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Abstract

Structured, spatial-temporal data arises in many appli-
cations areas such as transportation, sensor networks or
mobile services. Peer to peer networks are the natural
choice for the distributed architecture required by these ap-
plications. However, a closer analysis of the available dis-
tributed hash table (DHT) based approaches shows their
inefficiency since the data structure gets lost and the short
liveness of the data leads to a high signalling traffic. In
this work we propose a novel storage network based on an
overlay of Space-based Computing Containers for storing,
accessing and manipulating dynamic data.

1 Introduction

As wireless access becomes ubiquitous, and peer mobil-
ity increases, the Internet architecture faces many new chal-
lenges. Emerging mobility scenarios often require novel
opportunistic routing, node-by-node reliable transport and
disruption-tolerant behaviour, since the assumption of sta-
ble end-to-end connections is not true anymore. To meet
these new requirements intermediate nodes must be able
to cache large amounts of data. The trend for ”storage in
the net” has been efficiently addressed by peer to peer stor-
age networks such as PAST [10] [26], OceanStore [17], co-
operative file system CFS [8]. However, when structured
content such as contextual data including complex tempo-
ral attributes as well as geographical location attributes need
to be efficiently stored, queried and acted-upon, the for-
mer storage network designs (supporting mainly files) ren-
ders unsuitable, since the information structure gets lost. A
few P2P techniques such as the intentional naming system
INS/Twine [3] or P-Grid [2] can maintain a structure with

a hierarchical DNS-like addressing. However, the costs for
such solutions are high, since keeping a P2P entry for each
data causes a large traffic overhead, especially when the
data elements are mutable and short lived.

In this paper we address the need for efficient storage
of complex structured data by proposing a novel architec-
ture which unifies adaptiveness of the P2P approach, partic-
ularly Distributed Hash Tables (DHT), with the query ex-
pressiveness and coordination support of the space-based
computing paradigm [7]. This architecture is an enabler for
applications that operate on distributed storage of structured
data and require application-based routing and distributed
coordination. It uses extended (virtual) shared memory
[18], a middleware technology to store data objects in a
space that can be shared among many applications/services,
and an underlying location and mediation layer. The main
contribution of this work is therefore a novel storage archi-
tecture in which the tuple space entities are uniquely ad-
dressable via an overlay network based on DHT technol-
ogy. This approach has two advantages: firstly, it keeps the
message traffic on the DHT level low and secondly, it al-
lows remote client applications to directly manipulate the
data entries in so called containers [11] by using advanced
query expressiveness of the spaces technology.

The rest of the paper is organized as follows. In Section
2 we present an application scenario describing the require-
ments and motivating our approach. In Section 3 we intro-
duce the two relevant technologies, that is, distributed hash
tables and space-based computing. In Section 4 the pro-
posed architecture is presented together with related design
problems including addressing, replication, and handling of
node arrivals and departures. A global API that hides these
aspects from applications is presented. Section 5 illustrates
the use of the architecture to support a transport telematics
application and Section 6 contains concluding remarks.
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2 Application scenario

A motivating study-case that we use to identify require-
ments and to illustrate the benefits of the proposed architec-
ture is an intelligent transportation system (ITS) scenario.
In this scenario fast moving vehicles communicate with a
fixed, but geographically distributed infrastructure, as illus-
trated in Fig. 1.
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Figure 1. Intelligent transportation scenario

For this purpose so-called road side units (RSUs) are in-
stalled at some of the junctions or segments of the road
network. On the one interface, RSUs are connected in a
meshed wired broadband network, on the other interface
they provide wireless access for the vehicles in their com-
munication range, via dedicated short range communication
protocols (DSRC [28]). In one type of application, vehicles
act as providers of geo-temporal context data: they report
on safety events measured by sensors along their paths, e.g.
sudden use of breaks, humidity, temperature of the road,
etc. Another service aims to distribute traffic events from
the road provider towards the relevant RSUs. These events
include alerts about incidents, road works, setting speed
limits, etc. In both cases the data is geo-located and its
relevance in space and time is limited to a certain region,
moving direction and period of time. In Section 5 we de-
scribe how the event dissemination can be realized with the
proposed architecture and the application interface.

3 Related Work

The following section introduces the DHT and the space-
based computing technologies stressing the aspects needed
in the system architecture presentation.

3.1 Space-based Computing

The idea of a shared data space was first created by David
Gelernter in the 1980s [13]. He introduced a coordination

language called Linda which operates on an abstract com-
putation environment called tuple space. In the tuple space
approach, processes communicate with the other entities
in the environment by writing tuples (ordered sequences
of data) into the tuple space. Sharing of data via spaces
[6] is not a novel paradigm. It comes from parallel pro-
cessing and was later considered for distributed environ-
ments. Due to its high-level abstraction of communication
by simply reading and writing data from/into a shared space
this paradigm fits to growing dynamics and collaboration
in the network [23]. The processes interested in retriev-
ing information useful for coordinating their activities per-
form blocking read, rd, or consuming read, in, operations
specifying via a template. In case several tuples match the
template of a data-retrieval operation, only one of them is
selected non-deterministically. The communication always
takes place between the processes and the space. This way
the sending process does not need to know about the receiv-
ing process and there is no need for both processes to be
connected at the same time. This decoupling of processes
in both time and space takes away a lot of complexity in
creating distributed applications. Gelernter calls this com-
munication paradigm which is both decoupled in space and
time generative communication.

There are a lot of implementations, like LighTS [24],
JavaSpaces [12], TSpaces [22], GigaSpace [15], that fol-
low the concept of the tuple space with associative search
for the stored tuples. In our approach we use a space-based
architecture, called XVSM (extensible virtual shared mem-
ory [20], [1]), that generalizes Linda tuple based commu-
nication [14] as well as several extensions to it – like reac-
tions [25], programmable behaviour [5] to make the space
extensible, and addition of other/more expressiveness to the
coordination laws like the introduction of priority and prob-
ability tags [4] – in one single concept, namely the abstrac-
tion of shared containers. Entries are chosen to represent
data in a shared container. An entry is a multiset of labelled
values called tags. A tag can be used to represent either a
payload or meta-data relevant for coordination. This way
the entry offers a clear separation between user data (cf.
message body) and coordination data (cf. message head).
Like in the Linda [14] model, containers can be accessed
by the operations read, take, and write. Each container
has one or more coordination types that define the exact se-
mantics of each operation. The different coordination types
can be classified into implicit order, direct access and con-
tent matching. Implicit order refers to e.g. FIFO and LIFO
order. Using FIFO coordination corresponds to seeing the
container as a queue where take will always read and re-
move the latest written entry. Direct access allows selection
of entries via their tags directly, using relational operators
[19] (e.g. select entries with a certain tag that has a value
less than 100) or range operators (e.g. select entries with a
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certain tag that has a value between 100 and 1000). Content
matching allows to define user defined match makers [24],
e.g. for Linda, RDF, or XML querying facilities.

A shared data space is a collection of containers which
can be addressed via URLs in the internet. A lookup mecha-
nism is assumed that resolves a published container name to
its URL and that makes use of DHT techniques as decribed
in section 4.1.

A container is extensible in a sense that its behaviour
can be extended through aspects comparable to aspects
in object-oriented programming languages [16] and space-
based programming extensions for aspects [21]. Aspects
are code fragments that react on certain events, in XVSM
on operations carried out on a container. Interception points
for aspects are pre and post of every operation, e.g. pre-
read, post-write etc. The operation context can be selected
to be the same transaction as of the base operation or not.
Aspects serve to build higher level behaviour and APIs e.g.
for dedicated replication strategies (see section 4.2) on top
of a container.

A container can refer to other (sub)containers forming
a more complex coordination data structure. The asyn-
chronous and blackboard based space-based communica-
tion model allows programmers to explicitly control inter-
actions among processes via shared data. It avoids a cou-
pling through direct interactions between the agents, espe-
cially when mobile devices are assumed ([5], [24]).

3.2 Distributed hash table

The second technology in our solution approach is a
structured peer to peer network. Structured P2P networks
(Chord, Pastry, CAN) use Distributed Hash Tables and have
been extensively studied in the last decade and successfully
deployed to create scalable applications. The basic func-
tions a DHT provides are to store a data object and to re-
trieve efficiently that data object from any peer in the net-
work. For this, a very large identifier space (e.g. all binary
combinations of 128 bits) is defined onto which data ob-
jects and node identifiers are mapped using a hash function.
The design options to create the key for a data object vary
from hashing the (string) name of the object, its location
(URI), or the content itself. The storage/publishing func-
tion is not affected by the selected alternative publish(key,
value). A DHT offers basic self organization functions such
as adapting the topology when a node arrives or leaves, and
a better reliability since it may have a mechanism in place to
replicate DHT entries. The lookup effort is for most DHTs
O(log N) where N is the number of nodes. Among the var-
ious DHT algorithms, Pastry [27] with its implementation
FreePastry deserves a more detailed discussion. The iden-
tifiers are selected from a 128-bit ID circular space. The
routing of messages between the nodes is based on maxi-

mum prefix matching. For this purpose the routing table of a
node has several rows, so that the n-th row lists those nodes
that have a matching prefix of n with the current node ID.
The leaf set is also a part of the routing table and contains
nodes whose node ID are numerically close to the current
node ID.

DHT entries are replicated by Pastry on a subset of the
leaf set. The Pastry replication mechanism is responsible
that the parameter r, the number of life replicas, remains
invariant under node churn conditions. During a lookup op-
eration, the routing protocol will search the node with the
closest ID to the key K, however a neighbor node hold-
ing replica(K) might be found earlier on the routing path.
Therefore, the lookup(k) operation might not deliver deter-
ministically the same replica.

4 Architecture and design considerations

As mentioned before, the proposed system should
keep the structure of information entities, e.g. maintain
messages that are grouped and ordered according to
certain criteria. The grouping can be achieved by putting
the information entities in a tuple space container and,
at retrieval time, applying filter and ordering selectors
to that container. The addressing granularity in the
overlay is therefore the spaces container. A XVSM
container entity can be addressed as any other resource
in the internet using the domain name of the host as a
part of the resource URI. The addressing scheme for
a container in the XVSM is an URI of the form ”tcp-
java://mycomputer.mydomain.com:1234/ContainerName”.
The container reference is therefore dependent of the
IP address of the localhost node. The indirection layer
added by means of the DHT makes possible to hide IP
address changes due to mobility, replication, etc. In case
the IP address changes, the node fails or the containers
are redistributed to equally share the load, a redirection at
the DHT level would be appropriate. Once the current IP
address is obtained via DHT, the container is addressed
directly via IP routing. It would allow clients to lookup
containers by container name only.

4.1 Managing the container replication
through Pastry

The Pastry replication algorithm is based on an invariant
replication of an object addressed by a key K on r nodes that
are alive and nearest to key K. Similarly to the PAST storage
system built on top of Pastry [27], replicas have to be man-
aged in order to fulfill the invariant rule mentioned above.
In the following discussion we will distinguish between
replicas of DHT entries (DHT replicas) and replicas of the
shared space containers (container replicas). An key-value
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pair entry in DHT looks like: key = H(containerName),
value = containerReferenceURI. The Pastry routing proto-
col makes sure that an alive replica is found. However, find-
ing the DHT entry is not enough, its value has to point to
the correct container replica. We describe how to correctly
maintain the replicas. Let’s consider first the replication of
DHT entries: Pastry can always return the replicaSet for a
certain key, that is a set of nodes that can be used to store
replicas of that key. On each of these nodes a replica of the
”stripped” container reference is stored under the key, that
is the ContainerReferenceURI without the first part that de-
fines the domain name. When reading this Value, the lo-
cal node (the destination node of the lookup) completes the
URI with the IP of the localhost, before returning it to the
requesting client. This solution has two consequences:

• The DHT entries are the same for all replicas, thus they
do not have to be manipulated or rewritten in failure
case - a substantial advantage.

• Replicated DHT entries and the corresponding con-
tainers have to be on the same node. This constraint
might limit the freedom in sharing the load between
nodes, an assumption to be further checked in our sim-
ulations.

In case a node fails, the lost DHT entries are replicated in
order to keep the number of copies for each entry equal to
r. Specifically, in case the number of replicas is less than r,
a DHT entry replica is automatically created by Pastry on
those nodes from the set replicaSet(K) that have no replica.
In addition to this DHT mechanism, the container corre-
sponding to the newly created replica has to be copied as
well on that same node.

4.2 Handling container replicas

Containers are passive components in which the entries
change following operations such as write, take, or destroy.
Therefore, the container replicas have to be updated, al-
though the DHT pointers remain unchanged.

The design of the interactions related to a WRITE opera-
tion has to consider the replication mechanisms specific for
the DHT implementation - in our case - Pastry. In the nor-
mal case the DHT operation lookup(K) will access the root
node, but if the path to destination hits first a replica node,
it is this node that is returned. Therefore, in this system we
do not have a single master replication. We propose to use a
delegation pattern as shown in figure 2. The first interaction
lookup(K) will return the full address of a container replica
(or the root). Within a container transaction, the requester
peer proceeds with a direct container write() operation, fol-
lowed by an aspect program that calls replicaSet() in order
to obtain the other replica nodes, and repeats the write op-
eration at the respective containers. The transaction to the

first accessed container ends with the result. Figure 2 shows
the interactions.

Since the scenario contains several classes of informa-
tion, each of them with different requirements towards the
replication strategy in sense of e.g. consistency, this kind
of replication pattern is very suitable for e.g the informa-
tion class where inconsistencies do not need to be handled
immediately, like weather data. This also means, that the
strategy needs less overhead and is therefore more efficient
than strategies which must keep the data distributed always
in a consistent way. Those inconsistencies can be solved
locally at predefined time frames.

requesting peer API

globalWrite(K, msg)

P2P layer

lookup(K)

repl-aspect

Node1/C

Node1/C

Write (Node1/C, msg, tx)

Node2/C Node3/C

replicaSet(K)

Node1, Node2, Node3

OK

OK

OK

Write (Node2/C, msg, nullTX)

Write (Node3/C, msg, nullTX)

Figure 2. Handling container replicas

4.3 Handling joining and leaving nodes

If a node holding a key K is non responsive for a certain
period of time, e.g 10 seconds, then Pastry triggers an ad-
justment of the leaf set routing entries in all affected nodes.
Each node removes the failed node from the leaf set and
includes the live node with the closest nodeId. The respon-
sibility for the key K moves from the failed node to another
near node that however has first to acquire a DHT replica
of K. As we have seen in the previous section, a new DHT
replica of K triggers the creation of new container replica
on the same node.

If a new node joins the system, this node is included in
the leaf set of L neighbors, and other nodes are removed
from those leaf sets. If the key K points to one of these
nodes, there remain only r-1 replicas, and the new node has
to require a replica for K. Therefore, the overall effect of a
”join” is to move the container from the node dropped from
the leaf set, to the new node.

4.4 Enhanced container application Inter-
face

The mechanisms described above enable us to define a
powerful application interface that on the one side hides the
node lookup in the network, the replication management of
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DHT entries and of containers. On the other side the tuple-
spaces paradigm offers the features described in Section 3.1,
it supports advanced queries of data items in a collection,
allows the modeling of queues and stacks, supports transac-
tions, etc.

For application programmers the API [9] below is a com-
pact, elegant abstraction that needs only the application spe-
cific container name for addressing it network-wide. The
core methods are given below, whereas the whole frame-
work handles in addition transactions and creation of aspect
programs. (see [19] for more examples).

• Create (containerName): publishes the name of the
used container. Every time Pastry creates a replica en-
try on a node, a replica container is created as well.
The process consists of three steps: 1) a DHT publish
method call with the name of the container is executed;
2) Pastry forwards the value to those peers where the
original entry and the replica of it should be placed; 3)
on those peers containers with the provided name are
created. Additionally, replication aspects are installed.

• Read (containerName, timeout, transaction, selec-
tor): The client addresses the DHT first to lookup for
the container URI. The returned value is then used to
address the container directly. The selector allows or-
dering and filtering of tuples/container entries for read-
ing.

• Write (containerName, timeout, transaction, en-
tries )
Take (containerName, timeout, transaction, selec-
tor)
Destroy (containerName, timeout, transaction, se-
lector)
For each of the operations, first a DHT lookup is per-
formed in order to retrieve the container reference. Us-
ing this, one of the replica containers can be manipu-
lated within a transaction. By means of the installed
replication aspects, the updates done on that container
are propagated to the other replica containers automat-
ically.

5 Application in an intelligent transportation
scenario

Let us consider again the scenario in Figure 1. The safety
and traffic information events are collected into the storage
system, for example by defining containers for every road
segment. The goal of an intelligent dissemination of these
events is to deliver them only at the road side unit nodes for
which the event is relevant, for instance only for the vehicles
located upstream of an accident.

Without going into details about the algorithm to find the
RSUs located upstream of an accident event, let us denote
with S the set of road segments and their associated con-
tainers, and with R the set of road side unit containers.

An event injected into the container i ∈ S is dissem-
inated by algorithm to a set of RSU node containers Ri.
As a consequence the vehicles approaching one of those
RSUs (direction dependent) will receive the events from
road segment i. The steps in writing such an application
are sketched as follows:

• for the container i ∈ S a so called aspect program (see
section 2) is created. The aspect is triggered whenever
an entry E is written in the container.

• based on the type/priority of the entry, the triggered
aspect program fetches (or calculates) a set Ri ⊂ R
to which the entry E should be copied as follows: for
each container j ∈ Ri do write (j, timeout, transaction,
E)

6 Conclusion

Distributed hash tables have a few known drawbacks:
similarity and locality of data e.g. Meier vs. Meyer can-
not be easily modelled, lookup without specifying exactly
the searched name or range searches cannot be performed,
without special handling in the application. We presented
an system approach that largely compensate for these dis-
advantages. Using shared space containers we can preserve
the spatial proximity of the stored events, an important re-
quirement for the management of geo-temporal data. Since
the data objects are enriched with keywords and metadata
in form of Linda tuples, LIFO / FIFO ordering or data fil-
tering according to any of these tuples can be applied when
reading from a container. Most important, manipulation of
data in a container does not create DHT signalling traffic
since the container links do not change. For retrieval of a
number of k entries as in the sketched transportation appli-
cation, one single DHT lookup is necessary to locate the
container, instead of k lookup queries in a plain DHT stor-
age approach.

A further contribution in the paper is a simple solu-
tion for the integrated replication of both DHT entries and
containers, which in addition exploits the pastry replica-
tion mechanism. The PAST system stores immutable files,
whereas the proposed approach deals with active container
objects in which content is being steadily updated. The lo-
cation of possible replicas for an DHT entry are dictated by
pastry/past getReplicas() function. Similar to PAST, for up-
dating the replicas, the first accessed replica peer is made
responsible for the update process (see Figure 2).

Further work will provide performance measurements on
a prototype that will show the behaviour of the DHT and
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space container storage network in presence of node fluctu-
ation (churn).
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[20] E. Kühn, J. Riemer, R. Mordinyi, and L. Lechner. Integra-
tion of xvsm spaces with the web to meet the challenging in-
teraction demands in pervasive scenarios. Ubiquitous Com-
puting And Communication Journal (UbiCC), special issue
on ”Coordination in Pervasive Environments”, 3, 2008.
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