2009 Eighth International Symposium on Parallel and Distributed Computing

A P2P Network of Space Containers for Efficient Management of Spatial-Temporal
Data in Intelligent Transportation Scenarios

Eva Kiihn, Richard Mordinyi, Hannu-Daniel Goiss

Complex Systems Design and Engineering Lab
Vienna University of Technology
Favoritenstr. 9-11, 1040 Vienna, Austria
{eva, rm, hdg}@complang.tuwien.ac.at

Abstract

The effectiveness of Intelligent Transportation Systems
(ITS) depends on their ability to collect contextual data from
various sources and appropriately generate and transport
comprehensible, reliable and timely content to users. In
such applications, the exchanged content is structured in
space and time. Peer-to-peer (P2P) networks are the natural
choice these applications due to their fault-tolerance, self-
organization and scalability properties. However, a closer
analysis of the available Distributed Hash Tables (DHT)
protocols shows that the structure of the data gets lost and
its short liveness leads to high signalling traffic.

In this work we propose a novel overlay network of so
called Space Containers for storing, accessing, manipulating
and structuring dynamic geo-located content. The benefits of
combining Space Containers and DHT are: clean applica-
tion programming logic and efficient content retrieval while
preserving the properties of DHTS.

We describe the system architecture applied to a trans-
portation scenario and show preliminary evaluation results.

1. Introduction

Intelligent Transportation Systems (ITS) [1] are decision
support systems that offer assistance in terms of instructions
and recommendations to drivers, describing road and traffic
conditions, and that operate in a dynamically changing en-
vironment. Therefore, the effectiveness of such applications
depends on the ability to collect contextual data from many
different sources such as sensors, cameras or personnel,
and to appropriately generate and transport comprehensible,
reliable and timely content to users. Due to the high vehicle
mobility, ITS applications require novel opportunistic rout-
ing, node-by-node reliable transport and disruption-tolerant
behavior. In order to meet these requirements intermediate
nodes must be able to cache and replicate the communication
messages.

Sandford Bessler, Slobodanka Tomic
Telecommunications Research Centre Vienna
Donau-City 1, 1210 Vienna, Austria
{bessler, tomic} @frw.at

The trend for “storage in the net” has been efficiently
addressed by P2P storage networks such as PAST [2],
OceanStore [3], or the cooperative file system CFS [4].
However, when it comes up to efficiently storing, querying,
or acting-upon structured content, such as contextual data
including complex temporal as well as geographical location
information, the former storage network designs (supporting
mainly files) becomes unsuitable, since the information
structure gets lost.

In [5] we proposed a novel architecture which integrates
the adaptiveness of the P2P approach, particularly Dis-
tributed Hash Tables (DHT), with the query expressiveness
and coordination support of the Space-based Computing
paradigm [6]. The so called SABRON [7] (storage and appli-
cation based routing overlay network) architecture enables
applications that operate on distributed storage of struc-
tured data and that require application-based routing and
distributed coordination. SABRON combines the so called
Space-Containers [8] for storage, access, and manipulation
of complex, dynamic data objects, while an overlay network
based on DHT concepts makes such Space Containers
uniquely addressable in a fault-tolerant and scalable manner.
The benefits of SABRON are: a) low message traffic on
the DHT level, b) clean application programming interfaces
that hide the distributed character of space containers, and
c) efficient data storage and retrieval due to customizable
coordinators and query expressiveness of Spaces-Containers.
Extending the ideas in [5], this paper reviews existing related
work and presents first performance evaluation results of the
implemented system.

The remainder of this paper is structured as follows:
section 2 summarizes related work, section 3 defines the
research questions, and section 4 presents an application
scenario describing the requirements and motivating our ap-
proach. Section 5 describes the concept and the architecture,
whereas section 6 discusses the evaluation results. Finally
section 7 concludes the paper and proposes further work.

978-0-7695-3680-4/09 $25.00 © 2009 IEEE 218

IEEE
@) computer
DOI 10.1109/1SPDC.2009.27 C

soclety

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

2. Related Work

This section summarizes related work on Space-based
Computing and DHT concepts with focus on distribution
and retrieval of dynamic data in P2P networks. It shows the
benefits and strengths of each technology, vis-a-vis of the
requirements of vehicular applications.

2.1. Distributed Hash Table for Lookup

Structured P2P networks, like Chord [9], Pastry [2], or
CAN [10], use Distributed Hash Tables and have been exten-
sively studied and successfully deployed to create scalable
and fault-tolerant applications.

A few P2P techniques such as the intentional naming
system INS/Twine [11] or P-Grid [12] can maintain a
structure with a hierarchical DNS-like addressing. However,
the costs for such solutions are high, since keeping a P2P
entry for each data item (or message) causes a large traffic
overhead, especially when the data elements are mutable
and short lived. The basic functions a DHT provides, are
to store a data object and to retrieve it efficiently from any
peer in the network. For this purpose, a very large identifier
space (e.g. all binary combinations of 128 bits) is defined
onto which data objects and node identifiers are mapped
using a hash function. The design options to create the key
for a data object vary from hashing the (string) name of
the object, its location (URI), or the content itself. The
storage/publishing function is not affected by the selected
alternative publish(key, value).

With most DHTs it is only possible to lookup exact
values, but it is not possible to include wildcards or any
other query expression for retrieving values. DHTSs take care
of efficient distribution of the data in the key space for
load sharing purposes, and of replication for fault-tolerance
reasons. Therefore, a DHT offers basic self organization
functions, such as adapting the topology when a node arrives
or leaves, and a better reliability since it has a mechanism
in place to replicate DHT entries. The lookup effort is for
most DHTs O(log N) where N is the number of nodes.

Among the various DHT algorithms, the Pastry protocol
[2] with its implementation FreePastry' was used to evaluate
our approach and deserves a more detailed discussion. The
identifiers are selected from a 128-bit ID circular space.
The routing of messages between the nodes is based on
maximum prefix matching. For this purpose the routing table
of a node has several rows, so that the n-th row lists those
nodes that have a matching prefix of n with the current
node ID. The leaf set is also a part of the routing table
and contains nodes whose node ID are numerically close to
the current node ID. DHT entries are replicated by Pastry on
a subset of the leaf set. The Pastry replication mechanism is

1. http://freepastry.org/FreePastry/

responsible that the parameter r, the number of life replicas,
remains invariant under node churn conditions. During a
lookup operation, the routing protocol will search the node
with the closest ID to the key K, however a neighbor node
holding replica(K) might be found earlier on the routing
path. Therefore, the lookup(k) operation might not deliver
deterministically the same replica.

2.2. Space-based Computing for Storage and Re-
trieval

The Linda coordination model [13], developed in the
mid-1980’s by David Gelernter at Yale University, is the
originator of the “space based system”. He introduced a
coordination language called Linda which operates on an
abstract computation environment called tuple space. In the
tuple space approach, processes communicate with other
entities in the environment by writing tuples (ordered se-
quences of data) into and reading tuples from the tuple
space via a handful operations (out, in, rd, eval). Sharing
of data via spaces [14] is not a novel paradigm. It comes
from parallel processing and was later considered for dis-
tributed environments. Due to its high-level abstraction of
communication by simply reading and writing data from/into
a shared space this paradigm fits to growing dynamics and
collaboration in the network [15].

There are a lot of implementations (like JavaSpaces [16],
TSpaces [17], LIME [18], MARS [19], or TuCSon [20]),
that follow the concept of the tuple space with associative
search for the stored tuples. The Linda model requires the
specification of a tuple as an argument for both query
operations. In such a case, the tuple is called template
that allows the usage of a wildcard as the field’s value. A
wildcard declares only the type of the seeked field, but not its
value. Although both MARS and TuCSoN enable the mod-
ification of the operations’ semantics by adding so called
reactions, they can not influence the way how tuples are
queried. JavaSpaces adds subtype matching to the exact tuple
matching mechanism to query objects from the space. The
drawback of exact tuple matching is that all collaborating
processes must be aware of the tuple’s signature they use for
information exchange. Hence, there are several tuple space
implementations that offer additional queries mechanisms,
such as TSpaces [17], XMLSpaces.Net [21] and eLinda [22].
TSpaces offers the possibility to query tuples by named
fields or by specifying only the field’s index and a value
or wildcard. Furthermore TSpaces allows the definition of
custom queries by introducing the concept of factories and
handlers. Both TSpaces and XMLSpaces.Net support the
use of XML-documents in tuple fields and therefore enable
the use of several XML query languages such as XQL
or XPath. eLinda [22] enables the usage of more flexible
queries, via its Programmable Matching Engine (PME), such
as maximum or range queries. Beside these queries the PME

219

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

also provides aggregated operations that allow the summary
or aggregation of information from a number of tuples,
returning the result as a single tuple. The PME allows, like
TSpaces with its concept of custom factories and handlers,
the simple definition of custom matchers [22]. However, it
cannot be guaranteed which tuple is returned by a query. It
may happen that due to the non-deterministic semantics of
the Linda operations a tuple is never returned although it
would match a query.

The SABRON approach uses a Space-based architec-
ture called XVSM (extensible virtual shared memory [23])
and its implementation called MozartSpaces®. A part of
MozartSpaces is an abstraction called Space Containers [8],
[24]. A Space Container allows the storage of entries in a
customizable structured and ordered way. Entries are data
structures of any type, not being restricted to tuples only.
The ordered, structured form of the space is achieved by
specific customizable Coordinators, an inherent component
of a Space Container. Such Coordinators are capable of
distinguishing explicitly between data needed for coordi-
nation purposes and the payload itself. Those coordination
data is used by the Coordinators to store the entries in an
efficient way. Like in the Linda model, Space Containers
can be accessed by the operations read, take, and write.
Each Space Container may contain one or more Coordinator
which define the exact semantics of each operation. The
Coordinators can be classified into implicit order, direct
access and content matching. Implicit order refers to e.g.
FIFO and LIFO ordering of stored entries. Direct access
allows selection of entries via tags directly, using relational
operators [24] or range operators. Content matching allows
to define user defined match makers [25], e.g. for Linda,
RDEF, or XML querying facilities.

A data space in MozartSpaces is a collection of Space
Containers which can be addressed via URLs in the internet.
A lookup mechanism has to resolve a published container
name to its URL. Depending on the application domain,
the use of DHT techniques as described in section 2.1 is
a candidate to consider. Additionally, a Space Container is
extensible in the sense that its behavior can be extended
by means of so called Aspects [26], comparable to aspects
in object-oriented programming languages [27]. Aspects
represent application programs that are executed on certain
operations carried out on a Space Container. Interception
points (e.g. pre- or post-read) for Aspects define whether
the logic is carried out before or after every operation.

A MozartSpace was originally conceived as a coordination
framework, but can be used as a storage component as
well, similar to a distributed database. The customizable
Coordinators leading to extensive query expressiveness, the
Aspects that react on events, are all benefits that distributed
databases however do not have at this level. Databases aim

2. to be downloaded at http://www.mozartspaces.org

to store and retrieve long living data. Additionally, triggers
can be seen as aspects as well, but are meant for operations
within the database itself, without the power of establishing
connections to others peers in the network. Furthermore,
distributed databases are capable of replicating data in a
very efficient way, but lack integrating the semantics of data
to be replicated into that process. Consequently, they cannot
support different replication and consistency strategies based
on the semantics of the stored data at the same time (section
5.2). Finally, databases support static data models while
Space Containers allow the usage of several different Co-
ordinators at the same time, enabling dynamic data models.

3. Research Questions

The SABRON approach combines the DHT addressing
and networking concepts with Space Containers for efficient
storage and retrieval of dynamic and structured data. Due to
the limitations of traditional DHT approaches with respect
to structured and dynamic data and to performance require-
ments in vehicular transportation environments, we derive
the following research questions:

R.1 - Functional and programming aspects: Investigate
a) the advantages and limitations of an integration of Space
Containers and a DHT network for storing, manipulating,
and retrieving structured and dynamic data; b) system self-
organization and resilience properties and c¢) programming
easiness and elegance combined with added support of more
complex data queries. What are the major differences be-
tween the integrated approach and a “’plain” DHT solution?

R.2 - System Performance: Investigate to what extent
the integration of Space Containers with DHTs a) reduces
the time needed to collect all data belonging to the same
domain, b) supports queries for precise retrieval of data.
Where are the strengths and weaknesses of each concept?
For investigating these research issues, we gathered require-
ments from a set of reasonable industry case studies in the
telematics domain. Then, we designed and implemented a
framework based on Pastry [2] and our Space Container?
implementation.

4. Application Scenario

A motivating use-case that we use to identify requirements
and to illustrate the benefits of the proposed architecture is
an Intelligent Transportation System (ITS) scenario. In this
scenario fast moving vehicles communicate with a fixed,
but geographically distributed infrastructure, as illustrated
in figure 1.

For this purpose the peer nodes are called road side units
(RSUs), and are installed along the road network in 1-2 km
distance of each other. RSUs are connected in a meshed

3. to be downloaded at http://www.mozartspaces.org

220

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

) Distributed Infrastructure
Overlay

)

ive data

Road Segment

Figure 1. Intelligent Transportation Scenario

wired broadband network in order to assure scalability and
increase fault-tolerance. On the one hand RSUs exchange
safety and traffic information via dedicated short range com-
munication protocols (DSRC [28]) with vehicles passing by.
Such geo-located messages include safety-critical warnings
like wrong-way-driver, speed limits, traffic jams, incidents,
road works etc. One service offered by the road provider is to
distribute these messages to the relevant RSUs. Depending
on the type and severity of the message, the relevant RSU
is one that is situated within a certain distance ahead (or
upstream) of the event (e.g. an accident).

On the other hand the vehicles themselves act as providers
of geo-temporal context data by reporting on safety events
measured by sensors along their paths, e.g. sudden use
of breaks, humidity, temperature of the road, etc. In both
cases the scenario shows that the data is geo-located and its
relevance in space and time is limited to a certain region,
moving direction and period of time. Data belonging to a
specific region needs to be queried and updated frequently as
vehicles provide new information to the RSU and need the
latest data from a RSU situated in the connectivity range.

5. Architecture

As mentioned before, the proposed system should keep
the structure of information entities while preserving
the characteristics of DHTs. Thus, grouping can be
achieved by storing the information entities in a Space
Container. This means that the addressing granularity
in the overlay is therefore the Space Container. Each
Space Container may represent a geographical region,
a certain service, or the messages a RSU has to
broadcast to all vehicles passing by. The addressing
scheme for a Space Container is an URI of the form
” xvsm://mycomputer.mydomain.com: 1234/ContainerName” .
The Space Container reference is therefore dependent on
the IP address of the localhost node that is hosting the

Space Container. The protocol type “xvsm” makes the
possible communication protocols transparent to the user.
Depending on those types, within the platform “xvsm” may
be translated to e.g. tcp+java, specifying that communication
takes place via a tcp-connection using java objects.

In case the IP address changes, a node fails or the
containers are redistributed on other peers for better load-
sharing, Space Containers cannot be addressed, unless a
redirection at the DHT level made is feasible. The indirection
layer added by means of the DHT makes possible to hide
IP address changes. Once the current IP address is obtained
via DHT, the Space Container is addressed directly via IP
routing and allows clients to lookup Space Containers by
container name only.

5.1. Managing Space Container replication through
Pastry

Space Containers need to be replicated in order to increase
reliability, availability and to minimize data access time.
In case a RSU is temporarily off-line, its replicated Space
Containers can still be updated. This allows the seamless
continuity of operations without data loss when the failed
RSU is on-line again. The Pastry replication algorithm is
based on an invariant number of replicas of an object
addressed by a key K, on r nodes that are alive and
nearest to key K. Similarly to the PAST storage system
built on top of Pastry [29], replicas have to be managed
in order to fulfill the invariant rule mentioned above. In
the following discussion we distinguish between replicas
of DHT entries (DHT replicas) and replicas of the Space
Containers (container replicas).

An key-value pair entry in DHT looks like: key =
H(containerName), value = containerReferenceURI. The
Pastry routing protocol makes sure that an alive replica
is found. However, finding the DHT entry is not enough,
its value has to point to the correct container replica.
We describe how to correctly maintain the replicas. Let’s
consider first the replication of DHT entries: Pastry can
always return the replicaSet for a certain key, that is a set of
nodes that can be used to store replicas of that key. On each
of these nodes a replica of the ”stripped” container reference
is stored under the key, that is the ContainerReferenceURI
without the first part that defines the domain name. When
reading this Value, the local node (the destination node of
the lookup) completes the URI with the IP of the localhost,
before returning it to the requesting client. This solution has
two consequences:

o The DHT entries are the same for all replicas, thus they
do not have to be manipulated or rewritten in failure
case - a substantial advantage.

« Replicated DHT entries and the corresponding contain-
ers have to be on the same node.

221

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

In case a node fails, the lost DHT entries are replicated
in order to keep the number of copies for each entry equal
to r. Specifically, in case the number of replicas is less than
r, a DHT entry replica is automatically created by Pastry
on those nodes from the set replicaSet(K) that have no
replica. In addition to this DHT mechanism, the container
corresponding to the newly created replica has to be copied
as well on that same node.

5.2. Handling container replicas

Space Containers are passive components in which the
entries change following operations such as write, take, or
destroy. Therefore, the container replicas have to be updated,
although the DHT pointers remain unchanged. It has to
be noted that the mechanisms that replicate DHT entries
and Space Containers are decoupled. Whereas the former
depends on the implementation of the DHT protocol, the
latter depends on the implementation of the Aspects placed
on a Space Container. When the replication occurs at DHT
level, it triggers the replication operation at Space Container
level.

The design of the interactions related to a WRITE opera-
tion has to consider the replication mechanisms specific for
the DHT implementation - in our case - Pastry. In the normal
case the DHT operation lookup(K) will access the root node,
but if the path to destination hits first a replica node, it is this
node that is returned. Therefore, in this system we do not
have a replication with a single master. We propose to use a
delegation pattern as shown in figure 2. The first interaction
lookup(K) will return the full address of a container replica
(or the root). Within a Space Container transaction, the
requester peer proceeds with a direct Space Container write()
operation, followed by an Aspect that calls replicaSet() in
order to obtain the other replica nodes, and repeats the write
operation at the respective Space Containers. The transaction
to the first accessed Space Container ends with the result.
Figure 2 shows the interactions.

requesting peer API

‘ P2P layer ‘ Node1/C ‘ ‘ Node2/C ‘ ‘ Node3/C ‘

i
g\ona\wglimsg) tookup(K) |

Nodet/C _ _

|
|
|
|
|
- |
- | |
Write (Node1/C, msg, tx)

|
|
I
I
|
I
|
I
repl-aspect 1
I
|
|
_____ Write (Node2/C, msg, nullTX)
]
OK___=7

~ "Write (Node3/C, msg, nullTX)

»»»»»»»»»»»»»»»»»»» :

Figure 2. Handling container replicas

5.3. Handling joining and leaving nodes

If a node holding a key K is non responsive for a certain
period of time, e.g 10 seconds, then Pastry triggers an
adjustment of the leaf set routing entries in all affected
nodes. Each node removes the failed node from its leaf
set and includes the live node with the closest nodeld. The
responsibility for the key K moves from the failed node to
another near node that however has first to acquire a DHT
replica of K. As we have seen in the previous section, a
new DHT replica of K triggers the creation of new container
replica on the same node.

If a new node joins the system, this node is included in
the leaf set of L neighbors, and other nodes are removed
from those leaf sets. If the key K points to one of these
nodes, there remain only -/ replicas, and the new node has
to require a replica for K. Therefore, the overall effect of a
”join” is to move the container from the node dropped from
the leaf set, to the new node.

6. Evaluation

In order to answer the questions related to system perfor-
mance in section 3, we have implemented the system and
performed the following preliminary tests:

o test case A: retrieve all safety messages that belong to

a specific road segment (being collected in one Space
Container).

« test case B: retrieve a specific message of a specific

road segment.

In Figure 3 the diagrams show the sequence of operations
for case A: on the left side a plain DHT is used to store
each message under a different key. In the plain-DHT setup
(left), the vehicle client retrieves first the keys stored under
a well-known key (KW) corresponding to the road segment
name. Then, the individual keys are used to retrieve the
messages. The following operations have to be executed in
the presented order:

//0p. 1.: lookup value of well-known key

values = lookup (KW) ;

//0p. 2-9: get values of received keys

while ((key = nextKey(values)) != FALSE)
info = lookup (key);

}

On the right side of Figure 3 the DHT entry points to a
Space Container that contains a number of data messages.
This implementation requires the execution of only two
operations: the first operation retrieves the Space Container
reference URI (CREF), by means of a well-known key
(CNAME) via the DHT. The second operation retrieves the
entries in the container found at the node given by that URL
As it can be seen, the query complexity has been shifted
from the DHT to the Space Container level.

222

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

Complexity of information retrieval with DHTs

T

Complex of information retrieval with DHTs and
Space Containers

QVehicle >

Figure 3. Comparing the complexity of retrieving information with DHTs only with the concept of integrating DHTs

and Space Containers

// get Space Container reference
Op. X1.: CREF = lookup (CNAME) ;
// get all entries

Op. X2.: read(CREF, new Selector(All))

In order to quantify the efficiency of the proposed ap-
proach, we measured the time needed to run the test cases A
and B, using the WINZIG Grid [30] at the Vienna University
of Technology. The Grid consists of 300 standard desktops
clustered in groups of 30 machines. The groups are intercon-
nected with high-speed switches organized hierarchically.
The task in test case A is to retrieve all 10, 100, or 1000
messages that belong to a specific road segment based on
a network with between 10 and 210 peers and measure the
time needed to do so. The setup for test case B is the same,
but in this case a single message matching a specific query
is returned.

configuration | peers | 10 entr. | 100 entr. | 1000 entr.
plain DHT 2 0.3 4.4 61.3
plain DHT 10 283 2485 24529
plain DHT 60 263 2455 24126
plain DHT 120 277 2586 24153
plain DHT 180 264 2491 24252
plain DHT 210 263 2613 24098
DHT+XVSM 2 142 208 1378
DHT+XVSM 10 148 258 1002
DHT+XVSM 60 169 256 1115
DHT+XVSM 120 155 265 1184
DHT+XVSM 180 155 231 1086
DHT+XVSM 210 155 231 1086

Table 1. Durations [ms] for the retrieval of 10, 100 and
1000 entries in test case A

Table 1 shows the result for case A. The measured overall
lookup-time consists of a lookup for the list of keys (stored
under a well-known key), and additional 10, 100, and 1000
lookups for each of these keys. In total, a number of 11,
101, and 1001 lookups have to be performed, where a single
lookup takes about 25 ms. As we can see, the increase
in the path length with the number N of peers (which is
proportional to O(log N)) does contribute little to the lookup
time in the plain DHT case. It is the request and response
processing that accounts for most of the 25 ms needed by
each lookup.

In this scenario the caching capabilities of the DHT
implementation were disabled (to avoid returning invalid
values due to the high number of information updates).

For the space container architecture (DHT+XVSM) the
measured times are much lower, because there are only two
operations to perform: a first lookup retrieves the Space
Container reference, and the second direct request fetches
10, 100 or 1000 entries at once.

Table 2 shows the retrieval time of one entry in the XSVM
system by directly addressing the container (i.e. test case B,
without the DHT lookup time). Different pattern matching
mechanisms have been compared, starting with the classical
Linda tuple case, an improved query and prioritized FIFO
buffer. The low numbers show that the improved algorithms
account for a small part of the total time in the XSVM
experiments of Table 1.

223

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

Entries Linda | Improved-Linda | PRIO-FIFO
10000 5.24ms 0.41ms 0.20ms
20000 15.15ms 0.50ms 0.20ms
30000 | 47.93ms 0.57ms 0.21ms
40000 | 58.66ms 0.63ms 0.20ms
50000 | 70.10ms 0.66ms 0.21ms

Table 2. Time to retrieve a single entry using different
Space Container access modes (coordinators)

7. Conclusion and Future Work

In this paper we describe SABRON, a concept of integrat-
ing DHTs and Space Containers, which allows preserving
the spatial-temporal structure of short lived data messages,
and benefits of the characteristics of DHTs like fault-
tolerance, self-organization and scalability. In the process of
design and implementation of the system, and later in pre-
liminary experiments we answered two research questions
referring to programming ease, processing complexity and
the potential of the architecture to build powerful application
based message routing and storage functionality in high
mobility scenarios.

Concept of SABRON: DHTs have a few known draw-
backs: similarity and locality of data. Without specifying
exactly the searched name or range, a searche cannot be
performed without special handling in the application. Using
Space Containers we can preserve the spatial proximity of
the stored events, an important requirement for the man-
agement of geo-temporal data. Furthermore, manipulation
of data in a container does not create DHT signalling traffic
since the container links do not change. In a future version of
the system the Space Container replication strategy could be
adapted to the needs of the application and be independent
of the DHT replication mechanism.

Efficiency of SABRON. The evaluation shows that the
integration of DHTs and Space Containers improves the
efficiency of information retrieval. This is due to the fact,
that the SABRON approach requires only two operations to
be executed. The first one, to lookup the Space Container,
and the second one to execute the query. Further work
will provide performance measurements on an extended
prototype that will show the behavior of SABRON on a
internet-wide P2P platform like PlanetLab in presence of
node churn.

Acknowledgement

This work has been supported by the Austrian Govern-
ment and by the City of Vienna within the competence center
program COMET.

References

(1]

[2]

[3

—

[4

—

[5]

(6]

(7

—

[8]

[9

[}

[10]

[11]

[12]

224

J. Sussman, Perspectives on Intelligent Transportation Sys-
tems (ITS). Springer, New York, NY, 2005.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems,” Lecture Notes in Computer Science, vol. 2218,
pp- 329-?2, 2001. [Online]. Available: citeseer.ist.psu.edu/
rowstron01pastry.html

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
and B. Zhao, “Oceanstore: an architecture for global-scale
persistent storage,” SIGOPS Oper. Syst. Rev., vol. 34, no. 5,
pp- 190-201, 2000.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with cfs,” SIGOPS Oper. Syst.
Rev., vol. 35, no. 5, pp. 202-215, 2001.

E. Kiihn, R. Mordinyi, H.-D. Goiss, S. Bessler, and S. Tomic,
“Using tuple-spaces to build a storage p2p system for
structured and dynamic data,” 2nd International Work-
shop on Adaptive Systems in Heterogeneous Environments -
ASHEs’09, CISIS 2009, 2009.

P. Ciancarini, “Distributed programming with logic tuple
spaces,” New Gen. Comput., vol. 12, no. 3, pp. 251-284,
1994.

S. Bessler, S. Tomic, E. Kiihn, R. Mordinyi, and H.-D.
Goiss, “Sabron: A storage and application based routing
overlay network for intelligent transportation systems,” 3rd
International Workshop on Self-Organizing Systems, IWSOS
2008, 2008.

E. Kiihn, R. Mordinyi, L. Keszthelyi, and C. Schreiber,
“Introducing the concept of customizable structured spaces
for agent coordination in the production automation domain,”
Accepted for the 8th International Conference on Autonomous
Agents and Multiagent Systems - AAMAS 2009 (TechRep at

http://www.complang.tuwien.ac.at/richard/techrep/aamas09.pdf),

2009.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: a scal-
able peer-to-peer lookup protocol for internet applications,”
IEEE/ACM Trans. Netw., vol. 11, no. 1, p. 1732, 2003.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker, “A scalable content-addressable network,” in
SIGCOMM’01: Proceedings of the 2001 conference on Appli-
cations,technologies,architectures,and protocols for computer
communications. New York,NY,USA: ACM Press, 2001, p.
161172.

M. Balazinska, H. Balakrishnan, and D. Karger, “Ins/twine:
A scalable peer-to-peer architecture for intentional resource
discovery,” pp. 195-210, 2002.

K. Aberer, “P-grid: A self-organizing access structure for
p2p information systems,” in CooplS ’01: Proceedings of
the 9th International Conference on Cooperative Information
Systems. London, UK: Springer-Verlag, 2001, pp. 179-194.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

D. Gelernter, “Generative communication in linda,” ACM
Trans. Program. Lang. Syst., vol. 7, no. 1, pp. 80-112, 1985.

N. Carriero and D. Gelernter, “Linda in context,” Commun.
ACM, vol. 32, no. 4, pp. 444-458, 1989.

Z. Li and M. Parashar, “Comet: A scalable coordination space
for decentralized distributed environments,” in HOT-P2P ’05:
Proceedings of the Second International Workshop on Hot
Topics in Peer-to-Peer Systems. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 104-112.

E. Freeman, K. Arnold, and S. Hupfer, JavaSpaces Principles,
Patterns, and Practice. Essex, UK, UK: Addison-Wesley
Longman Ltd., 1999.

P. Wyckoft, S. W. McLaughry, T. J. Lehman, and D. A. Ford,
“T spaces,” IBM Systems Journal, vol. 37, no. 3, pp. 454—474,
1998.

A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: A
coordination model and middleware supporting mobility of
hosts and agents,” ACM Trans. Softw. Eng. Methodol., vol. 15,
no. 3, pp. 279-328, 2006.

G. Cabri, L. Leonardi, and F. Zambonelli, “Mars: a pro-
grammable coordination architecture for mobile agents,” In-
ternet Computing, IEEE, vol. 4, no. 4, pp. 26-35, Jul/Aug
2000.

M. Cremonini, A. Omicini, and E. Zambonelli, “Coordination
and access control in open distributed agent systems: The
tucson approach,” pp. 369-390, 2000. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45263-X _7

R. Tolksdorf, F. Liebsch, and D. M. Nguyen, “Xmlspaces.net:
An extensible tuplespace as xml middleware,” in In
Report B 03-08, Free University Berlin, ftp://fip.inf.fu-
berlin.de/pub/reports/tr-b-0308.pdf, 2003. Open Research
Questions in SOA 5-25 and Loose Coupling in Service Ori-
ented Architectures, 2004.

G. Wells, A. Chalmers, and P. Clayton, “Extending
the matching facilities of linda,” in COORDINATION
'02: Proceedings of the 5th International Conference
on Coordination Models and Languages. London, UK:
Springer-Verlag, 2002, pp. 417-432. [Online]. Available:
http://www.springerlink.com/content/hqp9ubltngnu2b00

E. Kiihn, J. Riemer, R. Mordinyi, and L. Lechner, “Integration
of xvsm spaces with the web to meet the challenging interac-
tion demands in pervasive scenarios,” Ubiquitous Computing
And Communication Journal (UbiCC), special issue on ”Co-
ordination in Pervasive Environments”, vol. 3, 2008.

E. Kiihn, R. Mordinyi, and C. Schreiber, “An extensible
space-based coordination approach for modeling complex
patterns in large systems,” 3rd International Symposium on
Leveraging Applications of Formal Methods, Verification and
Validation, Special Track on Formal Methods for Analysing
and Verifying Very Large Systems, 2008.

G. P. Picco, D. Balzarotti, and P. Costa, “Lights: a lightweight,
customizable tuple space supporting context-aware applica-
tions,” in SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing. New York, NY, USA: ACM, 2005,
pp- 413-419.

[26]

[27]

[28]

[29]

[30]

225

E. Kiihn and F. Schmied, “Xl-aof: lightweight aspects for
space-based computing,” in AOMD ’05: Proceedings of the
Ist workshop on Aspect oriented middleware development.
New York, NY, USA: ACM, 2005.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” in Proceedings European Conference on
Object-Oriented Programming, M. Aksit and S. Matsuoka,
Eds. Berlin, Heidelberg, and New York: Springer-Verlag,
1997, vol. 1241, pp. 220-242. [Online]. Available: citeseer.
ist.psu.edu/article/kiczales97aspectoriented.html

Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle
safety messaging in dsrc,” in VANET ’04: Proceedings of
the Ist ACM international workshop on Vehicular ad hoc
networks. New York, NY, USA: ACM, 2004, pp. 19-28.

A. 1. T. Rowstron, A.-M. Kermarrec, M. Castro, and
P. Druschel, “Scribe: The design of a large-scale
event notification infrastructure,” in Networked Group
Communication, 2001, pp. 30-43. [Online]. Available:
citeseer.ist.psu.edu/rowstron(01scribe.html

P. Kolmann, “University campus grid computing,” Master’s
thesis, Vienna University of Technology, 2005.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

