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Abstract. Coordination is frequently associated with shared data spaces
employing Linda coordination. But in practice, communication between
parallel and distributed processes is carried out with message exchange
patterns. What, actually, do shared data spaces contribute beyond these?
In this paper we present a formal representation for a definition of shared
spaces by introducing an “extensible tuple model”, based on existing re-
search on Linda coordination, some Linda extensions, and virtual shared
memory. The main enhancements of the extensible tuple model comprise:
means for structuring of spaces, Internet- compatible addressing of re-
sources, more powerful coordination capabilities, a clear separation of
user data and coordination information, support of symmetric peer ap-
plication architectures, and extensibility through programmable aspects.
The advantages of the extensible tuple model (XTM) are that it allows
for a specification of complex coordination patterns.

1 Introduction

The coordination theory was founded by Malone and Crowston and described
as “managing dependencies between activities”. In [16] it is argued that coordi-
nation makes sense only if tasks are interdependent. Additionally, the theory
suggests that standardized coordination mechanisms can be applied to spe-
cific coordination problems. Ciancarini therefore describes a generic coordina-
tion model [4] as a triple of {E, M, L}. It suggests to have a clear separation
between the specification of the communication entities of a system and the
specification of their interactions or dependencies. In the model, {E} stands for
either physical or logical entities to be coordinated. These can be data (struc-
tures), software processes, services, agents, or even human beings interacting
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with computer-based systems. {M} represents the coordination media (i.e. com-
munication channels) serving as a connector between the entities and enables
communication, which is a mandatory prerequisite for direct coordination [26,6].
Such coordination media may be message-passing systems, pipes, tuple spaces
etc. {L} specifies the coordination laws between the entities defining how the
interdependences have to be resolved and therefore, semantically define the co-
ordination mechanisms.

From the point of view of designing a language for distributed systems the
idea of associative communication based on a shared data space is one of the
most interesting paradigms [3]. This is because a shared space allows to clearly
separate the issue of controlling coordinating communication entities from the
issue to control a single entity. A Tuple Space [22] is an example of this kind of
languages. It is a well-known coordination model such as Linda [8], JavaSpaces [7]
and TSpaces [15]. Tuple spaces are flat and unstructured multisets of tuples that
can be accessed via very basic output, read, and input operations.

In the tuple space approach processes communicate with the other entities
in the environment by writing tuples (ordered sequences of data) into the tuple
space. Sharing of data via spaces [2] is not a novel paradigm. It comes from par-
allel processing and was later considered for distributed environments. Due to
its high-level abstraction of communication by simply reading and writing data
from/into a shared space this paradigm fits to growing dynamics and collabora-
tion in the network [29]. The processes interested in retrieving information useful
for coordinating their activities perform blocking rd or in operations specified
via a template. In case several tuples match the template of a data-retrieval
operation, only one of them is selected non-deterministically.

The limitation of current tuple space implementations is that they support
template-matching only. This is problematic if any other form of coordination
is needed, like FIFO. In such cases the coordination entity itself has to manage
ordering of the tuples the right way and agree about it with other entities. Thus,
the implementation of the coordination entity must contain functionalities that
a coordination media should provide. However, queries involving relational com-
parison operators cannot be implemented with template matching. The proposed
approach aims to describe a generic and extensible coordination model based on
tags, upon which any kind of coordination laws can be modeled, starting with
simple ones like FIFO and KEY, to more complex concurrent collection patterns,
and finally also patterns that as e.g. described in [9] also cope with distributon.
The extensible coordination approach is realized by means of the coordination
media XVSM (extensible virtual shared memory) [25], [14] clearly separating the
responsibilities between coordination middleware and entity again. The reason
for adding additional forms of coordination laws to a space coordination medium
are based on our experiences with programming real applications:

– Developers consider Linda template matching as too unstructured in com-
parison to query facilities offered by databases. Being forced to pack coordi-
nation information into tuple content is a drawback [17].
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– Autonomous business partners require a programming language and plat-
form neutral API specification that allows coordination across the Internet.
E.g., JavaSpaces [7] exhibits only a Java based API specification.

– For future Web2.0 scenarios, a crucial requirement will be to hide the dif-
ferences between communication within an enterprise and across enterprise
borders.

Experiences gathered with such applications within large systems are e.g.
GONG with near-time database replication [12] using the Corso [11] virtual
shared memory for load-balancing and network bandwidth optimization, the
SVSDM [19], [18] used for the efficient distribution of working packages to
mobile agents of an insurance company and in catastrophic scenarios [14], the
RealSafe project for reliable data distribution and retrievement in the traffic
telematics area, and the project SWIS [24] in cooperation with Frequentis AG1

focusing on efficient and reliable clustering of network nodes and communication
between those. These systems contain complex patterns like replication, notifi-
cation, or fifo coordination. Therefore, this paper details in section 4 the way
how such patterns are implemented with the introduced model.

In the following, the classic “tuple spaces model” referring to Linda and
JavaSpaces is termed “TSM”, and the “extensible tuple model” as proposed
in this paper is called “XTM”.

2 Structuring the Coordination Space

Motivated by numerous works that extend the original TSM, we propose an
extension of the TSM called XTM (extensible tuple model) for modeling data
and coordination in the shared space in a more structured way, and a formal
notation for the XTM. The goal is to define a system with a minimal feature
set that is extensible, can be configured upon request to meet complex collabo-
ration requirements, and has a well-defined semantics. Briefly, the main concept
in XTM is a shared container that manages data items called entries (general-
izing tuples in TSM). Both, container and entry are modeled by means of an
xtuple (extensible tuple). The operations on a container comprise addition, and
(destructive) selection of entries. In this paper we show the query language of
the XTM; the operational semantics are only sketched informally.

2.1 Xtuple and Entry

An xtuple (extensible tuple, or XT for short) is either an n-tuple “〈E1, . . . , En〉”
which is an ordered list of entries Ei (i = 1..n) with the property that its arity
n can change (expand or shrink) through addition and destructive selection of
entries, or empty (“〈〉”). Entries within an xtuple can be accessed using “XT[j]”
where j is the position of the entry. An entry is a multi-set of tags. A tag is a pair
that consists of a name and a value. The value of a tag can be accessed using
1 http://www.frequentis.com
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“get(name, E)” where name is the name of the tag and E the entry. Each entry
in an xtuple always has one implicit tag representing a unique position number
(“$P”) for access. The numbering within an xtuple starts with 1. However, the
position number is not an immutable part of the entry, it may change if entries
are added to or removed from the xtuple, and it is automatically stripped from
the entry, if the entry is removed from the xtuple. Entries have no identity. The
fact that entry E has a position number with value “i” is denoted as: “$P=i”.

Example 1. (xtuple)

– “〈[payload=hello, $P=1], [payload=space, $P=2], [payload=2008, $P=3]〉”
is an xtuple with 3 entries containing the payloads “hello”, “space”, and
“2008” plus their position number tags.

– “〈〉” is an empty xtuple.
– Let E be [payload=eva], then “get(payload, E)” returns the value of the tag

payload.

2.2 Container and Container Referencing

A container is a pair consisting of (1) a container-name which is a URL [14] that
can be addressed via the Internet, and (2) an xtuple. For a container that is
represented by the pair (C, xtuple), its xtuple can be accessed via “∗C”.

A container-name is used by read, take and write operations to retrieve the
container’s xtuple at the peer site where the container is hosted. A distributed
data space is a collection of such referenceable containers.

2.3 Structuring of Containers

Entries constitute either proxies for structured user data to be processed jointly,
or coordination data for the interaction of processes.

2.4 Entry Addition

When an entry is added to an xtuple XT, it is appended to the end of the XT
and the position number reflects the order in which the entries have been added.

Example 2. (entry addition)

– E1 = “[payload=jens, pin=12, title=prof]”.
XT1 = “〈[payload=chris, $P=1, pin=78, title=ms]〉”.
Adding E1 to XT1 obviously yields “〈[payload=chris, $P=1, pin=78, ti-
tle=ms], [payload=jens, $P=2, pin=12, title=prof]〉”.

2.5 (Destructive) Entry Selection

For (destructive) selection of entries from an xtuple XT using read or take, an
XQ (xtuple query) is introduced. Selected entries are copied into a new xtuple
that represents the result of the (destructive) selection; take is destructive and
also removes the selected entries from XT.
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An XQ is a single-XQ (SXQ) or a composition of SXQs using the binary op-
erator “|” which is left-associative and not commutative. A SXQ has the syntax,
where “name” refers to the name of a tag:

– name relational-operator value (relational comparison)
– name ∈ [value1–valuek] (range)
– name ∈ [value1, . . . , valuek] (enumeration)
– name function (name, template) (matching function)

Beyond tag selection using relational comparison operator, range or enumer-
ation definitions, also a match-maker function can be given, which denotes a
user-definable function. Its argument represents a template that is matched with
the value of the name and results into success or fail.

The execution semantics is that each SXQ (from left to right) of an XQ =
SXQ1 | ... | SXQn is applied to each entry in the xtuple XT in entry position
order. If successful, a new xtuple results to which the next SXQ is applied, a.s.o.
The basic idea behind this mechanism is that streaming becomes possible, as
each SXQ can be decided by each single entry. In contrast to databases, no join
and aggregation operators are supported. The SXQs can work concurrently and
can be seen as filters that pump the information from one stage to the other,
comparable with the staged driven architecture (SEDA) approach [28], [27] that
is known to scale well. Figure 1 depicts the execution of an XQ. The first SXQ,
SXQ1, is applied to the input xtuple XT creating an xtuple (XT’) that contains
all entries which fulfil the SXQ. XT’ is then the input for the next SXQ, SXQ2.
This process is repeated for all SXQs of the XQ. After the last SXQn has been
executed the resulting xtuple (RXT) contains all entries which fulfil the XQ.

Fig. 1. Execution semantic of an XQ

An entry fulfills an XQ, if it fulfills all SXQs of the XQ. An entry fulfills a SXQ:

– If the SXQ is a relational comparison, or a range or enumeration query and if
the entry has at least one tag with the given name the value of which fulfills
the SXQ. For a relational comparison, or a range query the result could be
0,1,. . . entries, whereas for an enumeration query at least one entry must be
found for each value contained in the enumeration. Note that $ is used to
denote the arity of the xtuple and can be used in query expressions.

– If the SXQ is a match-maker function and a user-defined match-maker func-
tion exists with same name as the match-maker function name, which applied
to the denoted tag’s value of the entry returns success. This means that the
entry must possess at least such a tag. The parameters of the user defined
match-maker function are the name of the value to which it is to be applied,
and the template.
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The result of an application of a SXQ contains all entries that fulfill the XQ
and that are currently contained in the xtuple to which it is applied. An XQ is
used by read and take for selection and is executed in one atomic step. If later
on entries are added to the xtuple that would also fulfill the XQ, they are not
considered any more.

Example 3. (fullfillment).

– Entry “[payload=A, a=5]” fulfills the XQ “a∈[1 – 100]”.
– Entry “[payload=B, b=5]” fulfills the XQs “b∈[3, 5]”, and “b=∗”. Note:

with “=” the usage of ∗ as wildcard is allowed.
– Entry “[payload=C, c=1, d=2]” fulfills the XQ “d∈[2 – 4] | c=1”.

If a SXQ cannot be fulfilled, the read or take is delayed (except if there are
contra-dictionary SXQs in which case it fails), and next time will retry from the
beginning, i.e. with the left-most SXQ. E.g. selection from XT = “〈[payload=100,
link=left], [payload=200, link=right]〉” using XQ = “link∈[next]” will delay.

Example 4. (SXQ, XQ)
Selections that could cause a delay are marked with “D”; “n” is the arity of the
XT to which the XQ is applied; column “nres” denotes number of result entries.

XQ: select from XT: nres: delay:
$P ∈ [1,...,10] the first 10 entries 10 D
pin ∈ [1 – 10] all entries with a tag named “pin” with

value between 1 and 10
0, 1, . . . , n

pin ∈ [1,. . . ,10] all entries with a tag named “pin” with
value between 1 and 10; at least one entry
must be found for each given value

10, 11, . . . , n D

payload ∈
linda((chris,*,*))
| pin ≤ 50

all entries that represent students with
name “chris” and that have a pin that is
≤ 50

0, 1, . . . , n

P ∈ [1 – 10] |
label ∈ [4 – 5]

the up to 10 entries in XT, from these select
all that have a label with value “4” or “5”

0, 1, . . . , 10

l1 = green |
l2 = blue |
payload ∈
(ralf,author,∗) |
x ∈ [5,6] |
$P ∈ [1,2]

all entries that have a tag with name l1
and value=“green”, and that have a tag
with name l2 and value=“blue”, and that
have a palyoad tag that is a tuple with
arity=“3” with first arg=“ralf” and sec-
ond arg=“author”, and that have a tag
with name x and value=“5” and one with
value=“6” (note: entries for both keys must
be found), and select two entries in position
order

2 D

P ∈ [1 – $] all, possibly 0 entries 0,1,. . .,n
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3 Core Container Functionality

A container exhibits a lean API which is defined by means of an XML protocol
[5]. No connect operation is required as each operation refers to an Internet-
addressable resource. Each peer application runs an embedded space runtime.
Each protocol message also carries a context parameter not shown below, in
which system or user defined parameters can be passed: e.g. security tokens,
execution states etc. In the following, the protocol messages2 defining the basic
core container functionality, and their operational semantics are only informally
described:

i-tx-create (S, ttl): creates a local transaction at the peer’s site denoted by
the URL “S” which refers to the URL of a peer runtime representing a
local space; “i” stands for isolation-level and is either “e” or “c”: An exclu-
sive transaction (“e”) locks every container it accesses exclusively, whereas a
concurrent transaction (“c”) allows concurrent readers and writers using pes-
simistic locking at entry level. The “ttl” parameter sets a time-to-live value
for the entire transaction in seconds; if expired the transaction is automat-
ically rolledback. The answer protocol message contains the newly created
transaction reference (“tx”) which is a URL, too.

tx-commit (tx), tx-rollback (tx): commits or rollbacks a transaction given
by its URL ”tx”. The answer is the termination result of the transaction.

create-container (S, C, tx): creates a container with the name “C” in a
space referenced by its URL “S”, within a transaction.

destroy-container (C, tx): destroys a container with a given name “C” within
a transaction.

read-op (C, XQ, tx, to, AC): (destructively) selects entries from a container
(with URL ”C”) with optional transaction “tx” and timeout “to” parame-
ters; “read-op” stands for either take or read. If tx is null, an implicit tx
is assumed that immediately commits. A timeout > 0 indicates that this
operation might block and retry within the given timeout if no answer is
found. Answer to a take or read message is a write message (see below)
that writes the selected entries into container “AC”. Typically AC will be
located at the requestor’s site and can e.g. be intercepted by a pre-write
aspect (see below) that calls a callback method or wakes up some waiting
thread. “AC” can be null, in this case the result is not written anywhere. A
take operation with “AC” set to null corresponds to a delete operation and
can be used to save network bandwidth. Note that we describe a protocol; a
binding can be provided for any programming language which can use this
protocol to implement a blocking read/take or an asynchronous callback.

write (C, E, tx, to): adds entry E to container C.
bulk-write (C, <E1, E2, ..., Ek>, tx, to): appends k entries E1, E2, ...,

Ek—given by means of an xtuple—to container C in the order of the xtuple.

2 The protocol is implemented in XML which allows the XTM to be used by any
programming language binding.
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A main concept of the XTM are aspects to extend the space dynamically
through user defined actions, i.e. a script or method call that are injected into
any of the above operations at a certain ipoint (interception point). This is com-
parable to reactions in LIME [20], [21]; the difference is that aspects are called
before (pre) a certain operation is invoked on a container, immediately after-
wards (post), or if the operation is committed (on-commit); whereas reactions
are called when a tuple matching a certain pattern is found in a tuple space.

def-aspect (C, ipoint, priority, program, tx, ttl): creates an aspect and
in the answer message sends a URL (aspect identifier “aid”) to identify it.
Program is an xtuple containing the single lines of the script to be executed.
The ttl parameter specifies its life time.

undef-aspect (aid, tx, to): removes an aspect given by its URL.

The order of aspect action execution is resolved by a priority parameter. Cf.
join points in aspect oriented programming which allow triggering of code before,
after, or instead of method execution [10]. This concept has been proven useful
for collaborative space-based applications at application level [13] and is now
proposed to be integrated into the space core.

With aspects, the behaviour of a container can be changed creating a share-
able “abstract data type” based on a container. Orca [1] showed that “having
users define their own operations has many advantages”. Orca supports shared,
replicated objects that can be read and updated using blocking and non-blocking
read/write operations. However, in Orca no dynamic “programming” of the space
is possible.

Aspects can also be used to implement reactions on state changes [20], [21]:
e.g. if a certain entry is written to, or taken from a container.

An action has access to parameters and relevant data of the original method
it intercepts and depends on its ipoint. E.g. a pre-write action has access to
5 parameters referencable by $0, $1, . . . , $4: with $0=context, $1=C, $2=entry,
$3=tx, and $4=to; a post-write-on-commit action or a post-write action has:
$0=context, $1=C, $2=entry, $3=tx, and $4=to. For the bulk-write ipoints,
$2=xtuple with the written entries. Read ipoints have the following arguments:
$1=C, $2=XQ, $3=tx, $4=to and $5=CA.

The return value of an aspect determines the control flow: “ok” implies nor-
mal continuation; “skip” in a pre-ipoint skips all further pre-actions and the
original method action, continuing with the first post-action, if given; “skip” in
a post-action skips all further post-actions; “fail” causes the entire operation
to fail; “reschedule” causes the operation to be delayed until a corresponding
event occurs upon which it is rescheduled, as long as the timeout condition is
fulfilled; and “remove-me” causes the aspect to be removed. Execution states
are implicitly passed via context parameter.

The main goal was to keep the set of operations of the XTM minimal and
extensible so that higher-level APIs for more advanced data structures and col-
lections can be bootstrapped on top of it. For the extensibility aspects are in-
troduced. The core container functionality like read, write and take is influenced
by the Linda model. All of these support bulk-data to optimize the network
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behaviour and to enable the implementation of iterators. Basic transaction func-
tionality is obviously essential and transactions have therefore already been sug-
gested by other spaces like JavaSpaces (pessimistic concurrency control) and
Corso (optimistic concurrency control). The XTM provides pessimistic concur-
rency control.

4 Extending the Functionality

With help of the XTM functionality, more complex coordination laws can be
defined and “injected” into the space without changing the protocol. This can be
for example FIFO selection, or more complex access patterns like a time bounded
cache, notifications and iterators, or other vertical features like replication. Also
more complex coordination laws can be defined this way, like e.g. a container
supporting multiple coordinations simultaneously.

In the following code snippets, “result ← message” stands for: “send message,
execute it, and extract result from the answer message of the protocol”.

4.1 FIFO Coordination

Example 5. (FIFO coordination) Define a new SXQ named FIFO(n) that se-
lects n entries in FIFO order and that can be used by read or take operations:

FIFO(n) ::= $P∈[1,. . . ,n]

4.2 Notification

In this section two realisations of a notification mechanism are shown. At least
two containers are normally involved in a notification in XTM. The container
on which the notification is registered and a container which stores the infor-
mation of the fired notifications (the notification container). A notification is
realized by analysing the operations executed on a container using an aspect.
The aspect decides whether the notification has to be fired or not. For example,
a notification could fire when a template matches newly written entries, a certain
amount of entries has been written, or when entries have been read. In case of
the notification has to be fired, the aspect writes the required information into
the notification container. From this container a user can take the information
for further computation (waking up a thread, calling a callback method, . . . ).
The information written to the notification container can be customized for the
needs of an application. For instance, the entry which caused the notification to
fire, a token which indicates that the notification fired or any other information
can be written by the aspect.

Example 6 defines a notification similar to the JavaSpace [7] notification. It
fires when a newly written entry matches a given template. The new entry which
caused the notification to fire is not passed to the application. The application
is only informed that something new has been written.
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First, a container (TC) is created which stores the template and an aspect is
created which handles the firing of the notification. The aspect simply executes
a read operation on the TC after each (committed) write operation using the
payload of the new entry as template. This is possible because it is assumed
that the used match-maker function (LINDA) can handle the inversion of the
template and the payload. The answer of the read operation is written into the
notification container (in this case the answer of the read operation is always
the template because it is the only entry in the TC).

This example could be extended supporting multiple templates by writing
more then one template into the TC. The user can distinguish which template
caused the notification to fire by analysing the data in the NC.

Example 6. (JavaSpace notification)

create-Notification(site, C, CN, template) :=
create-container(site, TC, null)
write(TC,〈[payload = template]〉, null, 0)
def-aspect(C, post-write-on-commit, priority,

〈 read(TC, LINDA(payload, get(payload, $2), null, 0, NC) 〉,
null, INFINITE)

Example 7 defines another notification flavour which is very similar to the first
one. Instead of informing the application that something happened, the entry
which caused the notification to fire is written to the notification container. To
realize this an aspect is added to the container on which the notification shall
be registered. When a new entry is written, the aspect creates a new container
containing the new entry. Afterwards, a take operation is executed on the new
container using the template passed during creation of the notification. The
result of the take operation is written to the NC (when the take operation
can be fulfilled the entry matches the template and therefore the notification
has to fire). Finally, the container created by the aspect is destroyed to avoid
unnecessary garbage.

Example 7. (Notification which returns the data)

create-Notification(site, C, CN, template) :=
def-aspect(C, post-write-on-commit, priority,

〈 create-container (site, C’, null)
write(C’, 〈$2〉, null, 0)
take(C’, LINDA(payload, template), null, 0, NC)
destroy-container(C’) 〉,
null, INFINITE)

4.3 Read Iterator

Example 8. (iterator) Define an iterator that (1) first reads all existing entries
from a container and then (2) asynchronously copies all prospectively inserted
entries into a container “CN” from which these entries can be collected with
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take. (2) is achieved by means of an aspect. The aspect writes all entries written
to C into the answer container CN.

The reading of all data (1) and the aspect definition (2) must be done in one
exclusive tx to avoid data loss.

read-iterator (site, C, CI) ::=
tx ← e-tx-create (site, INFINITE)
read (C, FIFO($), tx, CI)
def-aspect (C, post-write-on-commit, priority,

〈 write (CI, $2, $3, $4) 〉,
tx, to, INFINITE);

tx-commit (tx);

To keep the above examples simple, bulk-operations are not considered. The
required extensions are straight forward and can be done analogously to the
specification of the replication shown in the next section.

4.4 Single Master Replication

Finally we show a pattern for a single master replication. One peer site is the
owner of the master copy of the container (MC), and other sites can create
replica containers RC1,. . .,RCk from M. From each RCi in turn new replicas
RCi1,. . .,RCik can be created a.s.o. as depicted in figure 2.

2

11

3

4

1

12

13

31

32

121

122

Fig. 2. Single Master Replication

Each RC shall be an identical copy of the MC. It represents a cache from which
peers can read in order to reach a scalable system, and to improve availability
and performance. If a peer wants to write to a local RC, then there are two
scenarios in the pattern: (a) this is forbidden, and (b) the writing is allowed
but internally redirected to the container from which the RC was created. If
RC is not a direct ancestor of MC, then the re-direction is done in a cascading
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way. In the following examples we show the re-direction as a “write-through”
operation that is perfomed synchronoulsy. A variant that calls the aspect in a
fire-and-forget way would allow for an asynchronous behaviour.

The newly defined extended API is termed create-single-master-replica-
container (MC, RC). The name RC must not yet be used. A new container
is created and published under the name RC, all entries contained in MC are
copied into RC (called first sync) and an aspect is injected into MC that listens
on changes and transfers and applies them to RC. For this, an on-change-iterator
is defined that performs the following actions in an atomic step (see figure 9):

1. Create aspects on MC for the post-ipoints of all operations that perform
changes on a container—i.e. write, bulk-write, and take—to report the in-
formation about the change into a container called RSC (see below) that is
passed to the API as argument and that serves to collect the changes for
each peer replica, in the form of a command entry. The command entry has
the form [op=command, changed=entries ], and otherwise [op=command, in-
serted=entries ], where command is either delete or insert. For the replication
scenario, it is assumed that each entry that is inserted into MC possesses a
unique id with tag-name “guid”. So in order to be a capable MC, it must
possess an aspect that is injected upon container creation and that adds this
tag to each newly written entry.

2. Copy all entries E1,. . .,Ek of MC into RSC as a command entry of the form
[op=bulk-write, inserted=〈E1,. . .,Ek〉].

Example 9. on-change-iterator (MC, RSC, tx) ::=
read (MC, FIFO($), tx, INFINITE, RSC)
def-aspect (MC, post-take, 1, 〈 write (RSC, [cmd=delete, changed= ∗$5],

$3, $4) 〉, tx, INFINITE, INFINITE)
def-aspect (MC, post-write, 1, 〈 write (RSC, [cmd=insert, changed= $2],

$3, $4) 〉, tx, INFINITE, INFINITE)
def-aspect (MC, post-bulk-write, 1, 〈 write (RSC, [cmd=delete, changed=

∗$2], $3, $4) 〉, tx, INFINITE, INFINITE)

We can now implement the replication to perform (see figure 10) the following
steps atomically, where we assume that the RSC shall be created at the site of
the MC:

1. Create a new container termed replication subscription container RSC for
RC. RSC can be located at either the site of MC, or RC, or at any third
site. In the first case, this refers to a “pull” situation, and in the second case
it implements a “push” scenario.

2. Create an on-change-iterator for this new replica on MC.
3. Periodically fetch the changes in SRC and apply them to RC. Note that this

could also lead to variants of the pattern where the fetching is done e.g. at
certain times, at certain events (using an aspect), or taking only a certain
amount of changes in one step etc.
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Example 10. create-single-master-replica-container (MC, RC) ::=
tx ← tx-create (MC-site, INFINITE)
create-container (MC-site, RSC, tx)
on-change-iterator (MC, RSC, tx)
tx-commit (tx)
periodically do:

create-container (RC-site, TEMPC)
take (RSC, $P = 1 , tx, INFINITE, TEMPC)
if(get(cmd, *TEMPC[1]) == delete)

take(RC, guid=entry.guid, null, 0, null)
else

write(RC, get(changed, *TEMPC[1]), null, 0)
destroy-container (TEMPC)

For case (a) where updates are forbidden on a RC, upon creation of the
RC pre-aspects must be set on every change operation that simply return an
exception without calling the original operation. For case (b), these aspects are
implemented differently in that they re-direct the operation as is to the direct
ancestor container from which the replica RC was created.

5 Conclusion

Reliable, near-time, on-line collaboration will require a different architectural
style than a “store & forward” oriented one. Bi-directional access to arbitrary
data structures that go beyond fifo queues are needed to ease collaboration.

In this paper we have presented a formal notation called the extensible tuple
model (XTM) that can serve to model the TSM (tuple space model) as well as
essential enhancements of it. XTM allows for a clear specification of complex
coordination patterns. Examples are shown for FIFO coordination, two different
notification patterns, an iterator pattern, and a replication pattern with some
variants. The main proposed extensions are a better structuring of the space,
more powerful coordination capabilities, a clear separation of user data and
coordination information, support of symmetric peer application architectures,
a well- defined semantics of bulk-operations (read/take of multiple entries), and
a protocol that makes it usable in the Internet. The model has been implemented
by the XVSM system and is available as an open source implementation [25].

XTM is extensible with respect to the following three points: (1) The behavior
of a container, which is the core shared data structure in the XTM, can be
programmed dynamically using aspects. This way, arbitrary abstract data types
can be created which resemble shared collections for queues, dictionaries, maps,
trees etc. Using aspects, notifications and iterators in different flavors can be
realized with a well-defined semantics. (2) The possibility to include coordination
tags into an entry can be used to extend the container by other higher-level user
defined selectors, e.g. stack, random access, vector, least recently used, priorities,
role based scheduling etc. (3) The XTM query language can be extended by the
definition of match-maker functions, e.g. for supporting RDF or XML based
query facilities.
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The described model in this paper has been used to implement the open source
XVSM implementation called MozartSpaces [23]. In our future work we will use
this model for verification and analyzation of space implementations as described
in section 4. Additional future work will also deal with further extensions of the
XTM query language, and a model for the operational semantics of the XTM.
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