
Ubiquitous Computing and Communication Journal 1

Integration of XVSM Spaces with the Web to Meet the Challenging

Interaction Demands in Pervasive Scenarios

eva Kühn, Johannes Riemer, Richard Mordinyi, Lukas Lechner
Institute of Computer Languages, Space Based Computing Group, Vienna University of Technology

Argentinierstraße 8, 1040 Wien, Austria, Europe
Email:{eva,jr,richard,lukas}@complang.tuwien.ac.at, Web: www.complang.tuwien.ac.at/eva

ABSTRACT

The current Internet is based on the REST (representational state transfer)
architectural style to guarantee scalability and to decrease complexity. All
interactions are stateless and the communication between client and server is
carried out in a synchronous request/response way. However, applications are
evolving towards more and more dynamics. In emerging Web2.0 scenarios, our
devices will not consume data but report it: A participative communication style
will dominate the Internet of the future. Space based middleware can ease
collaboration in ubiquitous computing scenarios as it provides symmetric
architectures with notification and replication. But the seamless integration of
space based middleware with the current Internet is still an open issue. In this
paper we analyze how the space based computing paradigm, represented by
XVSM (an extensible virtual shared memory implementation), can be provided in
the web without fully breaking with the REST principles and by adapting the
AJAX (asynchronous JavaScript and XML) principles of dynamically and
incrementally building up information at the client side. We propose the
implementation of asynchronous transport based on the Bayeux protocol and show
the advantages of the resulting architecture in a disaster scenario use case.

Keywords: Space Based Computing, Near-time Collaboration, AJAX

1 INTRODUCTION

Daily life shows that the web is the most
successful and wide spread infrastructure for
distributed applications of a vast range of domains.
In [7] Fielding formalizes the architecture of the web
and analyzes how this architecture helps to build
scalable, flexible, evolvable distributed hypermedia
applications.

Availability of and investments in existing web
infrastructure and applications, as well as some
properties of the web architecture, like
interoperability and zero client maintenance,
encourage to adopt the web for mobile computing, or
at least to take the web as a starting point to leverage
existing infrastructure and force an evolution of web
technologies towards the needs of mobile computing.

There are, however, some fundamental
limitations of the current web architecture, especially
with regard to mobile computing.

a) Scalable information push: A general
limitation of the web is the principle of client-
initiated information pull. In the classic web
architecture there is no possibility to push
information from a server to its clients, which is a
requirement for applications which rely on timely
information, such as collaboration tools, near-time
monitoring, or an application visualizing stock

values. Currently such applications are typically
implemented using AJAX and periodically poll the
server to receive fresh data.

b) Connectivity: Mobile devices are
characterized by limited internet connectivity with
high latency, small bandwidth, and temporary
availability. This asks for solutions based on data
caching and replication. HTTP request caching based
on expiration and validation [8] is limited and
moreover web site content typically is dynamic and
personalized and thus cannot easily be cached.
Caching can therefore hardly be exploited in the
context of server-initiated information push.
Furthermore, HTTP has no generic support to buffer
information produced by an offline client and to
transport it to the server when the client gets
connected later. As a result, web applications which
support offline clients are rare, offer very degraded
service in offline mode and are complex to build.

One could solve the mentioned problems by
using the space based computing paradigm [30], [9],
[14], [22], [5], [12], [2], [23], [21]. In contrast to
message queues and topic or content based
publish/subscribe, a space offers access to data in
arbitrary order and more sophisticated mechanisms
for events. It allows for multiple reads of data and
the communication via a space is stateful. This
means that data in the space reflect the history of

Ubiquitous Computing and Communication Journal 2

communication and asynchronous mode is provided
which is of particular importance for mobile devices.
A device may join at any time and can catch up the
information in the space. The abstraction of a shared
space is inherently suitable to overcome the
limitations above:

a) Asynchronous notifications, as for example
supported by JavaSpaces [25], Corso [13], and
XVSM [15], combine the space based coordination
model with the publish/subscribe model [6], which is
a scalable technology for information push [3].

b) The shared space model allows distributed
implementations supporting caching and replication,
like Corso, GigaSpaces [10], and LIME [20], for
decreased client-perceived latency, less server load
and improved data availability.

c) A space decouples the rate of updating
operations from the rate of reading operations,
because – as a shared memory – it cumulates the
effects of all updating operations. No matter at which
rate a client decides to read information from a space
(or gets notified about changes), it always accesses a
cumulated, current state as an abstraction of all
previous updating events.

However, to be able to exploit the advantages of
space based computing, seamless integration with
today’s established web technologies is necessary.
This means support of the space paradigm for mobile
peers, web servers and web browsers as well. Some
space based related approaches propose HTTP or
SOAP [11] as protocol to access space servers
[1],[26],[27] but do neither focus on space clients
running in web browsers nor on how to solve
blocking operations and asynchronous notifications
over HTTP. We propose an alternative approach
which better fits the needs of web browsers,
leverages state-of-the-art event transport mechanisms
over HTTP, allows scalable server implementations
and enables extensions for further scalability and
support for mobile devices.

The first building block is the extensible virtual
shared memory implementation XVSM (see section
4) which provides a symmetric architecture where
each peers hosts a space. The resources in such a
space are called containers and are addressable in the
Internet via URLs. The second building block is a
web-compatible protocol we call “XVSMP/Bayeux”
to access shared XVSM spaces in the web [16]. The
protocol uses techniques for web-based event
delivery known under the term “Comet” [31], which
are abstracted and specified by the “Bayeux”
protocol [24]. The third building block is a set of
optional, transparent extensions such as client-side
caching and intermediaries like caching and event-
routing proxies, which make the architecture scalable
and add support for mobile devices. This incremental
approach allows adopting space based computing in
the web with minimal initial effort and without
changes in the web infrastructure.

In this paper we present the XVSMP/Bayeux
protocol as well as prototype implementations of a
client library and space-server component. Section 2
motivates the work by means of a use case scenario.
Section 3 describes Bayeux, which is the base of our
proposed protocol. In section 4 we briefly describe
XVSM, the protocol XVSMP/Bayeux as well as
implementations of a JavaScript client library and
servlet-based space server component. In section 5 a
solution for two major implementation challenges of
the use case is presented. In section 6 we evaluate
how XVSMP/Bayeux can overcome the limitations
mentioned above.

2 USE CASE SCENARIO

The aim of this section is to demonstrate the field

of application of the proposed protocol by describing
an emergency scenario. The use case is a disaster
scenario in which e.g. an earthquake occurred and
several people were injured. Due to the catastrophe
the infrastructure has collapsed and so there is no
reliable network connection; unreliable ad hoc
networks are the only means for communication at
the disaster area.

The roles in that scenario refer to ambulances,
doctors on-site, the hospital, and patients.
Communication between doctors and between
ambulances and doctors is by means of the unreliable
ad-hoc networks. Spaces are a well suited approach
for such kind of scenarios [18], [19]. In addition, the
integration to the standard web technologies as used
by ambulances and hospitals is required.

Patients are grouped into three different classes.
The first class refers to patients who haven’t been
looked at yet. The second class represents patients
who were already visited by doctors but have smaller
non critical injuries. The third class refers to patients
with critical injuries and who need to be transferred
to hospital as soon as possible.

Figure 1: Sharing data in XVSM

Doctors are equipped with tablet pcs supporting
wireless ad hoc network communication and hurry
from one patient to the next one. The responsibility
of a doctor is to inspect the patient, to label the
patient physically according to the class the patient

Ubiquitous Computing and Communication Journal 3

belongs to and then to insert collected data like
criticality, prescribed medicines, and if possible
personal information into the shared space via the
doctor’s tablet pc. As shown in Figure 1, since the
doctor’s equipment supports wireless communication
and XVSM provides P2P lookup and communication
infra-structures [17] and replication protocols [20],
[13], any data added to the space is replicated to any
other doctor who is reachable via the ad-hoc network.

Distribution of newly added patient data to other
doctors is not a complicated issue since there are no
conflicts in sense of inconsistencies: Only one doctor
will look at a patient at the same time. If another
doctor has to update the patient data, because its state
has become worse, there will be still no conflicts
because the doctor is in turn the only one that
updates this specific information. Since the first
doctor has added her/his information the currently
checking one may be able to contact her/him or a
staff member in the ambulance or the hospital for
consultation via chat-communication. So, by writing
patient information into the space the doctors
coordinate their activities so that no patient is treated
twice, unless it is really necessary, and will not
receive redundant medication.

Ambulances are responsible to pick up the patient
with highest criticality and in the closest proximity
and to bring her/him to the hospital for further
treatment. In order to do so, each ambulance has a pc
with a web server that is connected with the web
server in the hospital, and a terminal with a web
browser for monitoring the catastrophic site. Via the
web browser’s gui also the chat with the doctors in
the fields shall be carried out, as well as the
coordination with other ambulances. Here the need
arises that the standard web technologies must be
integrated with the space to be notified about the
latest states regarding the patients in near-time. This
is necessary since ambulances are dynamic in the
sense that they move around and thus may leave a
communication area without being reachable for
anyone. Once they have all the information they can
make a decision based on which patient is the most
critical one, who is the closest to its position and
whether there is any other ambulance on its way
there. So, ambulances coordinate each other by
writing their intention into the space by specifying
the location of the patient they want to pick up next.
This is necessary, since it would be a waste of
resources if two ambulances were going for the same
patient.

In the hospital web servers and web browser
terminals exist. The collaboration here comprises the
communication with the ambulances, the active
pulling of information about certain patients (e.g. on
the relatives’ requests), and if special expertise or
advice is needed, an on-line chat with the doctors at
the emergency site.

The proposed XVSMP/Bayeux protocol is

needed to integrate the ambulances and the hospital
with the doctors; i.e. to notify them about any
changes occurring in the space, and to enable the
described collaborations among all stakeholders.

3 BAYEUX

As stated in the Introduction, our goal is to adopt
the space based computing paradigm in a web
environment. In our approach shared data spaces are
hosted by web servers, which are accessed by web
clients to read data from the space, write data to the
space and receive notifications about data of interest
from the space.

In the web architecture, web clients access web
servers using the HTTP protocol to retrieve or
submit representations, like HTML or XML
documents, of resources, which are identified by
URIs. A client initiates the communication by
establishing a TCP connection with the server and
sends an HTTP request. The server processes the
request and sends an HTTP response using the
established TCP connection. When the HTTP
response is complete, further communication must be
initiated by the client again. There is no way for a
server to initiate communication with a client.

The request/response interaction style of HTTP
fits well to realize non-blocking read and write
operations of the space. There are, however, space
operations which cannot be realized well on HTTP:
blocking reads and server initiated notifications.

A blocking read is issued by a client to retrieve
some data of interest. If, however, there is currently
no such data available in the space, the read
operation blocks until eventually such data arrives,
i.e. is written to the space by another client. The
space then sends the data back to the waiting client
and the read operation unblocks.

A notification is used by clients and is a
permanent subscription to changes in the space. A
client registers its interest in some kind of data at the
space. The space sends a notification to the
registered client whenever matching data arrives in
the space.

The blocking read operation and notifications are
difficult to realize based on HTTP, because they
break the stateless request/response interaction style.
Firstly, the server must keep track of all clients
which wait for a blocking read operation or have
registered notifications. Secondly, in order to send
notifications, a server needs the possibility to initiate
communication with a client.

There are well known HTTP-based approaches to
overcome these limitations of plain HTTP, like
periodic polling, long polling and the Iframe
technique, which are described below. Instead of
adopting one of these approaches to realize
communication between clients and servers hosting
spaces, we decided to reuse the HTTP-based

Ubiquitous Computing and Communication Journal 4

protocol Bayeux, which supports all mentioned
approaches and provides a protocol negotiation
mechanism for interoperability reasons. Further,
there are many existing client and server side
implementations of Bayeux, which can be reused for
the implementation of the XVSMP/Bayeux protocol.

Bayeux is a publish/subscribe protocol.
Compared to other publish/subscribe approaches [6],
the unique property of Bayeux is that it has been
designed for the web. It takes into account the
characteristics and limitations of web browsers, web
servers and HTTP.

Bayeux allows a client, typically living in a
JavaScript and DOM (document object model)
enabled web browser, to publish events via channels
(cf. topics in publish/subscribe systems [6]) to a
server and to subscribe to channels in order to
receive events from a server. The Bayeux protocol
consists of a set of messages encoded in JSON [4]
(JavaScript Object Notation), a lightweight, textual
representation of JavaScript objects optimized for
processing in JavaScript. Channel names are
organized hierarchically (e.g. “stockvalues/XYZ”)
and subscription supports prefix matches on channel
names (e.g. “stockvalues/*”).

Although Bayeux is not limited to HTTP as
underlying protocol, it has a strong focus on HTTP.
Within the browser, an HTTP connection is usually
created using a special JavaScript object called
“XmlHttpRequest” (XHR). Via an XHR, a client can
send any HTTP request such as GET and POST.
When the reply of an HTTP request has been
received by the XHR object, it calls a previously
provided callback function. This function typically
updates the web page by accessing the DOM of the
page. A Bayeux client uses two HTTP connections,
one to send Bayeux messages to the server and
another one to receive Bayeux messages from the
server.

The advantage of Bayeux compared to periodic
AJAX-based polling is that it supports various
transport mechanisms which allow messages to be
delivered to clients in a more timely fashion. In
addition to AJAX-like periodic polling Bayeux
supports the transports long polling, Iframe (HTTP-
based) and Flash, which provide significant lower
event delivery latency. In the following we focus on
some HTTP-based transport examples and assume a
browser as client. Figure 2 shows the message
exchanges between a client and a server for three
different transports. All message exchanges start
with a handshake.

Handshake. The transport actually used is
negotiated by a handshake. The client sends a
handshake message via an HTTP request using XHR
and gets a response containing a unique client-ID,
which is used by the client for all subsequent
requests, and a list of all transports supported by the
server. The client selects a transport and specifies it

in the subsequent connect request. The further
message exchange depends on the negotiated
transport.

Periodic polling. (Figure 2.a) After the
handshake the client sends a connect message using
XHR. The server immediately sends a response
containing all outstanding events – even if there are
none. In case of periodic polling, the handshake
response also contains an advice specifying a polling
interval. The client waits this interval before sending
a reconnect message for the next poll. The latency of
events delivery depends on the rate of polling,
TCP/HTTP request setup and actual data
transmission time.

Figure 2: Transport examples of Bayeux, based on
[24]. Solid arrows represent HTTP requests (client to
server) and HTTP responses (server to client).
Dashed arrows (server to client) represent partial
HTTP responses.

Long polling (Figure 2.b) works similar to
simple polling. When the server handles a connect
request and there are no outstanding events, it does,
however, not generate an HTTP response but keeps
the HTTP connection open until eventually an event
is to be delivered. After receiving a connect response,
a client immediately issues a subsequent reconnect

Ubiquitous Computing and Communication Journal 5

request to receive further events. Considerable
latency for event delivery is still caused by the
overhead involved to set up a new HTTP request for
repeated polling and the actual data transmission
time.

Streaming (Iframe). (Figure 2.c) This transport
allows to stream events over a long-lived HTTP-
request which is never closed. This transport does
not rely on XHR, but uses an HTML Iframe element
for connect and reconnect requests. An Iframe is
normally used to embed a web site within another
one. The embedded web site is loaded independently
from the embedding one. Whenever a script is
completely loaded during loading an Iframe, the
script is immediately executed by the browser before
the Iframe itself is completely loaded. To send events
through an Iframe, the Iframe keeps loading forever
– resulting in a continually open HTTP request,
called a tunnel. To send an event, the server streams
a script carrying the event through the tunnel without
closing the tunnel afterwards. When executed in the
browser, this script calls some generic event
dispatching mechanism. If the tunnel is closed for
some reason, the client re-opens the tunnel via a
reconnect request. By preserving an open HTTP
channel, latency is reduced to a minimum and
depends on the actual data transmission size only.

These different transports not only differ in the
provided latency of event delivery, but also in
browser compatibility, especially concerning older
versions, the possibility to subscribe to servers
distinct from the server hosting the application, also
known as cross domain scripting, and others details.
For that reason, Bayeux includes a negotiation
mechanism for clients and servers to agree on a
common transport. It further provides a mechanism
to fall back to an alternative transport, if problems
for a given transport are detected.

A drawback of Bayeux is its complexity.
Advanced transports are far more complicated than
issuing a simple, REST-compatible HTTP request.
However, it is promising and simple enough that
some vendors integrated it into their products or
tools, like JavaScript toolkit dojo, Jetty Web Server,
IBM WebSphere, Twisted Python Cometd Server
and Sun Grizzley.

4 XVSM SPACES

XVSM stands for extensible virtual shared

memory and defines a Linda [9] tuple space based
extension that offers more structuring of the
coordination space and that can be used in the
Internet using an XML protocol. The basic concept is
a container that is addressed by its “cref” (container
reference URL) so that a container becomes
accessible like any other resource in the Internet. A
container can be bounded or unbounded: Bounded
means that within a container there is a limited

amount of places for so-called data entries. A
container can be considered a named sub-space.
Entries have no identity and can either be structured
Linda tuples (cf. database records), any basic data
type, XML data, RDF data, or references to other
containers.

The basic operations on containers are read (read
of entries), write (insertion of entries), and take
(consuming read of entries), according to the classic
Linda model. Also bulk operations are supported, so
that it is possible to insert multiple entries into a
container resp. to read/take multiple out of it in one
step. Besides the fact that read and take can be used
for synchronization, as both offer a blocking
behavior if no suitable entries to be read/taken are in
the container, also the write operation may block, if
there is no place in the container. Therefore another
operation was added called shift that behaves like
write but instead of blocking if the data cannot be
written to the container, it will replace an
accordingly number of entries and succeed in any
case without blocking.

The basic semantics of read, take, and write are
analogous to the Linda model. Shift as explained
above behaves like write if there is place in the
container to write the entry/entries to it, otherwise it
will replace one or more entries. In addition a
destroy operation is supported which behaves like
take but does not return the removed entries. Read,
take and destroy are different flavors of selecting
entries; they differentiate by either removing or not
removing the selected entries and by returning them
or not.

An entry can be tagged with named keys and/or
labels when they are inserted into a container using
write or shift. A key must be unique in a container,
whereas a label need not: A write will block if an
entry is written whose key is already occupied. Read,
take and destroy use an “XVSM query” to select
entries. In a query one can specify:

• Label and/or key values: a selected entry must
provide all given labels and keys. It is also
possible to specify a key/label range, or the
minimum/maximum value of a key/label with
an XVSM query.

• One or more match-maker functions, each
with a template: the function using template
must be fulfilled by the entry. Match-maker
functions can be added dynamically, thus
extending the expressiveness of the query.
E.g., linda template matching, XML Xpath,
RDF query mechanisms etc.

With these mechanisms, more complex
coordination possibilities like fifo, filo, random can
be implemented thus adding further expressiveness
to the classic Linda model.

Aspects can be defined on containers that in
contrast to reactions in LIME [22], trigger the
execution of program code upon the execution of one

Ubiquitous Computing and Communication Journal 6

of the mentioned operations (read, write etc.) on a
container, either before it is called or after it has been
executed. With aspects, notifications and iterators
can be implemented.

Our current open source implementation of
XVSM is carried out in Java. It is provided as a
version that can be embedded by a (mobile) Java
peer, as a standalone Java API, and as a web server
version (this one uses the derby database, and
Tomcat as web server).

The XVSM architecture comprises a space core,
and function profiles that are pluggable and may
provide extensions for persistency, life cycle
management, and several replication strategies
between distributed containers (see Figure 3). In
addition, the architecture comprises language
bindings that are layered above the core and use the
XML protocol. We currently support a Java binding
at the interface layer; prototypes for .NET, .Scheme
and JPhyton are under development.

Figure 3: XVSM Architecture

In the following we use XVSM for combining

web architectural style with the advantages of space
based computing.

4.1 XVSMP/BAYEUX PROTOCOL

XVSMP/Bayeux uses Bayeux as underlying

communication protocol to provide bidirectional
asynchronous communication between web
applications and XVSM spaces. Bayeux provides a
publish-subscribe message exchange mechanism,
however as we require direct communication
between client and XVSM we run a request-response
message exchange on top of it. We therefore define a
common server channel “/xvsm/server” to support
client to XVSM communication. Messages from
XVSM to the client are published to the client’s
private channel. Within Bayeux every client has its
own private channel, which it is automatically
subscribed to upon connecting.

For our protocol we are using the Bayeux

implementation of the web server Jetty. It includes
an extensible security mechanism which we use to
protect our system from malicious clients. It can be
used to regulate subscription and publishing rights on
channels. We use it to prohibit clients from
subscribing channels, other than their private one,
and from publishing to channels, other than the
common server channel. This way, malicious clients
are kept from eavesdropping or infiltrating other
client’s communication.

For our protocol we use JSON as message
encoding format. The following example shows the
message exchange to create a container within the
XVSM space and write an entry to it:

{ "operation": "CreateContainer",
 "request": 1,
 "data": { "size": 10 } }

Every message is represented using a JSON

object and contains three parameters. The
"operation" parameter defines the operation to be
performed in the XVSM space (in this case the
creation of a new container). The "request"
parameter is an increasing number to keep track of
the message exchange: (E.g.: the responses of two
write operations might arrive at the client in arbitrary
order, depending on the time needed for their
execution at the XVSM space). For correlation, a
response to a specific request must contain the same
number in the "request" parameter. The "data"
parameter holds a JSON object itself, containing the
necessary information to perform the specific
operation (in the above example the container to be
created shall be bounded to size 10). If successful the
corresponding response from XVSM looks like this:

{ "request": 1,
 "operation": "CreateContainer",
 "data":{ "cref": "cref_117_0" } }

The "request" parameter correlates the response

with the previously defined request. The "data"
parameter again contains a JSON object. It holds the
container reference “cref” of the newly created
container. This cref is now used to perform a write
operation on the container in the subsequent
example:

{ "operation": "Write",
 "request": 2,

"data": { "cref": "cref_117_0",
"entries":[{
 "type":"STRING_UTF8",
 "value":"test" }]

 }
}

The parameter "cref" identifies the container to
write to. The parameter "entries" contains a JSON
array of entries to be written. Every entry is a JSON
object with a type and a value parameter. Valid types

Ubiquitous Computing and Communication Journal 7

are strings, numbers, container references or tuples.
A tuple can itself contain an arbitrary number of
entries, permitting to build up more complex data
structures.

4.2 Server implementation

The main component of the XVSM space is the

XVSM Core. It can be embedded into a Java
application (e.g. a servlet container) or it can be used
as a standalone version. It consists of three parts:

The Core API (CAPI) provides a Java interface
for the application to interact with the XVSM Core,
hiding the concrete implementation.

The XVSM Core contains the main logic of the
XVSM system.

The data storing entity. The current XVSM
implementation uses the derby [29] database to
persist data.

To provide access to XVSM we embed the
XVSM Core into the web server Jetty. The server
implementation consists of a servlet subscribing the
Bayeux channel "/xvsm/server" and implementing
the XVSMP/Bayeux protocol. It takes incoming
messages from the clients and forwards them to the
processing classes (every command to be executed is
processed by one class extending a predefined
interface). A security handler for subscribing and
sending messages via channels is added as described
in section 4.1.

Jetty is chosen instead of Tomcat, as in the
original XVSM implementation, because it already
includes a server implementation of the Bayeux
protocol and it is designed to meet the new demands
that event driven web applications put on the server
infrastructure.

4.3 Client library

To simplify the development of web applications

using XVSM we created a JavaScript API. This API
offers methods to directly perform operations on
XVSM. This way, the underlying Bayeux
communication as well as the JSON based protocol
is made transparent to the web application developer.
Our JavaScript API makes use of the JavaScript
toolkit dojo. The dojo toolkit is designed to facilitate
the development of web applications with JavaScript.
It offers a wide range of aid for JavaScript
developers including widgets (a combination of
HTML, CSS and JavaScript code), as building
blocks for the user interface, a packaging system for
code modularization and reuse and support for
asynchronous communication (including a Bayeux
client). A lot of widgets are already included in the
toolkit, implementing the most commonly used
design features of modern web applications.
Additionally custom widget’s can be created. Dojo’s
packaging system arranges code in a similar way like

the Java packaging system and allows JavaScript
coding in an object-oriented way. To illustrate the
use of the API we take a look at the operations
performed in section 4.1. First the JavaScript API
must be instantiated and connected to the XVSM
space:

var jsapi = new xvsm.jsapi.JSapi();
jsapi.connect(“url/to/xvsm”);

The following code segment shows how to create

a container and write an entry to it (for reasons of
simplicity the example doesn’t include full package
names):

var iface = new CreateContainerIface();
iface.containerCreated(cref) {

var w = new Write();
var e = new Entry();
e.setString(“test”);
e.setContainerRef(cref);
w.addEntry(e);
jsapi.write(w, new WriteInterface…);

}

jsapi.createContainer(new
 CreateContainer(10), iface);

Every function, to perform an operation on the

XVSM space, takes two parameters as arguments.
The first parameter specifies the necessary
information to perform the operation (in this example
the size of the container to be created or the data to
be written) and the second parameter implements an
interface for return values. The interface’s functions
are called when the operation on the XVSM returned
(either successfully or with an error). This parameter
can be omitted if the web application needs no
information about the outcome of the operation.

In this example we first create an instance of the
CreateContainerInterface. Its containerCreated
method is called upon successful creation of the new
container and returns its reference. Within this
method we now create a “Write” object and add an
entry to it. We than call the write method of the
JavaScript API (for simplicity we also omitted the
methods of the CreateContainerInterface being called
upon an error).

Finally we can call the createContainer method of
the JSapi with a “CreateContainer” object setting the
size to 10 and the previously created interface object.
The JavaScript API will transform the data into
JSON messages equal to the ones in section 4.1 and
send them to the XVSMP/Bayeux server
implementation.

5 IMPLEMENTATION OF USE CASE

ASPECTS

As a proof of concept and to illustrate how the

presented technologies work together we have

Ubiquitous Computing and Communication Journal 8

developed two issues of the presented use case
scenario (see section 2): a chat application (used by
doctors, ambulances and the hospital) and a
monitoring application (used by ambulances and
hospital within a web browser). The following
descriptions will explain only the web
server/browser related part of the implementation.
The implementation of a chat between XVSM peers
is straight forward by writing to and taking from a
container with fifo coordination (as described in
section 4), and monitoring can be done using space
notifications directly.

Figure 4 shows the system design of the two
sample applications. The server implementation
resides within the web server Jetty. The
XVSMP/Bayeux implementation binds together the
Bayeux server on the one side and the XVSM space
on the other side. It subscribes the predefined
Bayeux channel “/xvsm/server” to retrieve client
messages which are interpreted and executed on the
XVSM space. Responses are sent back to the client’s
private channel. On the client side the application
lives in an internet browser environment. The web
application calls the functions of the JavaScript API
which itself sends messages through the Bayeux
client to the server. Both web application and
JavaScript API are developed with the help of the
dojo toolkit and the Bayeux client is a part of it.

Figure 4: System Concept

5.1 Chat Application

The chat application allows the user to choose a

nickname, log into the system, create channels, join
channels and send messages to channels. The
coordination and data exchange of the application is
based on the following data structure:

Figure 5: Chat application data structure

The application uses two named containers

“channels” and “users” to keep track of all of its data.
The references of these two containers can be
obtained through the lookup mechanism of XVSM.
Both containers use a coordination type based on a
key/value structure. This coordination type ensures
that every key can only be present once in the
specific container, which we use to guarantee the
uniqueness of nicknames and channel names. If the
application tries to write an already existing
nickname to the “users” container the operation will
block and wait for the existing key/value pair to be
removed. Every operation offering a blocking
behavior takes a timeout as parameter to indicate
how long the operation shall wait in the blocking
state before giving up. By setting the timeout of the
write operation to zero, every time the write
operation blocks, it will immediately throw a
TimeoutException and the application can inform the
user about the already existing nickname.

While the “user” container only stores simple
usernames, the “channel” container stores tuples,
containing the name of the channel and a reference to
the channel’s container (references are shown as
circles in Figure 5). Every channel has its own
container storing the currently participating users
with a reference to their container within the channel.
Within a channel every user got his/her private
container where messages are delivered for him/her.
The retrieval of newly available messages is this way
uncoupled from their creation and every application
can read messages from the channel at its own speed,
unaffected by the other application’s operations.

To stay informed about the actions from other
users every application uses multiple notifications. A
notification is created upon the “channels” container
to get notified whenever a user creates a new channel.
Additionally when a user joins a channel two
notifications are created on the container of the
channel. One for entries being written to the
container (a new user joins the channel), one for
entries being removed from the channel (a user
leaving the channel). A notification is also created to
listen for entries written to the user’s container
within the channel. When a user leaves a channel
his/her container in the channel is destroyed and the
tuple with his/her username and container reference

Ubiquitous Computing and Communication Journal 9

is removed. As the user has no more interest in the
channel’s activities his/her notifications on the
channel are canceled.

5.2 XVSM Viewer

The XVSM Viewer is a monitoring application

used to show the current state and content of a
XVSM space. It displays the currently existing
containers, their entries and properties as well as
existing notifications on the containers. The viewer
displays the list of container references and uses two
notifications (one that fires upon creation of a
container and one that fires upon destruction of a
container) to keep the list up to date. Filtering with
regular expressions and selecting favorites facilitates
the navigation within the list of references. The user
can select a reference from the list to open the
container’s window. The container window shows
the details of the selected container (its properties,
entries and notifications). Additional notifications
are added to notify the XVSM Viewer about
operations performed on the specific container
(write/shift/take/delete). Container references within
entries can be used to directly open their container
window (similar to following a hyperlink), allowing
to quickly browse complex data structures. With a
pause button the container window can be stopped
from updating the container’s content in order to
create a snapshot. It is also possible to open a
container more than once to make snapshots at
different times. An MVC pattern is used to manage
the container’s data at a single point no matter how
many windows displaying the container’s content are
opened. If all windows of a container are closed the
notifications on the container are canceled and its
data is discarded.

6 EVALUATION

The use case description shows the importance of

timely information delivery in a scalable
collaborative application, which is used by
autonomous participants to coordinate their activities.
Participants rely on timely information in order to
plan the optimal use of available resources. The
space based computing paradigm fits well for this
kind of application, since it supports many-to-many
coordination, dynamically joining and leaving
participants, replication and timely event delivery.
Web applications, on the other hand, have the
fundamental advantage that besides a conventional
web browser no client software needs to be installed
and maintained. This is crucial for large scale
applications used by various, autonomous
organizations.

XVSMP/Bayeux enables space based computing
within a web environment. Important properties of
this protocol with regard to the limitations of the web

architecture described in section 1 and various
extensions to show the potential of our approach are
outlined in the following.

a) Scalable information push. For scalability
reasons, the HTTP specification restricts the number
of simultaneous connections of a client to one server
to two. For that reason, realizing each blocking
operation with a separate long-lived HTTP request,
as proposed in [25], is not appropriate. A
workaround is to configure the browser to allow
more than two connections, a web application should,
however, not rely on that. XVSMP/Bayeux creates a
tunnel using a single long-lived HTTP request
instead and dispatches all events to the according
callback functions. This way any number of blocking
operations and notifications can be issued
simultaneously.

Web applications using Bayeux as underlying
transport got a significantly different traffic profile
compared to traditional web applications, which
needs to be addressed by the server architecture to
keep up scalability. Traditional web server
architectures are based on the "one-thread-per-
connection" model. This model scales well when the
connection can be closed while the user reads the
content or fills out a form. This way the application
can handle far more users than the web server can
handle connections. However with long-lived HTTP
requests a connection is maintained even if no data is
transferred. This makes the "one-thread-per-
connection" model unsuitable, as every user is
constantly using at least one connection. To
overcome this problem, the creators of Jetty
introduced the concept of "Continuations" [28].
Continuations offer the possibility to suspend a long-
lived HTTP request and free the processing thread.
The request is resumed after a specific timeout or if
another thread calls its resume method. With this
technique open connections only need a processing
thread whenever data is actually received or sent.

Table 1: Resource consumption of Bayeux
applications (taken from [28])

Ubiquitous Computing and Communication Journal 10

Table 1 is a theoretical calculation estimating the
impact of Bayeux applications on the resource
consumption of traditional web servers and web
servers using Continuations. Based on the
assumption of 10.000 simultaneous users the
concurrent requests are estimated. With a traditional
web application (Web 1.0) 500 concurrent requests
would be needed, resulting in 500 running threads at
the server, consuming 32 MB of stack memory. A
Bayeux application(Web 2.0 + Comet) running on a
traditional server, would need 10600 requests
resulting in an enormous need of 10600 threads and
694 MB of memory. With Continuations the amount
of needed threads for 10700 requests is reduced to
875 (57 MB of memory), which is far more
reasonable.

Further scalability can be achieved by replicating
the space on a server cluster or by deploying shared
XVSMP/Bayeux proxies.

b) Performance. Using Bayeux as underlying
transport is supposed to provide significant
performance advantages over classic Ajax polling
regarding asynchronous notifications. To prove this
expectation we conducted a simple benchmark
comparing asynchronous notifications using Bayeux
to asynchronous notifications using traditional Ajax
polling. The benchmark consists of a thread, which is
constantly writing entries, containing the current
timestamp, to a container. The delay between two
write operations is randomly determined within a
certain interval. Two web applications, one using
XVSMP/Bayeux and another one using Ajax polling
register at the space to be notified about the write
events. Whenever an entry is received the difference
between the entry’s timestamp and the actual time is
displayed. Additionally the Ajax application is
counting the polling attempts, where no new entry
was available. To avoid clock synchronization
problems the benchmark is executed on one machine.

Table 2: Benchmark between Bayeux (using long-
polling transport) and classic Ajax

Table 2 shows the latency of both approaches
depending on the different write delays and the

different polling speeds. The maximum polling speed
on the testing device was about one polling request
every 60ms. Considering the benchmark results the
latency using Bayeux is constant and much lower
than with Ajax polling. At its best, the latency with
Ajax polling is nearly double the latency of Bayeux.
Additionally Bayeux is avoiding the overhead of
empty polling messages.

c) Connectivity. Long-lived HTTP-requests have
the inherent problem that they can break if the
Internet connection is bad or times out, especially in
the presence of intermediary proxies (which are not
in control of the application hosting organization).
Such broken HTTP requests are automatically
masked by XVSMP/Bayeux.

Caching greatly reduces client-perceived latency
and network traffic. While HTTP caching is
basically limited to static contents like images,
XVSMP/Bayeux enables to cache parts of the space
and to keep them automatically consistent in near-
time by receiving updates or cache invalidation
messages from the origin server. This is particularly
feasible if the read/write rate is comparable high. A
prerequisite for that is a protocol like
XVSMP/Bayeux which allows scalable, efficient
event push. Caching and replication further assist in
building clients which support offline operation.
Advanced replication strategies allow to buffer data
collected when being offline and to automatically
transfer it to the space server when online again.
Since our approach is based on JavaScript at client
side, it is possible to integrate the cache and
replication logic within the client library and avoid
the need for proprietary browser plug-ins.

7 CONCLUSION

The demanding requirements imposed by

increasing amounts of mobile clients and more
dynamic application scenarios challenge the strict
REST principles. The AJAX style is an approach that
supports better scalability through finer granularity
caching, but still does not solve the automatic
notification problem for clients. We have adopted
this idea of separating business logic and
communication to achieve even more flexibility and
scalability by integrating current web architectures
with the space based computing paradigm which
inherently offers the desired properties like caching
and asynchronous near-time notification.

To support space based computing in a fully
integrated way, the usage of REST and SOAP
mechanisms would be obvious, but are not sufficient,
because the server side pull must be simulated by
inefficient polling. We have therefore implemented a
new transport protocol termed XSVMP/Bayeux that
supports synchronicity in communication and that is
based on the Bayeux protocol which supports a
publish/subscribe style for web browsers breaking

Ubiquitous Computing and Communication Journal 11

with the REST principle only in that one open
durable channel is required. At the client side, a
JavaScript program is loaded, comparable to the
AJAX idea, that itself exhibits some space properties
concerning caching and that provides feasible,
limited application availability for mobile clients
even in off-line mode. This script executes the
XVSM API that communicates with the XVSM
space located at the server via XSVMP/Bayeux. A
prototype was implemented using the open source
implementation of the XVSM.

This architecture contributes to better caching
through effectively maintaining shared data in
replicated spaces, and scalability through avoidance
of polling. In addition it offers new application
possibilities. These comprise near-time automatic
refresh in web browsers, a scalable and configurable
pushing of information to clients depending on the
device’s capacity and connectivity, and the easy
support of on/off-line mode for mobile devices.

Future work will consider the benchmarking of
different caching scenarios under different loads and
the extension of the space footprint.

Acknowledgments: We would like to thank

Christian Schreiber for his helpful comments on this
paper.

8 REFERENCES

[1] C. Bussler: A Minimal Triple Space Computing

Architecture, in Procs. of the WIW’05
Workshop on WSMO Implementations (2005).

[2] G. Cabri, L. Leonardi and F. Zambonelli:
MARS: A Programmable Coordination
Architecture for Mobile Agents, IEEE Internet
Computing 4, 4, 26-3 (Jul. 2000).

[3] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf:
Design and evaluation of a wide-area event
notification service, ACM Trans. Comput. Syst.
19, 3, pp.332-383 (Aug. 2001).

[4] D. Crockford: The application/json Media Type
for JavaScript Object Notation (JSON),
RFC4627 (July 2006)

[5] N. Davies, S. P. Wade, A. Friday and G. S.
Blair: Limbo: A Tuple Space Based Platform for
Adaptive Mobile Applications, Proceedings of
the International Conference on Open
Distributed Processing/Distributed Platforms
(ICODP/ICDP '97), Toronto, Canada, 27-30, pp.
291-302 (May 1997).

[6] P.T. Eugster, P.A. Felber, R. Guerraoui, and
A.M. Kermarrec: The Many Faces of
Publish/Subscribe, ACM Computing Survey 35,
2 (Jun. 2003).

[7] R.T. Fielding: Architectural Styles And The
Design of Network-based Sofware Architectures,
PhD Thesis, University of California, Irvine
(2000).

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee: Hypertext
Transfer Protocol -- HTTP/1.1, RFC 2616 (June
1999).

[9] D. Gelernter: Generative Communication in
Linda, ACM Transactions on. Programming.
Language and Systems (TOPLAS), Vol. 7, No. 1,
pp. 80-112 (1985).

[10] GigaSpaces: GigaSpaces Enterprise Application
Grid Version 4.1 Documentation.

[11] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J.
Moreau, and H.F. Nielsen: SOAP Version 1.2
Part 1: Messaging Framework, W3C
Recommendation (June 2003).

[12] K. Hummel: Mobility-Aware Distributed
Computing in Shared Data Spaces, PhD Thesis,
Vienna University of Technology (January
2005).

[13] e. Kühn: Fault-Tolerance for Communicating
Multidatabase Transactions, Proceedings of the
27th Hawaii International Conference on System
Sciences (HICSS), ACM, IEEE, Vol. 4., No. 7,
Wailea, Maui, Hawaii (1994).

[14] e. Kühn: Virtual Shared Memory for Distributed
Architecture, Nova Science Publishers (2001).

[15] e. Kühn, J. Riemer, and G. Joskowicz:
eXtensible Extensible Virtual Shared Memory
(XVSM) - Architecture and Application,
Technical Report, Institute of Computer
Languages, Vienna University of Technology,
Austria (June 2005).

[16] e. Kühn, J. Riemer, and L. Lechner:
XVSMP/Bayeux: A Protocol for Scalable Space
Based Computing in the Web, Workshop on
Interdisciplinary Aspects of Coordination
Applied to Pervasive Environments: Models and
Applications (CoMA), at the 16th IEEE
International Workshops on Enabling
Technologies: Infrastructures for Collaborative
Enterprises (WETICE), Paris, France (June,
2007).

[17] Z. Li and M. Parashar: Comet:A Scalable
Coordination Space for Decentralized
Distributed Environments, In Proceedings of 2nd
International Workshop on HotTopics in Peer-
to-Peer Systems (HOT-P2P’05).

[18] M. Mor, R. Mordinyi, and J. Riemer: 2007.
Using Space-Based Computing for More
Efficient Group Coordination and Monitoring in
an Event-Based Work Management System. In
Proceedings of the the Second international
Conference on Availability, Reliability and
Security (April 10 - 13, 2007). ARES. IEEE
Computer Society.

[19] A. L. Murphy and G. P. Picco: Using
Coordination Middleware for Location-Aware
Computing: A LIME Case Study, Coordination
2004, LNCS (2004).

[20] A.L. Murphy, and G.P. Picco: Using LIME to

Ubiquitous Computing and Communication Journal 12

Support Replication for Availability in Mobile
Ad Hoc Networks, Coordination 2006, LNCS,
2006.

[21] A. Omicini and F. Zambonelli: TuCSoN: A
Coordination Model for Mobile Agents, J.
Internet Research 8, 5, pp.400-413 (1998).

[22] G.P. Picco, A.L. Murphy, and G.-C. Roman:
Lime: Linda Meets Mobility, In Proc. of the 21st
Int. Conference on Software Engineering
(ICSE'99), ACM Press, Los Angeles, USA
(1999).

[23] D. Rossi, G. Cabri and E. Denti: Tuple-based
technologies for coordination, in Coordination of
internet Agents: Models, Technologies, and
Applications, Springer-Verlag, London, pp.83-
109 (2001).

[24] A. Russell, G. Wilkins, D. Davis and M. Nesbitt:
Bayeux Protocol - Bayeux 1.0 draft1, The Dojo
Foundation, 2007.

[25] Sun Microsystems: JavaspacesTM service
specification (2003).

[26] P. Thompson: Ruple: an XML Space
Implementation, in Proc. of XML Europe 2002
Conference, Barcelona, Spain (2002).

[27] G.C. Wells: A Tuple Space Web Service for
Distributed Programming, in Proc. of 2006 Int.
Conf. on Parallel & Distributed Processing
Techniques and Applications, Las Vegas, USA,
(2006).

[28] G. Wilkins: Ajax, Comet and Jetty, available at
http://www.webtide.com/downloads/whitePaper
AjaxJetty.html (visited on Jan 18, 2008).

[29] P. C. Zikopolous, G. Baklarz and D.Scott,
Apache Derby, IBM Cloudscape, Prentice Hall
PTR, 2005.

[30] www.spacebasedcomputing.org (visited Jan.
2008)

[31] www.cometd.com (visited Jan. 2008)

