
Foundations for a Model-Driven Integration of Business Services
 in a Safety-critical Application Domain

Richard Mordinyi, Thomas Moser,
Eva Kühn, Stefan Biffl

Complex Systems Design and Engineering Lab
Vienna University of Technology

Vienna, Austria
{firstname.lastname}@tuwien.ac.at

Alexander Mikula
Frequentis AG
Vienna, Austria

alexander.mikula@frequentis.com

Abstract—Current architectures for systems integration
provide means for forming agile business processes by
manually or dynamically configuring the components.
However, a major challenge in the safety-critical Air Traffic
Management (ATM) domain is to interconnect business
services taking into account service level agreements
regarding the underlying network infrastructures. In such
domains, manual configuration is forbidden due to the
resulting error-prone and time-consuming tasks, while
dynamic configuration is not allowed due to non-
deterministic decision making. In this paper we propose a
model-driven system configuration approach (MDSC),
which explicitly models the components of the network
infrastructures and their capabilities to automatically
generate a logical network configuration. Based on an
industry application example, we show the feasibility of the
proposed integration platform in the ATM domain and
discuss the advantages and limitations.

Keywords-systems integration, model-driven configuration,
semantic requirement and capability models

I. INTRODUCTION
One of the major challenges in safety-critical

environments like the Air Traffic Management (ATM)
domain is the fulfillment of all functional and non-
functional requirements of business services to be
interconnected. In such safety-critical environments, both
semantically and technologically heterogeneous services,
which were originally not designed for flexible integration,
need to be integrated on top of heterogeneous middleware
infrastructures in a deterministic and static, but also fault-
tolerant manner.

Current approaches for systems integration, like SOA,
tie together services in a loosely coupled fashion in order
to react on changing business requirements in an agile
manner. The integration architecture for such an approach,
e.g. an Enterprise Service Bus (ESB) [5], provides the
means for forming composite business processes, and thus
automating business functions. The configuration [18] of
the components of such architecture, like the one for
routing messages, can be performed either manually or
dynamically [4][20]. However, the properties of a safety-
critical domain [9] describe clearly how decision making
has to be performed. For each decision made, a response
has to be pointed out, and based on the same internal states
the same decision has to result in the same output.
Additionally, any missing but needed information at the
time of decision making may lead to catastrophic

scenarios. Therefore, an error-prone and time-consuming
manual configuration of the system is forbidden, while
dynamic configuration of the system is prohibited due to
the possibly non-deterministic outcome of the decision
process.

In previous work we introduced an overall system
integration approach [12] which externalizes integration
expert knowledge using semantic models and
automatically derives a logical solution model with
integration partner candidates, as well as a technical
solution model with specific infrastructure configurations.
In [13] we presented how the semantic modelling of
requirements and capabilities is achieved in order to allow
an automatic deduction of the logical solution model. In
this paper we propose an integration platform (INTP)
based on a model-driven system configuration approach
(MDSC) for the ATM domain. The MDSC approach
automatically derives integration system configurations
from changed business requirements for INTP. Beside the
business service capabilities and requirements [13], the
components of the heterogeneous network infrastructures
and their capabilities are explicitly modelled. Thus, the
MDSC approach is capable of generating a logical network
configuration independent of the underlying heterogeneous
network infrastructure technologies which is used by the
INTP as a clear specification how to interconnect business
services.

The deployment of such a configuration is supported
by an integration platform which allows a) the
communication of business services over heterogeneous
middleware technologies by means of an abstraction
interface; b) the homogeneous binding of heterogeneous
business services including the execution of derived
transformation instructions to overcome the semantic gaps
between business services; c) fault-tolerant, deterministic,
and traceable group communication and routing. The
benefits are: a) a verified systems configuration with the
possibility to feed back monitoring data into the models in
order to iteratively improve systems configuration; b) the
separation of specification and implementation leads to a
complexity and control of the integration scenario at a
central point concerning only a few domain experts; c) the
technical solution model can be simulated before
deployment due to an automated and therefore cheap
generation of integration scenarios; d) by means of
automatically deriving system configurations the INTP's
abstraction mechanism allows the effective reuse of
existing middleware technologies; and e) configurable

2009 35th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-3784-9/09 $25.00 © 2009 IEEE

DOI 10.1109/SEAA.2009.19

267

2009 35th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-3784-9/09 $26.00 © 2009 IEEE

DOI 10.1109/SEAA.2009.19

267

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

coordination patterns without adding additional complexity
to the INTP. Based on an industry application example, we
show the feasibility of the proposed integration platform in
the ATM domain and discuss advantages and limitations.

The remainder of this paper is structured as follows:
section II describes a motivating industry application
integration scenario; section III summarizes related work,
while section IV presents the research issues. Section V
describes the proposed MDSC approach, section 0 gives an
overview of the developed integration platform, and
section VII discusses the results of the feasibility study of
the application example as well as benefits and limitations
of the proposed MDSC approach. Finally, section VIII
concludes the paper and identifies further research
opportunities.

II. MOTIVATING INTEGRATION SCENARIO
DESCRIPTION

This section describes the integration scenario from the
ATM domain used throughout this paper. The business
system Air Traffic Management Information Service
(ATMIS) has to provide information services about flights
to business partners via a Public Flight Information Portal
(PFIP). ATMIS needs to collect and refine information
from at least 2 other systems: the Central Flight Controller
(CFC) and the Single Flight Data Processors (SFDPs).

As shown in Fig. 1, the integration network consists of
business services (e.g., CFC or ATMIS) which are
connected to integration network nodes (e.g., CFC Node or
ATMIS Node). Between these nodes, there may exist
different kinds of network links, represented by arrows
between the nodes. These links can either use different
transmission technologies (e.g., radio or wired
transmission) as well as different middleware technologies
(e.g., SONIC1, TIBCO1 or IPX-based middlewares) for
communication purposes. The capabilities of both kinds of
technologies are explicitly modeled in order to
automatically select suitable communication paths for
particular service requirements, e.g., the red connection
between ATMIS Node, Node Y and PFIP Node represents
are reliable and secured communication path which may
be requested by e.g., the ATMIS business service.

Figure 1. ATM Domain Integration Scenario

On the left hand side of Fig. 1, another feature of the
ATM domain integration scenario is pictured. The
business services SFDP 1 and SFDP 2 are both elements of
a so-called "virtual sender group", which means that they
both send the same data, but only one message should be
sent to the receiving ATMIS business service. This may

1 Progress SONIC (http://www.sonicsoftware.com) and TIBCO
(http://www.tibco.com) are registered Trademarks and Commercial Off-
the-Shelf (COTS) products

e.g. be the case if the SFDP business services are
connected to redundant radar dishes, but only one message
containing the radar data should be sent, the other is just
produced for reliability purposes. So the business services
need to coordinate themselves in order to determine which
SFDP business service is allowed to send the message to
the ATMIS business service.

III. RELATED WORK
This chapter summarizes related work on system

integration technologies and gives a short overview of the
model-driven architecture background of the proposed
approach.

A. System Integration Technologies
System integration is the task to combine numerous

different systems to appear as one big system. There are
several levels at which system integration could be
performed [2], but there is so far no standardized
integration process that explains how to integrate systems
in general.

Typical integration solutions focus only on either the
heterogeneity on service level or the heterogeneity on
network level. In order to cope with technological
heterogeneity on service level a homogeneous middleware
technology approach [7] could be used for syntactical
transformation between services, while the semantical
heterogeneity of services could be addressed by means of a
common data schema [6]. Heterogeneity on network level
may be addressed by using so called adapters transforming
messages between each used combination of middleware
technologies. However, in order to provide an effective
continuous integration solution in this environment, both
integration levels (i.e. service and network level) need to
be addressed in a mutual way.

The derived limitations for such kinds of integration
approaches are on the one hand the need for a common
data schema [6], which is often a hard and time consuming
procedure, if not even impossible in integration scenarios
with several different stakeholders. On the other hand, the
need for integration over heterogeneous middleware
technologies with different APIs, transportation
capabilities, or network architecture styles implies the
development of static and therefore inflexible wrappers
between each combination of middleware technologies,
and thus increases the complexity of communication.
Traditional approaches for integration of business services
can be categorized [5] into: Hub and spoke vs. distributed
integration and coupled vs. separated application and
integration logic. In the following, using current
technology concepts for each category a brief discussion
about their advantages and disadvantages with respect to
the described scenario is given.

Application servers [7] are capable of interoperating
through standardized protocols, but tightly couple
integration logic and application logic together.
Additionally, as the name suggests a server based
architecture style is used for integration and as such has
proven to be inconvenient for the scenario. Traditional EAI
brokers [5], some of them built upon application servers,
use a hub-and-spoke architecture. This approach on the
one hand has the benefit of centralized functions such as
the management of business rules or routing knowledge,

268268

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

but on the other hand does not scale well across business
unit or departmental boundaries, although it offers clear
separations between application, integration and routing
logic. Message-oriented Middleware [8] is capable of
connecting application in a loosely coupled manner but
requires low-level application coding intertwining
integration and application logic. The resulting effort and
complexity of implementing an integration platform with
the support for any kind of existing middleware
technologies and protocols therefore is considerably high.
To enable transparent service integration, the Enterprise
Service Bus (ESB) provides the infrastructure services for
message exchange and routing as the infrastructure for
Service Oriented Architecture (SOA) [15]. It provides a
distributed integration platform and clear separation of
business logic and integration logic. It offers routing
services to navigate the requests to the relevant service
provider based on a routing path specification. Routing
may be [5] itinerary-based, content-based, conditional-
based defined manually [17] or dynamic [1]. In both cases
the drawback is the minimal support for considering all
functional and non-functional requirements of all service
connections in the system. Dynamic configuration focuses
mainly on creating a route for a special business case.
Using manual configuration, a system integrator has to rely
on his expertise, thus the high number of service
interactions may get complex and the configuration error-
prone. This may lead to routes that are configured in a way
in which their influence on other business interactions is
not fully known. As a consequence, business interactions
may mutually violate their non-functional business
requirements, such as message delivery within a specific
time frame otherwise the message may be still useful but
not up-to-date any more. Additionally, dynamic
configuration may not cope with e.g. node failures fast
enough due to missing routing alternatives, therefore
possibly violating the same type of non-functional business
service requirements.

B. Model Driven Architecture Background
The major goal of the Model Driven Architecture

(MDA) approach is the separation of system functionality
specification and implementation [11]. Using the so called
Computation Independent Model (CIM) the MDA
framework can be used to construct the models [11]
describing system requirements and behaviour in a formal
way, like e.g. by using UML. The separation of system
functionality and implementation specifications is
modelled in the Platform Independent Model (PIM), which
is refined out the CIM, normally by hand [11]. The main
functionality of the PIM is to specify system structure and
behaviour independently of the platform it is deployed to.
The separation of system functionality on a specific
technology platform is described in the Platform Specific
Model (PSM), which is the result of the PIM
transformation to the target platform. The advantages [10]
of the MDA framework are (1) automated generation of
results improving productivity, development duration, and
cost; (2) focusing on the creation of conceptual models
rather than on logical and technical details; (3) developed
transformations can be reused; (4) adaptations due to
changes of the target platform need to be made in the PIM
only; and (5) new requirements defined in the CIM are

passed to PIM and PSM immediately and therefore
changes are reflected automatically [11]. The MDSC
approach described in this paper is similar to the approach
presented in [3]. Based on requirement and capability
models which represent documents, integration expert
knowledge and estimation/measurements of the integration
network capabilities [12], a logical solution model which
represents the set of suitable integration partners is derived
automatically [13]. This logical solution model then is
transformed into the technical solution model, representing
the specific integration configuration for the underlying
integration network technologies.

IV. RESEARCH ISSUES
Recent projects with industry partners from the safety-

critical ATM domain raised concerns about the automated
configuration of modern technology-driven integration
environments. For efficient and effective system
integration a major goal was to improve the capability of
engineers to automatically derive an integration solution
configuration by facilitating team work and tool support.
Consequently, we propose a model-driven approach that
uses explicitly modelled requirements and capabilities of
business services and network infrastructures for deduction
and deployment of an integration solution configuration.
Therefore, this paper focuses on the following research
issues:

RI-1: Model-Driven System Configuration. To what
extent is the proposed MDSC approach feasible and
requires less effort for integration scenarios compared to a
traditional manual process? How does measured runtime
data that is fed back into the used capability models,
improve the accuracy of the configuration and thus of the
integration platform? How do investment efforts and
improvements evolve with the number of repeated
configurations?

RI-2: Integration Platform. To what extent can the
introduced integration platform reduce the complexity of
integrating business services? How can the introduced
abstraction interface reduce coordination complexity by
means of configuration only?

In order to show the feasibility of the proposed MDSC
approach we gathered requirements and capabilities from
an industry application example and conducted the process
steps. The results of the evaluation are discussed in chapter
VII.

V. MODEL-DRIVEN SYSTEM CONFIGURATION
This section describes the model-driven system

configuration (MDSC) process [12]. As shown in Fig. 2,
the MSDC process consists of 5 major process steps. In the
following paragraphs, these steps are explained in detail,
with regard to the example data presented in the figure.

Business Services in the ATM domain. For each
legacy information system to be integrated, the subject
matter expert (SME) responsible for the particular system
describes the messages which are either provided or
consumed by the business services provided. Both the
structure (i.e., data types and semantic meanings) and the
format of the exchanged messages are described [13].

In the example, there are 2 business services shown on
the on the left hand side, "CFC" and "ATMIS".
Additionally, 4 message types are presented using a tuple-

269269

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

based notation. The "CFC" service provides the "CFC-
Message" consisting of information about a certain flight,
i.e., flight number, departure and destination airport,
planned time of departure and estimated duration of the

flight. In contrast, the "ATMIS" service consumes the
"ATMIS Message" consisting of additional flight
information compared to the "CFC-Message", namely the
estimated day and time of arrival of a certain flight.

Figure 2. MSDC process overview

Requirement and Capability Models. In addition to
the description of the provided or consumed message of
the participating business services, the business services
define extra requirements regarding either possible
integration partner candidates (i.e., other business services)
or the underlying heterogeneous network infrastructure
[12].

The example shows three different kinds of
requirement and capability models. On the left hand side,
the requirements of the "CFC" service regarding both the
transmission using the underlying heterogeneous network
infrastructure (e.g., the transmission needs to be secure and
reliable) as well as the required capabilities of possible
integration partners (e.g., an integration partner services
has to be an Austrian service) are presented exemplary. In

the middle, the capability models of business services are
shown exemplary. E.g., the "ATMIS" service has a defined
service location of "Austria", and the "CFC" service has a
defined retransmission interval of 2 seconds. On the right
hand side, the capability models of the underlying
integration network infrastructure are presented. The
integration network consists of nodes and links connecting
these nodes. Each link presents a specific middleware
technology and may define additional capabilities of this
middleware, e.g., the capability of "Middleware1" to
support secure and reliable transmissions. In comparison to
a traditional integration process, the outcome of the so far
described process steps is a set of machine-understandable
knowledge models describing both the message structures
as well as the requirements and capabilities of the legacy

270270

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

information system to be integrated and the capabilities of
the underlying integration network infrastructure.

Logical Solution Model. The externalized knowledge
which is captured in the knowledge models created in the
previous steps is used to automatically derive the set of
possible integration partners using ontology-based
reasoning, allowing an easier and less error prone
identification of possible integration partners compared to
the traditional integration process [12][14].

Based on the legacy system descriptions, the
description and mapping of the domain knowledge and the
description of the architecture and capabilities of the
integration network, the possible sending and receiving
service partners are derived using heuristics and ontology-
based reasoning .In the example, this is represented as a
graph consisting of the possible collaborations (i.e., the
services which are able to communicate). As shown in Fig.
2, there are 4 automatically derived collaborations:
collaboration 1 between "ATMIS" and "PFIP",
collaboration 2 between "PFIP" and "ATMIS",
collaboration 3 between "CFC" and "ATMIS", and
collaboration 4 between "SFDP" and "ATMIS".

Concrete Technical Solution Model. Based on the
logical solution model derived in the previous process step,
the technical solution model for each integration node is
generated automatically. This technical solution model is
an XML configuration which is interpreted by the
integration platform introduced in chapter 6. The major
components of the technical solution model are a) routing
tables that specify where certain received messages
belonging to a specific collaboration should be forwarded
to - there are more than one routing targets for a specific
collaboration (so called "backup routes"), which are
automatically used in case of unavailability of the original
target integration node; b) transformation instructions that
define how messages originating from business services
should be transformed before sending them to other
business services via the integration nodes; c) middleware
specifications that define the configuration parameters and
access methods for each connected specific middleware
technology of a particular integration node; d) application
specifications that define the configuration parameters and
access methods for each connected business service of a
specific integration node; and finally e) security
specifications of the particular integration node (i.e.,
encryption protocols or certificates to use for the
transmissions).

As shown in Fig. 2, the concrete technical solution
model for each single integration node contains
information about all collaborations which use this
particular node. Additionally, there is a difference between
integration nodes that are connected to business services
and integration nodes without connected business services
(so called "intermediate nodes"). While the technical
solution model of intermediate nodes only contains routing
tables, middleware specifications and security information,
the technical solution model of integration nodes
connected to business services additionally contains
transformation instructions and application specifications.

Deployment to concrete Hardware. Finally, the
concrete technical solution model for each single
integration node is deployed to the particular integration
platform (see chapter VI).

VI. INTEGRATION PLATFORM
The MDSC process results in a solution model that

needs to be deployed. Additionally, the process is capable
of improving the system's configuration by means of
monitoring data collected during execution. In the
following the integration platform for the MDSC approach
is described.

Figure 3. Integration Platform

The main task of the integration platform (INTP) (see
Fig. 3) is to interconnect business services a) by binding
business services and middleware technologies; b) by
routing messages in a fault-tolerant manner with respect to
virtual sender groups over heterogeneous middleware
technologies; and c) by transforming messages to
overcome the semantic gaps between business services.
The INTP is installed on every node described in the
network capability model and uses the derived solution
model to configure its components:

Application Adapter. Based on the automatically
derived configuration, the adapter loads the so called
Application Gateways (AGs). An AG represents the
connection to the business service and is implemented by
the developers of the service. Similar to JBI [19], by
means of the AG the service is capable of sending and
receiving messages asynchronously. The interfaces of the
Application Adapter and of the AG do not need to be
described by means of WSDL since their capabilities have
already been defined in the capability models. Messages
sent by the AG additionally receive a so called
CollaborationID representing the collaboration that has
been calculated in the Logical Solution Model. This ID
helps the Routing Component to route messages (i.e., the
Routing Component looks up the specific network route
for a particular CollaborationID).

Middleware Adapter. Based on the automatically
derived configuration, the adapter loads the so called
Middleware Gateways (MGs). An MG represents a
communication link with a specific middleware
technology between two nodes only. If there are several
different communication links between two nodes, then
there has to be one MG available for each possibility. The
MG functions as a wrapper and knows how to interact with
the real middleware that is actually forwarding the

271271

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

message to the destination specified by the routing
component. The responsibility of the MG is to operate and
to optimize the middleware technology according to the
capabilities which have been specified in the capability
models and selected during the derivation of the logical
solution model. Similar to the AG, the interface of the MG
consists of methods for sending and receiving messages
asynchronously.

Transformation Component. The solution model
provides transformation instructions specifying how to
handle certain message types. The instructions have been
derived from the requirement and capability models
describing the services and thus the Transformation
Component is able to manipulate message structure and
content accordingly. The component can change message
data types, split messages into several segments, merge
different segments into a message, replace or enrich certain
information of a message, or perform any combination of
the described possibilities.

Routing Component. The automatically derived
configuration of the routing component contains a routing
logic specifying where to forward a message. A message
can be either forward to a local service via the
Transformation Component or to one of the installed MGs.
Consequently, the routing logic specifies either the target
AG or the target MG which is used to send the message to
the next hop along the route to the final target service. The
chosen MG has a priori been selected during the derivation
of the concrete technical solution model. Additionally, the
solution model contains several other routes, so called
"backup routes", which have been calculated during the
derivation of the concrete technical solution model. These
backup routes are used by the routing logic of the
integration platform if the originally targeted next hop is
not available any more. This allows the integration
platform to react on changing network conditions quickly.

The scenario in chapter II introduced the problem of
virtual sender groups and the need for coordination
between the participating members of that group. To keep
the abstraction interface reduced to the methods send and
receive and the implementation of the integration platform
less complex, it has been avoided to add a component
responsible for group communication only. Additionally,
traditional group communication mechanisms are not
capable of coordination over multiple heterogeneous
middleware technologies. Therefore, the interface is
configurable as well, and as such the send method can be
intercepted by aspects representing the appropriate strategy
for coordination [16]. The need for a virtual sender groups
is derived from the data in the service capability and
requirement models. Additional collaborations with unique
collaboration-IDs are set up between the members of a
virtual sender group, and in the concrete technical solution
model an appropriate route between those nodes is
calculated. This means that the aspect is configured with
information about the virtual sender group and which
collaboration-ID it has to use to reach other virtual sender
group members. When the aspect receives a message from
a business service that is a member of the virtual sender
group, it withholds the message until the group has
reached a decision. Either the message is then sent via the
original MG or discarded.

The task of the Monitoring Component of the
integration platform is to collect information (like
transmission speed and maximum bandwidth between two
nodes, the number and size of exchanged messages, the
time needed to reach an agreement in a virtual sender
group, or the number of node failures resulting in accurate
failure probability values) that may help to improve the
capability models reflecting a more realistic description of
the network infrastructure and the business services. This
results in a configuration that is adapted to the real
environment.

VII. DISCUSSION
Within a research project with two industry partners,

the MDSC approach and the integration platform have
been evaluated by means of several different scenarios
from the ATM domain. In this chapter we discuss the
benefits and limitations of the proposed approach with
special respect to the introduced research questions (see
chapter IV).

Model-Driven System Configuration. In [12][13] the
integration process, MDSC is based on and which uses
requirement and capability models, has been evaluated in
comparison to traditional integration processes. Major
results were that the proposed approach took considerably
shorter for the modelling phase and lowered the risk of
errors in the system configuration due to automated model
checking using ontology-based reasoning. Additionally,
traditional model checking approaches are focusing
primarily on single models (like UML), but they lack
support for checking heterogeneous or integrated models
resulting in error-prone and time-consuming human effort.
The approach has proven to be especially suitable for
integration scenarios with frequent reconfiguration due to
changing business requirements or network infrastructure.
This allows manipulating capability and requirement
models in order to simulate integration scenarios for fine-
tuning of business interactions. The benefit arises from the
option to cheaply generate system versions that can be
analyzed to better understand the trade-offs of different
capabilities in the case study context, e.g., the valuation of
different middleware technologies on the distribution of
traffic in the system. Additional advantage of the approach
is that the complexity of manipulating models and as
consequence the solution model for the integration
platform is focused at a central point that can be managed
by a few experts only. In the traditional integration
process, administrators have just a partial view of the
entire system and may try to optimize their business
interactions locally. This may result in an overall system
behaviour that maybe was not intended. However, the
proposed MDSC approach always tries to optimize the
integration scenario with a global view over the entire
system. Compared to traditional high-level MDA based
approaches, the MDSC approach is adapted to a specific
domain (like ATM), resulting in a skipped CIM, and
directly in a PIM that is not very high-level.

The collection of monitoring data from integration
platform allows a) comparing the described capability
models with the real behaviour of the system and b)
updating the existing values of the capability models
automatically based on the measured real life data.
Additional monitoring data, such as availability of nodes,

272272

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

which can only be estimated in the first place helps to
precise the capabilities of the network infrastructure. By
including this information into the calculation of routes,
the overall dependability of the integration solution is
improved, since probabilistic factors are used in the
models.

Integration Platform. The automatically derived
configuration predetermines the overall behaviour of the
integration scenario. The more specifications the
configuration contains the better the integration platform
can react on changing circumstances. This allows the
integration platform to work in a predefined deterministic
way without "surprises" during execution regarding e.g.
network failures, service failures, or network bottlenecks.
The complexity of integrating business services is shifted
away from the integration platform (run-time) to the
MDSC approach at design time, minimizing the time
criticality of the integration solution. This allows keeping
the implementation of the integration platform itself as
simple as possible since it is entirely dependent on
configuration instructions only. As proof-of-concept we
have implemented a prototype of the integration platform
making use of a plug-in architecture style to enforce
runtime policies based on the requirement and capability
models.

The interface abstracting the heterogeneous
middleware technologies allows injecting aspects if
defined by the configuration used to coordinate services if
they are in a virtual sender group. Additionally, aspects are
configured by means of different strategies representing
different ways to reach a decision in a group. Adding the
possibility to intercept communication methods in the
integration platform and to configure them by the MDSC
additionally minimizes the complexity of the integration
platform implementation.

Compared to traditional integration solution the
middleware adapter abstracts any kind of middleware
technologies. While in traditional solutions connectors
between each used combination of different middleware
technologies need to be implemented, the integration
platform requires only the binding to the interface of the
middleware adapter only. Although the approach of a
common interface is not sophisticated, the benefit of it is a
common interface with different transmission semantics.
The semantic of the method, e.g. reliable or secure
communication, depends on the capability of the
middleware that is represented by that interface.

VIII. CONCLUSION AND FUTURE WORK
In this paper we proposed and discussed a model-

driven system configuration approach (MDSC) for the
ATM domain, which explicitly models the components of
the heterogeneous network infrastructures and their
capabilities to automatically generate a logical network
configuration. Based on this logical solution model, a
technical solution model is derived automatically and
deployed using an integration platform. This enables the
communication of business services by means of an
abstraction interface which bridges the underlying
heterogeneous middleware technologies, additionally
semantic gaps between business services are bridged by
executing automatically derived transformation
instructions. Furthermore, the model-driven approach

allows fault-tolerant, deterministic and traceable group
communication and routing mechanisms.

Based on an industry application example, we
discussed the benefits of the MDSC approach and the
integration platform. Major results of the discussion are: a)
the manipulation of capability and requirement models
allows the efficient generation of integration scenarios for
fine-tuning business interactions, in order to better
understand the trade-offs of different integration solutions;
b) the complexity of the solution model is focused at a
central point and therefore manageable by a few experts
only; c) monitoring data from the integration platform can
be compared with the described capability models
respectively fed back into the capability models, updating
the existing values with measured real-life data; d) the
abstraction mechanism allows the effective reuse of
existing middleware technologies by means of
automatically deriving system configurations, furthermore,
the access to interoperable heterogeneous middleware
technologies is automatically derived without the need for
human intervention for configuration; e) only basic
methods (e.g., sending and receiving messages) of the
underlying middleware technology are used in the
abstraction interface, additional functionality (e.g., reliable
transmission) is modelled in the capability model, used for
derivation of the logical solution model and configured
automatically by the technical solution model; and f) the
abstraction interfaces allows the injection of aspects
defined in the configuration, minimizing the complexity of
the integration platform implementation.

Further work will include a large-scale evaluation of
the proposed MDSC approach using scenarios and
traditional integration effort measurements of a real-world
integration project. Further work will also include a
mechanism to describe a set or combination of different
characteristics in the capability model and use this
information during the derivation of the logical solution
model, and configure the middleware technology
accordingly using the derived technical solution model.
Another current open research issue is the deployment of
and the synchronized switch to a new version of the
solution model. Finally, tool supported mechanisms to
automatically feed back measured runtime information
into the capability models need to be developed.

ACKNOWLEDGMENT
The authors would like to thank all members of the

SWIS project performed 2006-2008 at Vienna University
of Technology together with Frequentis AG and Austro
Control GmbH.

REFERENCES
[1] X. Bai, J. Xie, B. Chen, and S. Xiao. Dresr: Dynamic routing in

enterprise service bus. In ICEBE ’07: Proc. of the IEEE Int. Conf.
on e-Business Engineering, pages 528–531, Washington, DC,
USA, 2007. IEEE Computer Society.

[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S.
Neema. Developing applications using model-driven design
environments. Computer, 39(2):33, 2006.

[3] S. Biffl, R. Mordinyi, and A. Schatten. A model-driven architecture
approach using explicit stakeholder quality requirement models for
building dependable information systems. In Proc. of 5th Intl. Wsh.
on Software Quality, pages 6–6, May 2007.

273273

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

[4] C. Cappiello, M. Comuzzi, and P. Plebani. On automated
generation of web service level agreements. Advanced Information
Systems Engineering, pages 264–278, 2007.

[5] D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.
[6] A. Halevy. Why your data won’t mix. Queue, 3(8):50–58, 2005.
[7] G. E. Harris, D. Leibs, J. Carri`ere, F. Nagy, J. Crupi, and M.

Nally. Application servers: one size fits all...not? In OOPSLA’03:
Companion of the 18th annual ACM SIGPLAN Conf. on Object-
oriented programming, systems, languages, and applications, pages
284–285. ACM, 2003.

[8] G. Hohpe and B. Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[9] H. F. Lipson, N. R. Mead, and A. P. Moore. Can we ever build
survivable systems from cots components? In Proc. of the 14th Int.
Conf. on Adv. Information Systems Engineering, pages 216–229,
London, UK, 2002. Springer-Verlag.

[10] J.-N.Mazon, J. Trujillo, M. Serrano, and M. Piattini. Applying mda
to the development of data warehouses. In DOLAP ’05: Proc. of
the 8th ACM Int. Wsh. on Data warehousing and OLAP, pages 57–
66. ACM, 2005.

[11] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise. MDA Distilled.
Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 2004.

[12] T. Moser, R. Mordinyi, A. Mikula, and S. Biffl. Efficient system
integration using semantic requirements and capability models. In
Proc. 11th Int. Conf. on Enterprise Information Systems, 2009.

[13] T. Moser, R. Mordinyi, A. Mikula, and S. Biffl. Making expert
knowledge explicit to facilitate tool support for integrating
complex information systems in the atm domain. In Proc. of the
Intl. Conf. on Complex, Intelligent and Software Intensive
Systems, 2009.

[14] T. Moser, K. Schimper, R. Mordinyi, and A. Anjomshoaa. Samoa -
a semi-automated ontology alignment method for systems
integration in safety-critical environments. In Proc. of the 2nd
IEEE Intl. Wsh. on Ontology Alignment and Visualization, 2009.

[15] M. P. Papazoglou and W.-J. Heuvel. Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal,
16(3):389–415, 2007.

[16] D. Powell. Group communication. Commun. ACM, 39(4):50–53,
1996.

[17] F. Satoh, Y. Nakamura, N. K. Mukhi, M. Tatsubori, and K. Ono.
Methodology and tools for end-to-end soa security configurations.
In SERVICES ’08: Proc. of the 2008 IEEE Congress on Services -
Part I, pages 307–314, 2008.

[18] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen. The
enterprise service bus: making service-oriented architecture real.
IBM Syst. J., 44(4):781–797, 2005.

[19] R. Ten-Hover and P.Walker. Java Business Integration (JBI) 1.0.
Sun Microsystems, Inc., 2005.

[20] G. Ziyaeva, E. Choi, and D. Min. Content-based intelligent routing
and message processing in enterprise service bus. In ICHIT ’08:
Proc. of the 2008 Int. Conf. on Convergence and Hybrid
Information Technology, pages 245–249, 2008.

274274

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:54 from IEEE Xplore. Restrictions apply.

