
Ontology-Supported Quality Assurance
for Component-Based Systems Configuration

Stefan Biffl1,2 Thomas Moser1,2 Richard Mordinyi 2,3 Dindin Wahyudin1
{Stefan.Biffl, Thomas.Moser, Richard.Mordinyi, Dindin.Wahyudin}@tuwien.ac.at

1Inst. of Software Technology and Interactive Systems, Vienna University of Technology
2Complex Systems Engineering Lab, Vienna University of Technology

3Inst. of Computer Languages, Vienna University of Technology

ABSTRACT
Systems development needs to reconcile views from many roles,
such as domain experts and engineers. A particular challenge is
the multitude of models for requirements and quality, which can
get time consuming and error prone to trace, change, and verify.

In this paper we introduce an ontology-supported component-
based systems engineering approach for the production
automation domain that describes explicitly stakeholder quality
requirements and traces design decisions to generate new system
and software versions that implement these requirements. The
ontology approach is expected to allow continuous modeling and
extracting model views for all roles involved to a) improve the
quality assurance of system requirements; b) support more
explicit feedback on the quality of intermediate models during
systems development; and c) provide better auditing capabilities
of the systems development process.

Based on an industry case study, we describe the ontology
concept of the system, the development process, and how
software quality can be measured and improved.

Categories and Subject Descriptors
D.2.9 [Management]: Software configuration management,
Software quality assurance

D.2.13 [Reusable Software]: Domain engineering, Reusable
libraries, Reuse models

General Terms
Management, Design

Keywords
Evaluation and Improvement, Techniques for Quality Assurance,
Component Based Software Engineering, Ontology Support for
Quality Assurance

1. INTRODUCTION
A focus of requirements engineering is identifying and aligning
the value propositions of project stakeholders towards explicit
requirements [3]. Based on these requirements, quality assurance
(QA) and project management (PM) can measure both internal
and external quality to guide software development. Substantial
research has been reported on views of internal quality [14], while
the external (customer) views of quality seem harder to measure
[7]. In order to meet the customer quality requirements, they need
to be properly transformed and implemented, often concurrently,
by many contributors to a software-intensive system.

Traditional software development approaches (e.g., RUP) are
based on linking the requirements to project artifacts and
responsibilities of software development roles. Since
requirements typically change during the software lifecycle, the
artifacts need to be adapted to stay consistent to the current
requirements. Therefore, a major challenge of QA is continually
representing the stakeholders’ value propositions and checking
their consistency with artifacts of the software development
process [9]. Currently, domain experts and engineers use a
multitude of notations and tools to represent their views on a
software system and the evolution process; however, the views
represented in these notations and tools are often fragmented,
inconsistent, and challenging to reconcile and check for QA.

Ontologies can support the requirements engineering and QA
processes by providing a continuous model for software-intensive
systems, their environments, and processes supporting elicitation,
representation, and analysis of the interdependencies among
artifacts of software-intensive systems on engineering and domain
levels. Another application of ontologies to systems engineering
is modeling the system requirements together and their
connections to development artifacts [8]. Ontology-based
reasoning can facilitate analyzing the impact of requirement
changes, supporting a more consistent handling of changing
requirements and a more continuous representation of the
stakeholders’ value propositions.

There are reports on using ontologies for software engineering: a)
for describing the problem domain; b) for the semantic
description of transformations between models in Model-Driven
Development (MDD); and c) for QA reasoning on semantic
inconsistencies between models [1]. However, we found very
little work on ontologies to provide a continuous model for
linking different stages of the engineering process of software-
intensive systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WoSQ’08, May 10, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-023-4/08/05…$5.00.

59

Recently [4], we reported on an industry case study using a
model-driven architecture (MDA) system approach that a)
describes explicit stakeholder quality requirements on dependable
data links between systems for decision support and b) generates
new system versions that implement these requirements. The
process in this work was not supported by a continuous model,
which could improve directly linking customer requirements to
the outcome. In [4], we investigated the usefulness of ontologies
for explicitly modeling service requirements and infrastructure
capacity, but the process QA was not well supported by the
ontology.

In this paper we introduce a continuous engineering ontology for
QA of software and system development. We report on work-in
progress from an industry case study that a) introduces an
ontology approach for iteratively designing component-based
dependable systems in production automation, and b) discusses
the expected benefits and risks for building and assuring
stakeholder-related quality compared to a traditional development
approach.

The contributions of this paper are: a) to provide a real-world
prototype study of an approach to explicitly capture stakeholder
value propositions and (as mandated in a safety-critical domain)
carry them through development, test and operation in an
auditable way and b) to discuss advantages and limitations of the
proposed ontology approach.

The remainder of this paper is structured as follows: Section 2
summarizes related work on ontologies with respect to systems
engineering. Section 3 introduces the research issues. Section 4
describes the industry case study and Section 5 discusses results
of the case study and suggests directions for future work.

2. RELATED WORK
This section summarizes contributions from ontologies for
software engineering and component-based software engineering.

2.1 Use of Ontology in Software Engineering
 Ontology is a representation vocabulary specialized to domain(s)
or subject matter. Since an ontology intends to describe only the
knowledge essential to conceptualize the domain (minimal
ontological commitment [5]), a software process ontology can be
seen as a coarse-grained process model that can be enriched as
necessary. Moreover, an ontology can be developed without
initial commitment to a specific formalism [5]; thus, several
approaches and technologies can be chosen later to implement the
ontology.

Research reports on the extension of UML to support Ontology
Engineering for the Semantic Web [2], discussing the possibility
to use UML (with small changes) as an ontology development
environment. For QA in software engineering ontologies allow
indicating whether a diagram such as an object diagram is
semantically consistent.

Research reports on the usage of ontologies in Software
Engineering focus on Ontology-Driven Architecture (ODA),
which serves as starting point for the W3C to elaborate a
systematic categorization of approaches for using ontologies in
Software Engineering [8]. One of the four basic areas of ODA is
Ontology-Driven Development (ODD). ODD subsumes at

development time the use of ontologies that describe the problem
domain. The model-driven architecture (MDA) approach provides
architecture for creating models and metamodels, and allows
defining transformations between those models, and managing
metadata. However, although the semantics of a model are
structurally defined by its metamodel, these mechanisms to
describe the semantics of the domain are rather limited compared
to knowledge representation languages. In addition, MDA-based
languages do not have a knowledge-based foundation to enable
reasoning [1]. Software modeling languages and methodologies
can benefit from the integration with ontology languages such as
RDF and OWL, e.g., by reducing language ambiguity, enabling
validation, and automated consistency checking. Ontology
languages provide better support for logical inference, integration
and interoperability than MOF-based languages.

2.2 Component Based Software Engineering
Table 1 lists key properties of Component-Based Software
Engineering (CBSE) and how these properties are addressed in
the proposed ontology support for CBSE.

Table 1: Comparison of traditional and
ontology-supported CBSE approaches.

Properties of
Traditional CBSE

Properties of
Ontology-supported CBSE

Components with
required and
provided interfaces

Semantic description of components
by specifying requirements and
capabilities

Component search Identification of suitable components
using semantic reasoning

Component reuse Component Tool Box (see Fig. 2)
Minimization of
costs

Automated workflow (human
intervention in case of errors)

Improved quality Ontology-supported Quality
Assurance (e.g., reasoning)

Increased
productivity

Feedback cycle and reuse of test case
measurement history

According to [10] a component is a unit of application software
that hides the details of its implementation from other
components, but allows accessing its functionality through an
interface. The objective of component-based software engineering
(CBSE) is to reduce production costs, improve quality, and
maximize productivity of building large and complex systems by
composing and assembling these systems from reusable software
components [11, 15].

3. RESEARH ISSUES
The introduction of software development methods, such as a
continuous ontology-based model for the full software
development process, is expected to bring benefits like more
efficient and effective development, combined with a lower
failure rate. However, the potential of QA support with the new
approach needs to be analyzed in comparison to traditional
approaches, e.g., better reasoning capabilities may come at the
cost of increased model complexity.

60

Figure 1: Schematic view on an assembly workshop
We derived the following research issues from the goal to
measure and ensure stakeholder-oriented quality of the product
and the development process:

1. Explicit and continuous modeling of stakeholder requirements
using ontologies: How can ontologies support the explicit
modeling of domain-specific stakeholder value as input to the
development process and QA? What advantages compared to
traditional methods can the use of ontologies provide?

2. Tool support for transformation of explicit requirements and for
QA: How much support can the ontology approach provide for a)
transforming requirements into a design and a running system if
we build systems from configuring and integrating software
components, e.g., selection and parameterization of components,
without significant sources of defects like manual interaction; and
b) better quality measurement and feedback on new system
versions during systems development?

3. Measurement of stakeholder-level quality of the product and
development process: How can the required stakeholder-level
quality be measured and assured throughout the complete
software development process? What kind of support does the
development process present for measurement and auditing?

4. RESEARCH APPLICATION
This section sketches the case study environment, as well as the
ontology support for the systems engineering life cycle and for
QA.

A production automation system comprises of a) a physical layer,
where electronic and mechanical devices such as robots,
conveyors, pallets are located on a workshop floor and execute
work orders; and b) a software layer, where software (agents)
control these physical components and provide interfaces to
different stakeholders of the system [12].

Information systems in production automation and the associated
systems engineering projects are getting more complex [16] due
to volatile customer requirements and new technologies, which
provide higher capacity, faster communication, and computation
capabilities of the hardware elements [13]. Therefore a major
issue in software engineering of software-intensive systems is to
provide production automation domain experts and systems
engineers with better strategies for designing a robust, flexible,
and efficient production system [12].

4.1 Case Study “Assembly Workshop”
Figure 1 presents a schematic view on a flexibly configurable
production automation assembly workshop consisting of
machines, conveyor belts, junctions, sensors, and pallets. In the
scenario the workshop’s task is to assemble car parts into a
complete car, assembled according to customer requirements

Each machine has a set of specific functions in the workshop, e.g.,
painting the vehicle body or mounting tires. Production parts are
delivered on pallets via conveyor belts to the machines. In
production automation conveyor belts, junctions, and sensors can
be represented by software agent components, creating a multi-
agent system. So, by configuring an agent, the behavior of the real
hardware has been specified as well. A junction connects two or

61

more conveyor belts and it is up to the configuration of the
representing software agent to select the correct outgoing
conveyor belt for a pallet carrying a work piece. Sensors help the
software agents to sense if pallets are in close proximity or help
agents counting passing pallets to detect an overloaded conveyor
belt and move to a backup strategy.

In the scenario, when customers place their order for a car, the
sales manager collects their requirements, e.g. vehicle color, the
type of the gear box, or the engine size. The sales manager has
access to a catalogue of valid specification elements and
combinations. Once the contract is concluded the order is
forwarded to the workshop. There, a dispatcher analyzes the set of
incoming orders and derives a configuration of the workshop that,
e.g., maximizes the efficiency of all machines and minimizes the
time needed for assembly by taking into account machine
capabilities and their mean-time-to-failure rate.

In this case study, we define several views on stakeholder quality
a) support the low-level operational decision maker, i.e., provide
the best possible information of current production to the operator
such as a junction failure with its relevant information, b) provide
feedbacks for design time derived from run time and
postproduction data quality, c) aggregate information for higher-
level decision makers such as a business manager to perform
system performance analysis, production forecasting, and
inventory control.

In the context of the industry case study, we propose an ontology-
driven systems engineering approach that allows specifying
system design options for decision support and the iterative
generation of new system versions. Such design options may be a
set of a combination of inputs from the product manager for
business strategy, from the software engineer for component
selection and multi-agent system parameterization, and from the
systems engineer on hardware alternatives.

Figure 2: Engineering Approach based on a “Production and Engineering” Ontology

4.2 Ontology-supported life cycle QA
Figure 2 shows the process for development and generation of
new system versions for production automation that implements
stakeholder quality requirements and traces design decisions by
means of ontology-supported continuous modeling.

The ontology-supported software engineering processing is
divided into the domain level and production-line level
development process. On each level requirements and capabilities
are described semantically. The domain level represents the
development activities for a reusable set of software components,
the “component tool box”. The production line level outlines the
activities of the actual system configuration in order to build a
particular product. This process consists of component analysis,
design, testing and simulation of new configuration versions. New
production line system versions are defined from components in
the component tool box and the configuration of the production
system. Since quality measurement, QA, and auditing are major
issues in safety-critical systems, we describe the key steps in the
cycle that deal with stakeholder-relevant QA.

Step 1 Component Development. Based on requirements or
triggered by new technologies or roles, components are developed

which are used in the production automation system. The
developed component runs through the first static QA test using
ontology support. Based on the requirement descriptions of the
component, tests instances are generated; e.g. unit tests for
specific functionality. In addition it can be checked whether all
component dependencies and security aspects are fulfilled. If the
tests are successful the component is added to the Component
Tool Box; errors are reported to the developer of the component.

Step 2 Component Analysis. The system reconfiguration cycle at
the production line level is triggered either by new or changed
requirements or components. The reason could be the selection of
a new production strategy due to changed working capacities or
altered customer requirements. The input to the component
analysis step is a set of components from the Component Tool
Box that fulfill the specified requirements. Additionally, the
current combination of components representing the current
production system is taken as input as well. The analysis step
creates all possible combinations of the input with respect to
compatibility of the components with each other. The set of
components is then parameterized according to the analysis of
historical test cases measurements, which are returned to the
Component Analyses step by means of a feedback cycle [4]. The

62

next QA check point has to ensure that each parameterized
combination still fulfills customer requirements. Issues and
defects are reported back to the component analysis step.

Step 3 New Design. During the design phase complex
requirements have to be fulfilled focusing on choosing the right
combination of components. The step selects the combination that
fulfills non-functional requirements like production time, cost or
machine utilization. The selected combination is then transformed
into a configuration view that can be interpreted by the production
system. The third QA checkpoint focuses on the new
configuration that has to pass tests which e.g. check its
completeness and syntax. Issues and design defects are reported
to step 2.

Step 4 Testing and Simulation. In general it is necessary for
safety-critical systems, such as for production automation, to
assure that the configurations meet overall requirements including
system safety before deployment to real-world environments.
Therefore, the operation of tools to measure system quality and
performance of the new configuration is mandatory. The
introduced cycle represents another source of error, so there is the
possibility of remaining unresolved (uncritical) defects, wrong
responses to failure scenarios. One solution is to execute
simulations representing relevant properties of the target system
[12] so that the built in monitoring functionality is able to produce
monitoring data which can be further evaluated and used by step 2
for component selection. This means that in comparison to
traditional approaches with implicit feedback by manually
analyzing the results of test case runs, this approach explicitly
provides measurement feedback integrated into the ontology for
step 2. The successfully tested and simulated configuration can be
deployed and used as new current system component for step 2.
Defects found during simulation and testing are reported.

The continuous model used during the engineering approach is
the so-called “engineering ontology”. This ontology consists of
several ontology areas containing the concepts and individuals of
a certain category of the production automation environment. As
sketched in Figure 2, the engineering ontology consists of areas
describing the infrastructure and layout of the assembly
workshop, the building plans and properties of the components,
the data of the concrete work orders derived from the business
orders and the measured data of the operation/simulation.

Multiple versions of ontology areas may be used sequentially,
e.g., for analysis. This means that certain ontology areas can be
populated using either time (“time slices”) or version constraints.
Using this approach it is possible to define a number of test cases,
which should be executed consecutively.

Figure 2 shows a number of role-specific to access the
engineering ontology. This allows more effective management of
ontology areas a certain role is interested in, since the data can be
presented in a well-accepted format/tool for this role, e.g., work
order manager, operator, architect, or QA personnel.

5. DISCUSSION AND FURTHER WORK
In this paper we introduced ontology support for systems
engineering that explicitly describes stakeholder quality
requirements and traces design decisions to generate new system
versions that implement these requirements. Based on an industry
case study, we described the ontology concept of the system, the

development process, and how software quality can be measured
and improved.

Explicit and continuous modeling. The use of an “engineering”
ontology during the engineering approach provides a continuously
available and evolving representation of the stakeholder
requirements. Compared to traditional methods, the use of
ontologies entails a number of advantages. As shown in the case
study, this allows a more automated QA support. In addition the
usage of the ontology area concept creates a personalized view on
the data model for each role. The output of the simulation is
automatically fed back in the ontology, resulting in a combination
of a test case and its outcome. This has proven to be useful for
performing more advanced statistical analysis on the data, leading
to more significant assertions.

Tool support for transformation of explicit requirements and
for QA. The ontology and CBSE paradigms reinforce each
others’ advantages: the ontology-supported CBSE approach
seems to be more effective and efficient due to reasoning support
for selecting and parameterizing the most suitable components out
of a component tool box with respect to a certain set of
requirements or dependencies between components automatically
and therefore without significant sources of defects like manual
interaction [6]. The engineering ontology supports both static and
dynamic QA during the production engineering process. Test
result measurements are stored in the engineering ontology and
can be used for component analysis in next iteration of the
production engineering process in order to create new system
versions, and so completing the feedback cycle. Furthermore, the
results from running test cases are documented in simulations in a
way that allows efficient quality analysis and comparison of the
results with the original assertions.

Measurement of stakeholder-level quality of the product and
development process. Stakeholder-level quality is assured by
means of ontology-based reasoning, allowing tracing customer-
specific requirements continuously throughout the entire
production engineering process. The ontology area approach and
the role-specific views of selected data effectively and efficiently
allow the involved roles to check the mapping and tracing of their
value proposition and requirements at all times. Conflicts during
dynamic QA directly refer to the quality requirements of a certain
configuration.

Future Work. Next steps after developing the core functionality
of the ontology approach are systematic empirical studies to
ensure the correctness and sufficient performance of the
continuous model and the resulting system configurations. An
important aspect is early modeling for reliability design to
consistently carry dependability concerns from the early to the
late stages of software engineering.

For organizations that use a traditional systems development
approach a major question is when it is worthwhile to introduce a
new development approach, such as ontologies, which are
expected to bring benefits to software development like faster or
more efficient development. Again, empirical studies are needed
to get evidence on the actual benefits and risks in comparable
settings.

63

6. REFERENCES
[1] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith,J.

Letkowski, and P. Emery, “Extending the Unified Modeling
Language for Ontology Development”, Int. Journal Software
and Systems Modeling (SoSyM) 1(2)142-156, 2002.

[2] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W.
Holmes, J. Letkowski, and M. Aronson, “Extending UML to
Support Ontology Engineering for the Semantic Web”, In
Fourth International Conference on UML, 2001.

[3] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.
Grünbacher (eds.), Value-Based Software Engineering,
Springer Verlag, 2005.

[4] S. Biffl, R. Mordinyi and A. Schatten, “A Model-Driven
Architecture Approach Using Explicit Stakeholder Quality
Requirement Models for Building Dependable Information
Systems”, In Proceedings of the 29th International
Conference on Software Engineering Workshops, p.106,
2007.

[5] T. Gruber, “Towards principles for the design of ontologies
used for knowledge sharing”, Int. J. Human-Computer
Studies, 43(5/6), 1995.

[6] H. Kitapci, B. Boehm, P. Grünbacher, M. Halling, and S.
Biffl, "Formalizing Informal Stakeholder Requirements
Inputs", In Proceedings of the 13th international INCOSE
Symposium, 2003.

[7] S. Chulani , B. Ray , P. Santhanam , and R. Leszkowicz,
“Metrics for Managing Customer View of Software
Quality”, In Proceedings of the 9th International Symposium
on Software Metrics, 2003, p.189.

[8] S.W. Lee and R. A. Gandhi, “Ontology-based Active
Requirements Engineering Framework”, In Proceedings of
the 12th Asia-Pacific Software Engineering Conference
(APSEC’05), 2005.

[9] P. Grünbacher, S. Köszegi, and S. Biffl, "Stakeholder Value
Propostion Elicitation and Reconciliation", In: S. Biffl, A.
Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher (eds.)
(2005) Value-Based Software Engineering, Springer Verlag,
2005, p. 133-154.

[10] M. Jiang and A. Willey, “Architecting systems with
components and services”; Int. Conf. on Information Reuse
and Integration, IRI-2005, p. 259-264.

[11] D. Lucredio, A. Prado, and E. Almeida, “A Survey on
Software Components Search and Retrieval”, In Proceedings
of the 30th EUROMICRO Conference (Euromicro'04), Vol.
00 (August 31 - September 03, 2004). EUROMICRO, IEEE
Computer Society, Washington, DC, p. 152-159.

[12] V. Marik, P. Vrba, K. Hall, and F. Maturana, “Rockwell
Automation agents for Manufacturing”, In Proceedings of
the 4th International joint Conference on Autonomous
Agents and Multiagent Systems, 2005.

[13] M. Merdan, I. Terzic, A. Zoitl, and B. Favre-Bulle,
"Intelligent Reconfiguration Using Knowledge Based Agent
System", In Proceeding of the 10th IEEE International
Conference on Emerging Technologies and Factory
Automation, ETFA, 2005.

[14] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, “Early
Estimation of Software Quality Using In-Process Testing
Metrics: A Controlled Case Study”, In Proceedings of the
third workshop on Software Quality, 2005, pp. 1-7 [15] C.
Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley and ACM Press, 1999.

[15] P. Vrba, “MAST: Manufacturing Agent Simulation Tool”,
IEEE Conference on Emerging Technologies and Factory
Automation, 2003. In Proceedings. ETFA apos;03. Volume
1, pp. 16-19, Sept. 2003.

64

