a brief introduction of its components and explains how
decoupling between the three models is achieved. Finally,
it describes how the given change in the scenario (section
II) can be realized with the proposed concept.

A. The Architectural Framework for Agile Processes

The main component of the AFA architecture are Internet
addressable containers [21] which is a collection of entries
accessible via a basic simple API. The container’s interface
provides an API for reading, taking, and writing entries, but
extends the original Linda API with the methods destroy,
shift and notify. Destroy removes an entry from the
container, while shift writes an entry after it has removed
one. Another important component is the so called coordi-
nator [21] which are programmable parts of the container
being responsible for managing their view on the entries in
the container. The aim of a coordinator is to represent a
coordination model and to structure and organize the entries
in the container for efficient access [22]. The difference
to Linda is that a container may be bounded to a maxi-
mum number of entries, and allows the usage of so called
coordinators with each having its specific and optimized
view on the stored entries. In contrast to databases, AFA
offers blocking operations known from the Linda model,
thus allowing queries for future data states. Furthermore,
databases need a static data model of the entries they have to
store, while containers allow the usage of several different
coordinators at the same time, enabling efficient dynamic
data models, and thus being schema-free.

278

The last main component of AFA are the so called
aspects [22], which represent additional computational logic
and are executed on the peer where the container is located.
Aspects are triggered by operations on a specific container,
rather on the according impact. Aspects can be located
before or after the execution of an operation and added and
removed at any time during runtime. A detailed explanation
of how aspects work and the interrelation between aspects
and containers is given in [22].

B. Supported ways of Decoupling in AFA

In [11] we have described how different architectural
styles can be combined to manage architecture limiters and
breaker. The concept identified several layers, each responsi-
ble for different tasks. By means of combining the different
responsibilities of each layer a specific architectural style
with specific configuration has been created. However, those
layers can be explicitly clustered and categorized (figure
1) resulting in models distinguished by their capabilities
for managing computational, coordinational, or communi-
cational requirements.

om i
Logic

omputatio\na
Logic

Communication Model

Figure 1: Aspects of Decoupling.

As stated in [15] the computation model is used to express
the computational requirements of an algorithm, while the
coordination model is used to express the coordinational
requirements. On the one hand, this decoupling allows to
change the application without having an effect on the
way it coordinates itself with other applications. On the
other hand, a fifo style of coordination - comparable to
message-based communication - can be switched to e.g., lifo
style of coordination, or more complex coordination mod-
els [21].This is done by replacing the existing coordinator
in the container. In traditional sense, the computational and
coordination models are combined, since a lot of the systems
rely on the pipes-and-filters or call-and-return architectural
styles. This implies that the application itself also has to
contain and implement the complexities coming along with
the used coordination model.

However, so far it has only be defined how and which
applications coordinate each other. It has not been specified
whether the applications run in the same process, on the
same machine, or distributed on the Internet. Furthermore, it
has not been specified how the necessary information needed
for coordination is exchanged between the participating
application of the coordination model.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on August 03,2010 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Server Host Client Host
- - Server Host Client Host
- § — (Client)
Server Client < > —a
) Server
Pre-A. A1
1 C2
ct Pro-A. Al Ct »[Fro-A A
[T &

(a) Before the new requirement. (b) After the new requirement.

Figure 2: Scenario 1

This part is done by the communication model. To be
correct, this model needs to be divided into a dissem-
ination/distribution model and a the real communication
model. Since containers store entries, the dissemination
model specifies where the container and its data have to
be stored physically, whether there are multiple replica of it
and how they are kept consistent [22]. The communication
model describes how data from one container is transmitted
to the other. The model may contain lower level protocols
like udp, tcp, or higher level ones like P2P protocols.

A big contribution to this picture is done by the aspects.
As mentioned aspects may contain any computational logic,
and may return several different values [22] once that logic
has been executed. In combination this adds extra value
to the framework. As an example, a container may host
a pre-aspect that does nothing else, but rerouting incoming
operations to other services and then skipping the operation.
This implies that the container will never be filled with data.
However, the application has not been changed, it still uses
the same coordination model, but data is not retrieved from
or written into the container. As an example the data may be
retrieved from and written to a database via a WebService
call.

C. Handling Agile Business Requirements with AFA

This section intends to explain the idea of AFA by means
of the scenarios described in section II. The new business
requirement in the first scenario is to allow the agents to
work offline. Figure 2a shows the used components in an
AFA environment before the new requirement. The figure
shows that both, server and client part, have a container
running on their machines. However, only the server part
keeps the data accessed by the clients. Clients access the
data by accessing the local container C2. However C2 does
not contain any data, since pre-aspect Al intercepts the
operation and reroutes it to the server.

The new requirements state that some data needs to be
stored at the client as well. A very simple solution to
that problem is shown in figure 2b. Instead of forwarding
operations to container C1, pre-aspect Al now makes a copy
of it and executes the operation on container C3 as well. This

279

container is needed to keep track of changes while the client
is offline in order to be capable of executing a synchroniza-
tion strategy once the client is online again. Synchronization
is done by pre-aspect A2, that checks connectivity status and
updates container C2, once the synchronization process has
started.

VI. DISCUSSION

In this paper, we propose the concept of an Architecture
Framework for Agile processes (AFA) in order to allow the
realization of new business requirements. The advantages
of the proposed approach with respect to changing business
requirements are that the applications do not have to consider
a) the underlying architectural style, b) the used coordination
model, c¢) the used communication technology, or d) the
way how data is disseminated. However, an abstraction
technology placed between middleware and client applica-
tion causes an additional overhead which affects overall
performance. Nevertheless, the proposed concept allows
decreasing development and migration time by reducing the
effort needed to adapt the current system to new business
requirements and therefore it saves costs while improving
adaptability and re-usability.

Summing up, we take a look at the quality attributes
defined in [23].

Evaluations have to be performed, but we think that
the overall performance decreases due to the additional
layers in AFA.

Security is supported transparently to client appli-
cations by adding security-relevant aspects to the AFA
middleware.

As shown in [22] containers in AFA can be transparently
replicated in order to improve availability and fault tolerance.

With respect to usability, AFA offers a generic inter-
face. Thus, components always act upon the same interface,
which improves modifiability, modularization and en-
capsulation. By abstracting the underlying architectural style
AFA can be ported to many different middleware technolo-
gies, such as inter-process communication (e.g. RMI), SOA,
etc.

A specific constellation of containers, their coordinators,
and installed aspects can be seen as a pattern for a specific
problem. In this sense AFA facilitates re—usability.

Since changes are restricted to one of the three models,
other components can be tested in the same manner which
improves testability.

VII. CONCLUSION AND FUTURE WORK

In this paper, we described the concept of the Architecture
Framework for Agile processes (AFA) as an abstraction
framework in order to allow the efficient realization of
new business requirements with minimal effects on other
components in the architecture.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on August 03,2010 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Based on the components AFA provides, and the ex-
plicit separation between computational, coordinational, and
communicational model a high degree of flexibility has
been achieved with minimal effects on each other in case
one of the models has to be adapted due to new business
requirements.

The benefits of the approach are a rigid decoupling be-
tween the models and architectural styles allowing changes
in the architecture with minimal effect on other components,
resulting in less testing and therefore minimized time-to-
market. Since new requirements can be mapped to one of
the models, the time needed to adapt the system reduces,
and therefore saves costs.

Further work will include a benchmarking of the frame-
work, i.e. to what extent does the additional abstraction layer
decrease computational performance. A more comprehen-
sive evaluation with respect to testing and development time
is intended. The latter case will also investigate the influence
of software development experience of software engineers
on software development with AFA support.

REFERENCES

[1] J. Highsmith and A. Cockburn, “Agile software development:
the business of innovation,” Computer, vol. 34, no. 9, pp.
120-127, Sep 2001.

[2] T. Dingsoyr and T. Dyba, “What do we know about agile

software development?” Software, IEEE, vol. 26, no. 5, pp.

6-9, Sept.-Oct. 2009.

[3] M. P. Papazoglou and W.-J. Heuvel, “Service oriented archi-

tectures: approaches, technologies and research issues,” The

VLDB Journal, vol. 16, no. 3, pp. 389-415, 2007.

[4] D. Chappell, Enterprise Service Bus.

2004.

O’Reilly Media, Inc.,

[5] E. Hadar and G. M. Silberman, “Agile architecture methodol-
ogy: long term strategy interleaved with short term tactics,” in
OOPSLA Companion '08: Companion to the 23rd ACM SIG-
PLAN conference on Object-oriented programming systems
languages and applications. New York, NY, USA: ACM,
2008, pp. 641-652.

[6] M. Pikkarainen and U. Passoja, “An approach for assessing
suitability of agile solutions: A case study,” Extreme
Programming and Agile Processes in Software Engineering,
pp. 171-179, 2005. [Online]. Available: http://dx.doi.org/10.
1007/11499053_20

[7] S. R. Rakitin, “Manifesto elicits cynicism,” IEEE Computer,
vol. 34 (4), 2001.

[8] P. McBreen, Questioning Extreme Programming. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2002, foreword By-Beck, Kent.

[9] M. Stephens and D. Rosenberg, Extreme Programming Refac-
tored: The Case Against XP. Apress, Berkeley, 2003.

280

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

T. Dyba and T. Dingsgyr, “Empirical studies of agile soft-
ware development: A systematic review,” Inf. Softw. Technol.,
vol. 50, no. 9-10, pp. 833-859, 2008.

R. Mordinyi, E. Kiihn, and A. Schatten, “Space-based archi-
tectures as abstraction layer for distributed business applica-
tions,” in Accepted for the Track on Software Engineering for
Distributed Systems at the 4th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS-
2010) (TechRep at http://tinyurl.com/ylnosxb), 2010.

R. N. Taylor, N. Medvidovic, and E. M. Dashotfy, Software
Architecture: Foundations, Theory, and Practice. Wiley
Publishing, 2009.

P. Avgeriou and U. Zdun, “Architectural patterns revisited -
a pattern language,” in Proc. Of 10th European Conference
on Pattern Languages of Programs (EuroPLoP 2005), 2005.

D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

D. Gelernter and N. Carriero, “Coordination languages and
their significance,” Commun. ACM, vol. 35, no. 2, pp. 97-107,
1992.

A. R. Franois, “Software architecture for computer vision:
Beyond pipes and filters,” Technical Report IRIS-03-240,
Institute for Robotics and Intelligent Systems, USC, Tech.
Rep., 2003.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec, “The many faces of publish/subscribe,” ACM Comput.
Surv., vol. 35, no. 2, pp. 114-131, 2003.

S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of
migrating to agile methodologies,” Commun. ACM, vol. 48,
no. 5, pp. 72-78, 2005.

K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Profes-
sional, 2004.

K. Schwaber and M. Beedle, Agile Software Development
with Scrum. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2001.

E. Kiihn, R. Mordinyi, L. Keszthelyi, and C. Schreiber, “In-
troducing the concept of customizable structured spaces for
agent coordination in the production automation domain,” in
AAMAS °09: Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2009, pp. 625-632.

E. Kiihn, R. Mordinyi, L. Keszthelyi, C. Schreiber, S. Bessler,
and S. Tomic, “Aspect-oriented space containers for effi-
cient publish/subscribe scenarios in intelligent transportation
systems,” The 11th International Symposium on Distributed
Objects, Middleware, and Applications (DOA’09), 2009.

L. Bass, P. Clements, and R. Kazman, Software architecture
in practice. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1998.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on August 03,2010 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

