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Abstract—Current architectures for systems integration 
provide means for forming agile business processes by 
manually or dynamically configuring the components. 
However, a major challenge in the safety-critical Air Traffic 
Management (ATM) domain is to interconnect business 
services taking into account service level agreements 
regarding the underlying network infrastructures. In such 
domains, manual configuration is forbidden due to the 
resulting error-prone and time-consuming tasks, while 
dynamic configuration is not allowed due to non-
deterministic decision making. In this paper we propose a 
model-driven system configuration approach (MDSC), 
which explicitly models the components of the network 
infrastructures and their capabilities to automatically 
generate a logical network configuration. Based on an 
industry application example, we show the feasibility of the 
proposed integration platform in the ATM domain and 
discuss the advantages and limitations. 

Keywords-systems integration, model-driven configuration, 
semantic requirement and capability models 

I.  INTRODUCTION 
One of the major challenges in safety-critical 

environments like the Air Traffic Management (ATM) 
domain is the fulfillment of all functional and non-
functional requirements of business services to be 
interconnected. In such safety-critical environments, both 
semantically and technologically heterogeneous services, 
which were originally not designed for flexible integration, 
need to be integrated on top of heterogeneous middleware 
infrastructures in a deterministic and static, but also fault-
tolerant manner. 

Current approaches for systems integration, like SOA, 
tie together services in a loosely coupled fashion in order 
to react on changing business requirements in an agile 
manner. The integration architecture for such an approach, 
e.g. an Enterprise Service Bus (ESB) [5], provides the 
means for forming composite business processes, and thus 
automating business functions. The configuration [18] of 
the components of such architecture, like the one for 
routing messages, can be performed either manually or 
dynamically [4][20]. However, the properties of a safety-
critical domain [9] describe clearly how decision making 
has to be performed. For each decision made, a response 
has to be pointed out, and based on the same internal states 
the same decision has to result in the same output. 
Additionally, any missing but needed information at the 
time of decision making may lead to catastrophic 

scenarios. Therefore, an error-prone and time-consuming 
manual configuration of the system is forbidden, while 
dynamic configuration of the system is prohibited due to 
the possibly non-deterministic outcome of the decision 
process. 

In previous work we introduced an overall system 
integration approach [12] which externalizes integration 
expert knowledge using semantic models and 
automatically derives a logical solution model with 
integration partner candidates, as well as a technical 
solution model with specific infrastructure configurations. 
In [13] we presented how the semantic modelling of 
requirements and capabilities is achieved in order to allow 
an automatic deduction of the logical solution model. In 
this paper we propose an integration platform (INTP) 
based on a model-driven system configuration approach 
(MDSC) for the ATM domain. The MDSC approach 
automatically derives integration system configurations 
from changed business requirements for INTP. Beside the 
business service capabilities and requirements [13], the 
components of the heterogeneous network infrastructures 
and their capabilities are explicitly modelled. Thus, the 
MDSC approach is capable of generating a logical network 
configuration independent of the underlying heterogeneous 
network infrastructure technologies which is used by the 
INTP as a clear specification how to interconnect business 
services. 

The deployment of such a configuration is supported 
by an integration platform which allows a) the 
communication of business services over heterogeneous 
middleware technologies by means of an abstraction 
interface; b) the homogeneous binding of heterogeneous 
business services including the execution of derived 
transformation instructions to overcome the semantic gaps 
between business services; c) fault-tolerant, deterministic, 
and traceable group communication and routing. The 
benefits are: a) a verified systems configuration with the 
possibility to feed back monitoring data into the models in 
order to iteratively improve systems configuration; b) the 
separation of specification and implementation leads to a 
complexity and control of the integration scenario at a 
central point concerning only a few domain experts; c) the 
technical solution model can be simulated before 
deployment due to an automated and therefore cheap 
generation of integration scenarios; d) by means of 
automatically deriving system configurations the INTP's 
abstraction mechanism allows the effective reuse of 
existing middleware technologies; and e) configurable 
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coordination patterns without adding additional complexity 
to the INTP. Based on an industry application example, we 
show the feasibility of the proposed integration platform in 
the ATM domain and discuss advantages and limitations. 

The remainder of this paper is structured as follows: 
section II describes a motivating industry application 
integration scenario; section III summarizes related work, 
while section IV presents the research issues. Section V 
describes the proposed MDSC approach, section 0 gives an 
overview of the developed integration platform, and 
section VII discusses the results of the feasibility study of 
the application example as well as benefits and limitations 
of the proposed MDSC approach. Finally, section VIII 
concludes the paper and identifies further research 
opportunities. 

II. MOTIVATING INTEGRATION SCENARIO 
DESCRIPTION 

This section describes the integration scenario from the 
ATM domain used throughout this paper. The business 
system Air Traffic Management Information Service 
(ATMIS) has to provide information services about flights 
to business partners via a Public Flight Information Portal 
(PFIP). ATMIS needs to collect and refine information 
from at least 2 other systems: the Central Flight Controller 
(CFC) and the Single Flight Data Processors (SFDPs). 

As shown in Fig. 1, the integration network consists of 
business services (e.g., CFC or ATMIS) which are 
connected to integration network nodes (e.g., CFC Node or 
ATMIS Node). Between these nodes, there may exist 
different kinds of network links, represented by arrows 
between the nodes. These links can either use different 
transmission technologies (e.g., radio or wired 
transmission) as well as different middleware technologies 
(e.g., SONIC1, TIBCO1 or IPX-based middlewares) for 
communication purposes. The capabilities of both kinds of 
technologies are explicitly modeled in order to 
automatically select suitable communication paths for 
particular service requirements, e.g., the red connection 
between ATMIS Node, Node Y and PFIP Node represents 
are reliable and secured communication path which may 
be requested by e.g., the ATMIS business service. 

 

 
Figure 1. ATM Domain Integration Scenario 

On the left hand side of Fig. 1, another feature of the 
ATM domain integration scenario is pictured. The 
business services SFDP 1 and SFDP 2 are both elements of 
a so-called "virtual sender group", which means that they 
both send the same data, but only one message should be 
sent to the receiving ATMIS business service. This may 

                                                           
1 Progress SONIC (http://www.sonicsoftware.com) and TIBCO 
(http://www.tibco.com) are registered Trademarks and Commercial Off-
the-Shelf (COTS) products 

e.g. be the case if the SFDP business services are 
connected to redundant radar dishes, but only one message 
containing the radar data should be sent, the other is just 
produced for reliability purposes. So the business services 
need to coordinate themselves in order to determine which 
SFDP business service is allowed to send the message to 
the ATMIS business service. 

III. RELATED WORK 
This chapter summarizes related work on system 

integration technologies and gives a short overview of the 
model-driven architecture background of the proposed 
approach. 

A. System Integration Technologies 
System integration is the task to combine numerous 

different systems to appear as one big system. There are 
several levels at which system integration could be 
performed [2], but there is so far no standardized 
integration process that explains how to integrate systems 
in general. 

Typical integration solutions focus only on either the 
heterogeneity on service level or the heterogeneity on 
network level. In order to cope with technological 
heterogeneity on service level a homogeneous middleware 
technology approach [7] could be used for syntactical 
transformation between services, while the semantical 
heterogeneity of services could be addressed by means of a 
common data schema [6]. Heterogeneity on network level 
may be addressed by using so called adapters transforming 
messages between each used combination of middleware 
technologies. However, in order to provide an effective 
continuous integration solution in this environment, both 
integration levels (i.e. service and network level) need to 
be addressed in a mutual way. 

The derived limitations for such kinds of integration 
approaches are on the one hand the need for a common 
data schema [6], which is often a hard and time consuming 
procedure, if not even impossible in integration scenarios 
with several different stakeholders. On the other hand, the 
need for integration over heterogeneous middleware 
technologies with different APIs, transportation 
capabilities, or network architecture styles implies the 
development of static and therefore inflexible wrappers 
between each combination of middleware technologies, 
and thus increases the complexity of communication. 
Traditional approaches for integration of business services 
can be categorized [5] into: Hub and spoke vs. distributed 
integration and coupled vs. separated application and 
integration logic. In the following, using current 
technology concepts for each category a brief discussion 
about their advantages and disadvantages with respect to 
the described scenario is given. 

Application servers [7] are capable of interoperating 
through standardized protocols, but tightly couple 
integration logic and application logic together. 
Additionally, as the name suggests a server based 
architecture style is used for integration and as such has 
proven to be inconvenient for the scenario. Traditional EAI 
brokers [5], some of them built upon application servers, 
use a hub-and-spoke architecture. This approach on the 
one hand has the benefit of centralized functions such as 
the management of business rules or routing knowledge, 
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but on the other hand does not scale well across business 
unit or departmental boundaries, although it offers clear 
separations between application, integration and routing 
logic. Message-oriented Middleware [8] is capable of 
connecting application in a loosely coupled manner but 
requires low-level application coding intertwining 
integration and application logic. The resulting effort and 
complexity of implementing an integration platform with 
the support for any kind of existing middleware 
technologies and protocols therefore is considerably high. 
To enable transparent service integration, the Enterprise 
Service Bus (ESB) provides the infrastructure services for 
message exchange and routing as the infrastructure for 
Service Oriented Architecture (SOA) [15]. It provides a 
distributed integration platform and clear separation of 
business logic and integration logic. It offers routing 
services to navigate the requests to the relevant service 
provider based on a routing path specification. Routing 
may be [5] itinerary-based, content-based, conditional-
based defined manually [17] or dynamic [1]. In both cases 
the drawback is the minimal support for considering all 
functional and non-functional requirements of all service 
connections in the system. Dynamic configuration focuses 
mainly on creating a route for a special business case. 
Using manual configuration, a system integrator has to rely 
on his expertise, thus the high number of service 
interactions may get complex and the configuration error-
prone. This may lead to routes that are configured in a way 
in which their influence on other business interactions is 
not fully known. As a consequence, business interactions 
may mutually violate their non-functional business 
requirements, such as message delivery within a specific 
time frame otherwise the message may be still useful but 
not up-to-date any more. Additionally, dynamic 
configuration may not cope with e.g. node failures fast 
enough due to missing routing alternatives, therefore 
possibly violating the same type of non-functional business 
service requirements. 

B. Model Driven Architecture Background 
The major goal of the Model Driven Architecture 

(MDA) approach is the separation of system functionality 
specification and implementation [11]. Using the so called 
Computation Independent Model (CIM) the MDA 
framework can be used to construct the models [11] 
describing system requirements and behaviour in a formal 
way, like e.g. by using UML. The separation of system 
functionality and implementation specifications is 
modelled in the Platform Independent Model (PIM), which 
is refined out the CIM, normally by hand [11]. The main 
functionality of the PIM is to specify system structure and 
behaviour independently of the platform it is deployed to. 
The separation of system functionality on a specific 
technology platform is described in the Platform Specific 
Model (PSM), which is the result of the PIM 
transformation to the target platform. The advantages [10] 
of the MDA framework are (1) automated generation of 
results improving productivity, development duration, and 
cost; (2) focusing on the creation of conceptual models 
rather than on logical and technical details; (3)  developed 
transformations can be reused; (4) adaptations due to 
changes of the target platform need to be made in the PIM 
only; and (5) new requirements defined in the CIM are 

passed to PIM and PSM immediately and therefore 
changes are reflected automatically [11]. The MDSC 
approach described in this paper is similar to the approach 
presented in [3]. Based on requirement and capability 
models which represent documents, integration expert 
knowledge and estimation/measurements of the integration 
network capabilities [12], a logical solution model which 
represents the set of suitable integration partners is derived 
automatically [13]. This logical solution model then is 
transformed into the technical solution model, representing 
the specific integration configuration for the underlying 
integration network technologies. 

IV. RESEARCH ISSUES 
Recent projects with industry partners from the safety-

critical ATM domain raised concerns about the automated 
configuration of modern technology-driven integration 
environments. For efficient and effective system 
integration a major goal was to improve the capability of 
engineers to automatically derive an integration solution 
configuration by facilitating team work and tool support. 
Consequently, we propose a model-driven approach that 
uses explicitly modelled requirements and capabilities of 
business services and network infrastructures for deduction 
and deployment of an integration solution configuration. 
Therefore, this paper focuses on the following research 
issues: 

RI-1: Model-Driven System Configuration. To what 
extent is the proposed MDSC approach feasible and 
requires less effort for integration scenarios compared to a 
traditional manual process? How does measured runtime 
data that is fed back into the used capability models, 
improve the accuracy of the configuration and thus of the 
integration platform? How do investment efforts and 
improvements evolve with the number of repeated 
configurations? 

RI-2: Integration Platform. To what extent can the 
introduced integration platform reduce the complexity of 
integrating business services? How can the introduced 
abstraction interface reduce coordination complexity by 
means of configuration only? 

In order to show the feasibility of the proposed MDSC 
approach we gathered requirements and capabilities from 
an industry application example and conducted the process 
steps. The results of the evaluation are discussed in chapter 
VII. 

V. MODEL-DRIVEN SYSTEM CONFIGURATION 
This section describes the model-driven system 

configuration (MDSC) process [12]. As shown in Fig. 2, 
the MSDC process consists of 5 major process steps. In the 
following paragraphs, these steps are explained in detail, 
with regard to the example data presented in the figure. 

Business Services in the ATM domain. For each 
legacy information system to be integrated, the subject 
matter expert (SME) responsible for the particular system 
describes the messages which are either provided or 
consumed by the business services provided. Both the 
structure (i.e., data types and semantic meanings) and the 
format of the exchanged messages are described [13]. 

In the example, there are 2 business services shown on 
the on the left hand side, "CFC" and "ATMIS".  
Additionally, 4 message types are presented using a tuple-
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based notation. The "CFC" service provides the "CFC-
Message" consisting of information about a certain flight, 
i.e., flight number, departure and destination airport, 
planned time of departure and estimated duration of the 

flight. In contrast, the "ATMIS" service consumes the 
"ATMIS Message" consisting of additional flight 
information compared to the "CFC-Message", namely the 
estimated day and time of arrival of a certain flight. 

 

 
Figure 2. MSDC process overview 

Requirement and Capability Models. In addition to 
the description of the provided or consumed message of 
the participating business services, the business services 
define extra requirements regarding either possible 
integration partner candidates (i.e., other business services) 
or the underlying heterogeneous network infrastructure 
[12]. 

The example shows three different kinds of 
requirement and capability models. On the left hand side, 
the requirements of the "CFC" service regarding both the 
transmission using the underlying heterogeneous network 
infrastructure (e.g., the transmission needs to be secure and 
reliable) as well as the required capabilities of possible 
integration partners (e.g., an integration partner services 
has to be an Austrian service) are presented exemplary. In 

the middle, the capability models of business services are 
shown exemplary. E.g., the "ATMIS" service has a defined 
service location of "Austria", and the "CFC" service has a 
defined retransmission interval of 2 seconds. On the right 
hand side, the capability models of the underlying 
integration network infrastructure are presented. The 
integration network consists of nodes and links connecting 
these nodes. Each link presents a specific middleware 
technology and may define additional capabilities of this 
middleware, e.g., the capability of "Middleware1" to 
support secure and reliable transmissions. In comparison to 
a traditional integration process, the outcome of the so far 
described process steps is a set of machine-understandable 
knowledge models describing both the message structures 
as well as the requirements and capabilities of the legacy 
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information system to be integrated and the capabilities of 
the underlying integration network infrastructure. 

Logical Solution Model. The externalized knowledge 
which is captured in the knowledge models created in the 
previous steps is used to automatically derive the set of 
possible integration partners using ontology-based 
reasoning, allowing an easier and less error prone 
identification of possible integration partners compared to 
the traditional integration process [12][14]. 

Based on the legacy system descriptions, the 
description and mapping of the domain knowledge and the 
description of the architecture and capabilities of the 
integration network, the possible sending and receiving 
service partners are derived using heuristics and ontology-
based reasoning .In the example, this is represented as a 
graph consisting of the possible collaborations (i.e., the 
services which are able to communicate). As shown in Fig. 
2, there are 4 automatically derived collaborations: 
collaboration 1 between "ATMIS" and "PFIP", 
collaboration 2 between "PFIP" and "ATMIS", 
collaboration 3 between "CFC" and "ATMIS", and 
collaboration 4 between "SFDP" and "ATMIS". 

Concrete Technical Solution Model. Based on the 
logical solution model derived in the previous process step, 
the technical solution model for each integration node is 
generated automatically. This technical solution model is 
an XML configuration which is interpreted by the 
integration platform introduced in chapter 6. The major 
components of the technical solution model are a) routing 
tables that specify where certain received messages 
belonging to a specific collaboration should be forwarded 
to - there are more than one routing targets for a specific 
collaboration (so called "backup routes"), which are 
automatically used in case of unavailability of the original 
target integration node; b) transformation instructions that 
define how messages originating from business services 
should be transformed before sending them to other 
business services via the integration nodes; c) middleware 
specifications that define the configuration parameters and 
access methods for each connected specific middleware 
technology of a particular integration node; d) application 
specifications that define the configuration parameters and 
access methods for each connected business service of a 
specific integration node; and finally e) security 
specifications of the particular integration node (i.e., 
encryption protocols or certificates to use for the 
transmissions). 

As shown in Fig. 2, the concrete technical solution 
model for each single integration node contains 
information about all collaborations which use this 
particular node. Additionally, there is a difference between 
integration nodes that are connected to business services 
and integration nodes without connected business services 
(so called "intermediate nodes"). While the technical 
solution model of intermediate nodes only contains routing 
tables, middleware specifications and security information, 
the technical solution model of integration nodes 
connected to business services additionally contains 
transformation instructions and application specifications. 

Deployment to concrete Hardware. Finally, the 
concrete technical solution model for each single 
integration node is deployed to the particular integration 
platform (see chapter VI). 

VI. INTEGRATION PLATFORM 
The MDSC process results in a solution model that 

needs to be deployed. Additionally, the process is capable 
of improving the system's configuration by means of 
monitoring data collected during execution. In the 
following the integration platform for the MDSC approach 
is described. 

 

 
Figure 3. Integration Platform 

The main task of the integration platform (INTP) (see 
Fig. 3) is to interconnect business services a) by binding 
business services and middleware technologies; b) by 
routing messages in a fault-tolerant manner with respect to 
virtual sender groups over heterogeneous middleware 
technologies; and c) by transforming messages to 
overcome the semantic gaps between business services. 
The INTP is installed on every node described in the 
network capability model and uses the derived solution 
model to configure its components: 

Application Adapter. Based on the automatically 
derived configuration, the adapter loads the so called 
Application Gateways (AGs). An AG represents the 
connection to the business service and is implemented by 
the developers of the service. Similar to JBI [19], by 
means of the AG the service is capable of sending and 
receiving messages asynchronously. The interfaces of the 
Application Adapter and of the AG do not need to be 
described by means of WSDL since their capabilities have 
already been defined in the capability models. Messages 
sent by the AG additionally receive a so called 
CollaborationID representing the collaboration that has 
been calculated in the Logical Solution Model. This ID 
helps the Routing Component to route messages (i.e., the 
Routing Component looks up the specific network route 
for a particular CollaborationID). 

Middleware Adapter. Based on the automatically 
derived configuration, the adapter loads the so called 
Middleware Gateways (MGs). An MG represents a 
communication link with a specific middleware 
technology between two nodes only. If there are several 
different communication links between two nodes, then 
there has to be one MG available for each possibility. The 
MG functions as a wrapper and knows how to interact with 
the real middleware that is actually forwarding the 
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message to the destination specified by the routing 
component. The responsibility of the MG is to operate and 
to optimize the middleware technology according to the 
capabilities which have been specified in the capability 
models and selected during the derivation of the logical 
solution model. Similar to the AG, the interface of the MG 
consists of methods for sending and receiving messages 
asynchronously. 

Transformation Component. The solution model 
provides transformation instructions specifying how to 
handle certain message types. The instructions have been 
derived from the requirement and capability models 
describing the services and thus the Transformation 
Component is able to manipulate message structure and 
content accordingly. The component can change message 
data types, split messages into several segments, merge 
different segments into a message, replace or enrich certain 
information of a message, or perform any combination of 
the described possibilities. 

Routing Component. The automatically derived 
configuration of the routing component contains a routing 
logic specifying where to forward a message. A message 
can be either forward to a local service via the 
Transformation Component or to one of the installed MGs. 
Consequently, the routing logic specifies either the target 
AG or the target MG which is used to send the message to 
the next hop along the route to the final target service. The 
chosen MG has a priori been selected during the derivation 
of the concrete technical solution model. Additionally, the 
solution model contains several other routes, so called 
"backup routes", which have been calculated during the 
derivation of the concrete technical solution model. These 
backup routes are used by the routing logic of the 
integration platform if the originally targeted next hop is 
not available any more. This allows the integration 
platform to react on changing network conditions quickly. 

The scenario in chapter II introduced the problem of 
virtual sender groups and the need for coordination 
between the participating members of that group. To keep 
the abstraction interface reduced to the methods send and 
receive and the implementation of the integration platform 
less complex, it has been avoided to add a component 
responsible for group communication only. Additionally, 
traditional group communication mechanisms are not 
capable of coordination over multiple heterogeneous 
middleware technologies. Therefore, the interface is 
configurable as well, and as such the send method can be 
intercepted by aspects representing the appropriate strategy 
for coordination [16]. The need for a virtual sender groups 
is derived from the data in the service capability and 
requirement models. Additional collaborations with unique 
collaboration-IDs are set up between the members of a 
virtual sender group, and in the concrete technical solution 
model an appropriate route between those nodes is 
calculated. This means that the aspect is configured with 
information about the virtual sender group and which 
collaboration-ID it has to use to reach other virtual sender 
group members. When the aspect receives a message from 
a business service that is a member of the virtual sender 
group, it withholds the message until the group has 
reached a decision. Either the message is then sent via the 
original MG or discarded. 

The task of the Monitoring Component of the 
integration platform is to collect information (like 
transmission speed and maximum bandwidth between two 
nodes, the number and size of exchanged messages, the 
time needed to reach an agreement in a virtual sender 
group, or the number of node failures resulting in accurate 
failure probability values) that may help to improve the 
capability models reflecting a more realistic description of 
the network infrastructure and the business services. This 
results in a configuration that is adapted to the real 
environment. 

VII. DISCUSSION 
Within a research project with two industry partners, 

the MDSC approach and the integration platform have 
been evaluated by means of several different scenarios 
from the ATM domain. In this chapter we discuss the 
benefits and limitations of the proposed approach with 
special respect to the introduced research questions (see 
chapter IV). 

Model-Driven System Configuration. In [12][13] the 
integration process, MDSC is based on and which uses 
requirement and capability models, has been evaluated in 
comparison to traditional integration processes. Major 
results were that the proposed approach took considerably 
shorter for the modelling phase and lowered the risk of 
errors in the system configuration due to automated model 
checking using ontology-based reasoning. Additionally, 
traditional model checking approaches are focusing 
primarily on single models (like UML), but they lack 
support for checking heterogeneous or integrated models 
resulting in error-prone and time-consuming human effort. 
The approach has proven to be especially suitable for 
integration scenarios with frequent reconfiguration due to 
changing business requirements or network infrastructure. 
This allows manipulating capability and requirement 
models in order to simulate integration scenarios for fine-
tuning of business interactions. The benefit arises from the 
option to cheaply generate system versions that can be 
analyzed to better understand the trade-offs of different 
capabilities in the case study context, e.g., the valuation of 
different middleware technologies on the distribution of 
traffic in the system. Additional advantage of the approach 
is that the complexity of manipulating models and as 
consequence the solution model for the integration 
platform is focused at a central point that can be managed 
by a few experts only. In the traditional integration 
process, administrators have just a partial view of the 
entire system and may try to optimize their business 
interactions locally. This may result in an overall system 
behaviour that maybe was not intended. However, the 
proposed MDSC approach always tries to optimize the 
integration scenario with a global view over the entire 
system. Compared to traditional high-level MDA based 
approaches, the MDSC approach is adapted to a specific 
domain (like ATM), resulting in a skipped CIM, and 
directly in a PIM that is not very high-level. 

The collection of monitoring data from integration 
platform allows a) comparing the described capability 
models with the real behaviour of the system and b) 
updating the existing values of the capability models 
automatically based on the measured real life data. 
Additional monitoring data, such as availability of nodes, 
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which can only be estimated in the first place helps to 
precise the capabilities of the network infrastructure. By 
including this information into the calculation of routes, 
the overall dependability of the integration solution is 
improved, since probabilistic factors are used in the 
models. 

Integration Platform. The automatically derived 
configuration predetermines the overall behaviour of the 
integration scenario. The more specifications the 
configuration contains the better the integration platform 
can react on changing circumstances. This allows the 
integration platform to work in a predefined deterministic 
way without "surprises" during execution regarding e.g. 
network failures, service failures, or network bottlenecks. 
The complexity of integrating business services is shifted 
away from the integration platform (run-time) to the 
MDSC approach at design time, minimizing the time 
criticality of the integration solution. This allows keeping 
the implementation of the integration platform itself as 
simple as possible since it is entirely dependent on 
configuration instructions only. As proof-of-concept we 
have implemented a prototype of the integration platform 
making use of a plug-in architecture style to enforce 
runtime policies based on the requirement and capability 
models. 

The interface abstracting the heterogeneous 
middleware technologies allows injecting aspects if 
defined by the configuration used to coordinate services if 
they are in a virtual sender group. Additionally, aspects are 
configured by means of different strategies representing 
different ways to reach a decision in a group. Adding the 
possibility to intercept communication methods in the 
integration platform and to configure them by the MDSC 
additionally minimizes the complexity of the integration 
platform implementation. 

Compared to traditional integration solution the 
middleware adapter abstracts any kind of middleware 
technologies. While in traditional solutions connectors 
between each used combination of different middleware 
technologies need to be implemented, the integration 
platform requires only the binding to the interface of the 
middleware adapter only. Although the approach of a 
common interface is not sophisticated, the benefit of it is a 
common interface with different transmission semantics. 
The semantic of the method, e.g. reliable or secure 
communication, depends on the capability of the 
middleware that is represented by that interface. 

VIII. CONCLUSION AND FUTURE WORK 
In this paper we proposed and discussed a model-

driven system configuration approach (MDSC) for the 
ATM domain, which explicitly models the components of 
the heterogeneous network infrastructures and their 
capabilities to automatically generate a logical network 
configuration. Based on this logical solution model, a 
technical solution model is derived automatically and 
deployed using an integration platform. This enables the 
communication of business services by means of an 
abstraction interface which bridges the underlying 
heterogeneous middleware technologies, additionally 
semantic gaps between business services are bridged by 
executing automatically derived transformation 
instructions. Furthermore, the model-driven approach 

allows fault-tolerant, deterministic and traceable group 
communication and routing mechanisms. 

Based on an industry application example, we 
discussed the benefits of the MDSC approach and the 
integration platform. Major results of the discussion are: a) 
the manipulation of capability and requirement models 
allows the efficient generation of integration scenarios for 
fine-tuning business interactions, in order to better 
understand the trade-offs of different integration solutions; 
b) the complexity of the solution model is focused at a 
central point and therefore manageable by a few experts 
only; c) monitoring data from the integration platform can 
be compared with the described capability models 
respectively fed back into the capability models, updating 
the existing values with measured real-life data; d) the 
abstraction mechanism allows the effective reuse of 
existing middleware technologies by means of 
automatically deriving system configurations, furthermore, 
the access to interoperable heterogeneous middleware 
technologies is automatically derived without the need for 
human intervention for configuration; e) only basic 
methods (e.g., sending and receiving messages) of the 
underlying middleware technology are used in the 
abstraction interface, additional functionality (e.g., reliable 
transmission) is modelled in the capability model, used for 
derivation of the logical solution model and configured 
automatically by the technical solution model; and f) the 
abstraction interfaces allows the injection of aspects 
defined in the configuration, minimizing the complexity of 
the integration platform implementation. 

Further work will include a large-scale evaluation of 
the proposed MDSC approach using scenarios and 
traditional integration effort measurements of a real-world 
integration project. Further work will also include a 
mechanism to describe a set or combination of different 
characteristics in the capability model and use this 
information during the derivation of the logical solution 
model, and configure the middleware technology 
accordingly using the derived technical solution model. 
Another current open research issue is the deployment of 
and the synchronized switch to a new version of the 
solution model. Finally, tool supported mechanisms to 
automatically feed back measured runtime information 
into the capability models need to be developed. 
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