
Towards Zero-delay Recovery of Agents in Production Automation Systems

Eva Kühn, Richard Mordinyi, Mario Lang, and Adnan Selimovic
Complex Systems Design & Engineering Lab

Space-based Computing Group
Vienna University of Technology

{ek, rm, ml, as}@complang.tuwien.ac.at

Abstract

Multi-agent systems (MAS) is an accepted paradigm
in safety-critical systems, like the production automation.
Agents control the underlying machinery they are represent-
ing and interact with each other to achieve an optimal pro-
duction rate. However, the key requirement is to minimize
downtime of the production system in order to allow just-in-
time delivery and minimal production costs. Nevertheless,
as any other distributed system MAS are prone to failures as
well, and consequently an agent may crash. In this case it is
important that after recovery the agent achieves its optimal
production state as fast as possible.

Given the recovery problem, in this paper we address
the assimilation sub-problem, i.e. the problem of catching
up with the external environment. We propose an abstrac-
tion framework called MozartSpaces that keeps the state in-
formation, necessary for an agent to behave correctly, up-
to-date transparently to the agents. This allows the failed
agent to continue its work after recovery with zero-delay in
the state where it would have been without a crash.

1 Introduction

One of the main purposes of MAS in production automa-
tion domain is to satisfy business requirements [14], such as
the optimal usage of the production system in order to allow
just-in-time delivery and cause minimal production costs.
However, as any other distributed system, MAS are prone
to failures as well. Once a failed agent is up and running
again, it is important that the time needed for the recovered
agent to regain its “optimal” execution state for production
is as minimal as possible. Since only one agent at a time
is capable of controlling the underlying machinery, running
several replicated agents of the same type concurrently is
not possible, and thus a new instance has to be deployed and
executed. However, the newly deployed agent is not aware
of the circumstances in its new environment, requiring time

consuming and extensive message exchange with neighbor-
ing agents to update its view on the system. Therefore, so-
phisticated recovery techniques have to be considered [17]
[13]. However, a recovery from software faults is not suf-
ficient enough, since the environment may have changed
while a new instance of the agent was deployed. Therefore,
the state information received at the time of recovery should
already reflect occurred changes in the environment.

The assimilation problem [2] is a sub-problem of the
agent recovery problem, and describes the issue of how an
agent is capable of “catching up” with the external environ-
ment, by reaching a foregone considered state, in case the
agent had not crashed. The goal of the presented work is
to describe an abstraction framework, called MozartSpaces,
that is used to store and distribute information needed by
an agent to perform its objectives. Inherent components of
MozartSpaces are containers [10] as shared data storages
and aspects [9]. By separating computational logic and co-
ordination information [8], the objectives of the agents are
independently “stored” from the data needed to be capa-
ble of following its objectives. Aspects represent cross-
cutting concerns and are used to distribute any information
transparently on the agent’s behalf to avoid data loss and
to propagate changes in the environment by manipulating
the shared container of neighboring agents [11]. Therefore,
a failed agent’s data is still accessible and already reflects
changes in the environment at the time of recovery.

2 Related Work

2.1 Agent Recovery in MAS

Rollback-recovery protocols [5] are key strategies to
achieve fault-tolerance and have been developed in order
to increase reliability and availability of distributed sys-
tems. Those protocols can be classified into log-based and
checkpoint-based protocols.

Log-based recovery [1] uses a message log for each
agent, periodically recording its local state and log the mes-

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.170

307

2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.170

307

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

sages it received after having recorded that state. Upon fail-
ure the state of the agent can be reincarnated [2] through the
playback of logged messages. However, non-deterministic
events have to be stored as well in order to ensure that the
agents behavior is the same with respect to other agents.
Additionally, it needs a lot of storage and processing for
reincarnation. In case of coordinated checkpoints [12], a
consistent set of checkpoints forms a recovery line so that
all agents can roll back to a consistent global state.

However, in case of checkpoints it is difficult to roll back
to a consistent state. Actions already performed by the un-
derlying machines, like the assembly of product parts or
painting, cannot be undone. On the other hand, log-based
recovery does not store messages as long as the crashed
agent is unavailable. This implies that the agent, once up
and running again, is capable of restoring state information,
but runs the risk of working with out-of-date information.
This means that the agent is on the one hand capable of be-
having correctly with respect to its objectives, but on the
other hand it may use information that is in conflict with
an overall “optimized” production system. Thus, the agent
would have to analyse the environment any way to catch up
and work within the requirements.

In [18] a so called dynamic recovery protocol has been
introduced allowing the system to regain global consistency
with low overhead. There, an agent buffers incoming op-
erations during recovery. Then, the stored operations are
replayed for further recovery. Although the approach may
seem similar to the presented one, it differs in two ways.
First, the protocol requires for each node an agent being re-
sponsible for recovery. In the presented approach the com-
bined power of all production agents based on the shared
memory concept facilitates recovery. Second, the proto-
col still requires a final synchronization step, whereas in the
presented approach such actions are not necessary.

2.2 Space-based Computing

MozartSpaces is a Java implementation extending Linda
[7]. It describs the usage of a logically shared memory,
called tuple space. By means of the simple operations
(write, read, destructive read, eval) it is a
communication mechanism for parallel and distributed pro-
cesses. In principal, the tuple space is a bag containing
tuples with non-deterministic operation access. The main
difference between traditional space implementations like
[6] [15] [3] or [19] and MozartSpaces1 is the container and
aspect. It allows the storage of entries in a customizable
structured and ordered way. The ordered, structured form of
the space is achieved by specific customizable Coordinators
[10], which are capable of distinguishing explicitly between

1to be downloaded at http://www.mozartspaces.org

data needed for coordination purposes and the payload it-
self. Aspects represent programming logic, are executed on
the peer where the container is located and can be triggered
before or after any operation is/was performed on the con-
tainer. In contrast to aspects, MARS [3], TuCSon [4], and
LIME [15] enable the modification of the operations’ se-
mantics by adding so called reactions. A reaction is defined
by an instruction, which specifies the actions to be executed
when a tuple matching a pattern is found in the tuple space.
However, modification of the operation is meant in the sense
of manipulating already existing tuples, but they cannot in-
fluence the execution of the operation itself.

2.3 Databases

Established database products like Oracle or DB2 are
heavy-weight components, and as such the peers running
the agents in the production automation system do not have
the capacity to execute them. Alternatives would be light-
weight databases, like Oracle Berkeley DB Java Edition2,
Apache Derby3, hsqldb4, H25, or db4o6. However, the
drawback of databases is that they need a static data model
of the entries they have to store, while containers allow the
usage of several different Coordinators at the same time,
enabling dynamic data models, and thus being schema-free.
In case of db4o, accessing an entry is performed via query-
by-example, like in tuple spaces [7]. However, in [10] it
has been shown that containers allow an optimized realiza-
tion of queries and coordination models. Finally, databases
aim to store and retrieve long living data, while the sce-
nario focuses on short lived data. Triggers can be seen as
aspects as well, but are mainly meant for operations within
the database itself.

3 Architecture

This section pictures the architecture of a zero-delay re-
covery concept with MozartSpaces in detail. It will describe
the content of containers, the replication of data, the de-
ployed aspects and the propagation of changes in the sys-
tem.

3.1 Set up of the production system based
on containers

A production system [14] consists of several different
software agents each being responsible for an underlying

2http://www.oracle.com/database/berkeley-db/
index.html

3http://db.apache.org/derby/
4http://hsqldb.org/
5http://www.h2database.com
6http://www.db4o.com/

308308

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

machinery. Such an agent may be: a pallet agent (PA) rep-
resenting the transportation of a production part and know-
ing the next machine to be targeted by the real pallet, a
crossing agent (CA) routing pallets towards the right di-
rection according to a routing table, which may be struc-
tured according to specific optimization objectives, like pal-
let routing delay, a conveyor belt agent (CBA) transport-
ing pallets from one crossing agent to another, a machine
agent (MA) controlling robots for e.g., painting or assem-
bling product parts, or a strategy agent (SA) which, based
on the current usage rate of the production system, knows
where to delegate pallets, so that by taking into considera-
tion business requirements, a product is created in an effi-
cient way.

Figure 1. Simple production system

In this work crossing agents are of main importance. The
idea is that each agent in the production system (figure 1)
has a dedicated container for storing its data structures (like
a routing table). When the system is started the very first
time, all existing CAs exchange information about incom-
ing and outgoing CBAs and the costs of each conveyor belt
to get informed about the environment they are running in.
This information is collected and stored in the container.
For instance a container may store routes to a destination
(MA) prioritized according to the costs of the conveyor
belts. For instance, the ”cheapest” route from agent C1 to
docking station DS1 controlled by an MA is reachable if
the incoming pallet is forwarded to crossing agent C3 via
the outgoing conveyor OC1.

3.2 Distributing containers

So far each container resides on the peer where its agent
is executed. In case that peer fails, the agent’s container
is not accessible any more. This fact prevents other agents
from updating the failed agents container and thus the failed
agent is not informed about any changes in the environment.
Therefore, containers have to be replicated and distributed.

In [9] we have described how to replicate containers
transparently to the using application. There, it has been
presented how to combine containers with an overlay net-
work based on the Distributed Hast Table (DHT) concepts

[16] to make such containers fault-tolerant. The name of
the container is used as a key to retrieve its value, the ac-
tual URL to the container. The underlying DHT implemen-
tation already provides built-in replication mechanisms to
distribute the key in the network. This mechanism is used
to get informed about data movements due to failing peers
and as such it triggers replication strategies installed as as-
pects on each container. By means of aspects it is possible
to deploy several replication strategies to keep containers
consistent, to increase fault-tolerance and their availability.
What kind of replication strategy is deployed depends on
business requirements and production optimization objec-
tives.

Additionally, the DHT concept has been altered in a
manner, which allows to store events with respect to local-
ity. Mapping this approach to the production automation
allows to store containers in different areas of the produc-
tion system in order to even more increase availability of
data, thus creating replication clusters (figures 2).

Figure 2. Agents with triple replicated con-
tainers using various DHT lookup areas
(replication clusters)

Figure 2 shows three agents using their specific replica-
tion clusters consisting of three replicated containers.

3.3 Propagation of Changes

Consider a change in the described layout like the failure
of crossing C3 in figure 1. The first (adjacent) component
to discover the failure updates the components previous to
the failing component - in our case the crossing C1. The
routing information in said container is updated (the route
over OC1 will be set to disabled by setting its costs to a
negative value). Said update triggers a subsequent update

309309

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

of the components previous to crossing C1 (encapsulated
and implemented in local aspects of the containers). Further
routing to DS1 will use the path over OC0.

This means that aspects deployed on containers analyze
incoming events and based on the type of the event they ma-
nipulate the container of other agents transparently to those
agents; thus creating a shared container. Since agent logic
and state information is separated, with respect to agent fail-
ures, the state information of the failed agent can be updated
as well. Even in the case, in which not just the agent but the
entire host has crashed, there are several replicas available,
and accessible via a DHT lookup for data updates. There-
fore, when an agent recovers, it performs a lookup for its
container, receiving one with already updated information
about the environment.

4 Conclusion

In this paper we described a concept towards zero-delay
recovery of agents in the production automation system
based a Linda-like paradigm called MozartSpaces. The
proposed concept allows reducing the complexity of agents
since the efforts needed for coordinating with other agents
has been reduced to two single operations. This allows the
agent to work immediately in an “optimal” way with re-
spect to the business requirement, namely overall optimal
usage of the production system to allow just-in-time deliv-
ery and minimize production costs. Evaluations still need to
verify the concept, but it seems that the usage of intercon-
nected and replicated containers reduces the time needed to
recover in case of multiple agent crashes. Therefore, future
work will contain comparison with traditional JMS based
communication and coordination protocols for replication
and recovery in a distributed environment.
Acknowledgement: This work has been partially
funded by the Complex Systems Design & Engineering
Lab, Vienna University of Technology (http://www.
informatik.tuwien.ac.at/csde/). The authors
would also like to acknowledge the works of the Rockwell
Automation Research Center, Czech Republic, in the field
of the Manufacturing Agent Simulation Tool (MAST).

References

[1] L. Alvisi and K. Marzullo. Message logging: Pessimistic,
optimistic, causal, and optimal. IEEE Trans. Softw. Eng.,
24(2):149–159, 1998.

[2] A. K. Bansal, K. Ramamohanarao, and A. S. Rao. Dis-
tributed storage of replicated beliefs to facilitate recovery
of distributed intelligent agents. In ATAL ’97: Proceedings
of the 4th International Workshop on Intelligent Agents IV,
Agent Theories, Architectures, and Languages, pages 77–
91, London, UK, 1998. Springer-Verlag.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. Mars: a pro-
grammable coordination architecture for mobile agents. In-
ternet Computing, IEEE, 4(4):26–35, Jul/Aug 2000.

[4] M. Cremonini, A. Omicini, and F. Zambonelli. Coordination
and access control in open distributed agent systems: The
tucson approach, 2000.

[5] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

[6] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces Prin-
ciples, Patterns, and Practice. Addison-Wesley Longman
Ltd., Essex, UK, UK, 1999.

[7] D. Gelernter. Generative communication in linda. ACM
Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[8] D. Gelernter and N. Carriero. Coordination languages and
their significance. Commun. ACM, 35(2):97–107, 1992.

[9] E. Kühn, R. Mordinyi, H.-D. Goiss, S. Bessler, and
S. Tomic. A p2p network of space containers for effi-
cient management of spatial-temporal data in intelligent
transportation scenarios. Accepted for the International
Symposium on Parallel and Distributed Computing, ISPDC
(TechRep at http://tinyurl.com/c796j4), 2009.

[10] E. Kühn, R. Mordinyi, L. Keszthelyi, and C. Schreiber. In-
troducing the concept of customizable structured spaces for
agent coordination in the production automation domain.
The 8th International Conference on Autonomous Agents
and Multiagent Systems, 2009.

[11] E. Kühn, R. Mordinyi, L. Keszthelyi, and C. Schreiber.
Towards efficient publish/subscribe scenarios in intelligent
transportation systems with aspect-oriented space contain-
ers. Accepted for 8th Working IEEE/IFIP Conference on
Software Architecture (WICSA’09), 2009.

[12] P.-J. Leu and B. K. Bhargava. Concurrent robust checkpoint-
ing and recovery in distributed systems. In Proceedings of
the Fourth International Conference on Data Engineering,
pages 154–163, Washington, DC, USA, 1988. IEEE Com-
puter Society.

[13] H. F. Li, Z. Wei, and D. Goswami. Quasi-atomic recovery
for distributed agents. Parallel Comput., 32(10):733–758,
2006.

[14] M. Merdan, T. Moser, D. Wahyudin, S. Biffl, and P. Vrba.
Simulation of workflow scheduling strategies using the mast
test management system. 10th International Conference on
Control, Automation, Robotics and Vision, 2008.

[15] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A coor-
dination model and middleware supporting mobility of hosts
and agents. ACM Trans. Softw. Eng. Methodol., 15(3):279–
328, 2006.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. Proceedings of the 18th IFIP/ACM Int. Conf. on
Distributed Systems Platforms (Middleware 2001), pages
329–350, 2001.

[17] R. Strom and S. Yemini. Optimistic recovery in distributed
systems. ACM Trans. Comput. Syst., 3(3):204–226, 1985.

[18] Y. Wang and X. Liu. Agent based dynamic recovery protocol
in distributed databases. pages 274–280, Oct. 2003.

[19] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford.
T spaces. IBM Systems Journal, 37(3):454–474, 1998.

310310

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on December 18, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

